32nd International Mathematical Olympiad

First Day - July 17, 1991
 Time Limit: $4 \frac{1}{2}$ hours

1. Given a triangle $A B C$, let I be the center of its inscribed circle. The internal bisectors of the angles A, B, C meet the opposite sides in $A^{\prime}, B^{\prime}, C^{\prime}$ respectively. Prove that

$$
\frac{1}{4}<\frac{A I \cdot B I \cdot C I}{A A^{\prime} \cdot B B^{\prime} \cdot C C^{\prime}} \leq \frac{8}{27}
$$

2. Let $n>6$ be an integer and $a_{1}, a_{2}, \ldots, a_{k}$ be all the natural numbers less than n and relatively prime to n. If

$$
a_{2}-a_{1}=a_{3}-a_{2}=\cdots=a_{k}-a_{k-1}>0,
$$

prove that n must be either a prime number or a power of 2 .
3. Let $S=\{1,2,3, \ldots, 280\}$. Find the smallest integer n such that each n-element subset of S contains five numbers which are pairwise relatively prime.

Second Day - July 18, 1991
 Time Limit: $4 \frac{1}{2}$ hours

4. Suppose G is a connected graph with k edges. Prove that it is possible to label the edges $1,2, \ldots, k$ in such a way that at each vertex which belongs to two or more edges, the greatest common divisor of the integers labeling those edges is equal to 1 .
[A graph consists of a set of points, called vertices, together with a set of edges joining certain pairs of distinct vertices. Each pair of vertices u, v belongs to at most one edge. The graph G is connected if for each pair of distinct vertices x, y there is some sequence of vertices $x=v_{0}, v_{1}, v_{2}, \ldots, v_{m}=y$ such that each pair $v_{i}, v_{i+1}(0 \leq i<m)$ is joined by an edge of G.]
5. Let $A B C$ be a triangle and P an interior point of $A B C$. Show that at least one of the angles $\angle P A B, \angle P B C, \angle P C A$ is less than or equal to 30°.
6. An infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$ of real numbers is said to be bounded if there is a constant C such that $\left|x_{i}\right| \leq C$ for every $i \geq 0$.
Given any real number $a>1$, construct a bounded infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$ such that

$$
\left|x_{i}-x_{j}\right||i-j|^{a} \geq 1
$$

for every pair of distinct nonnegative integers i, j.

