34nd International Mathematical Olympiad

First Day - July 18, 1993
 Time Limit: $4 \frac{1}{2}$ hours

1. Let $f(x)=x^{n}+5 x^{n-1}+3$, where $n>1$ is an integer. Prove that $f(x)$ cannot be expressed as the product of two nonconstant polynomials with integer coefficients.
2. Let D be a point inside acute triangle $A B C$ such that $\angle A D B=\angle A C B+\pi / 2$ and $A C \cdot B D=A D \cdot B C$.
(a) Calculate the ratio $(A B \cdot C D) /(A C \cdot B D)$.
(b) Prove that the tangents at C to the circumcircles of $\triangle A C D$ and $\triangle B C D$ are perpendicular.
3. On an infinite chessboard, a game is played as follows. At the start, n^{2} pieces are arranged on the chessboard in an n by n block of adjoining squares, one piece in each square. A move in the game is a jump in a horizontal or vertical direction over an adjacent occupied square to an unoccupied square immediately beyond. The piece which has been jumped over is removed.
Find those values of n for which the game can end with only one piece remaining on the board.

Second Day - July 19, 1993
 Time Limit: $4 \frac{1}{2}$ hours

4. For three points P, Q, R in the plane, we define $m(P Q R)$ as the minimum length of the three altitudes of $\triangle P Q R$. (If the points are collinear, we set $m(P Q R)=0$.)
Prove that for points A, B, C, X in the plane,

$$
m(A B C) \leq m(A B X)+m(A X C)+m(X B C)
$$

5. Does there exist a function $f: \mathbf{N} \rightarrow \mathbf{N}$ such that $f(1)=2, f(f(n))=f(n)+n$ for all $n \in \mathbf{N}$, and $f(n)<f(n+1)$ for all $n \in \mathbf{N}$?
6. There are n lamps L_{0}, \ldots, L_{n-1} in a circle ($n>1$), where we denote $L_{n+k}=L_{k}$. (A lamp at all times is either on or off.) Perform steps s_{0}, s_{1}, \ldots as follows: at step s_{i}, if L_{i-1} is lit, switch L_{i} from on to off or vice versa, otherwise do nothing. Initially all lamps are on. Show that:
(a) There is a positive integer $M(n)$ such that after $M(n)$ steps all the lamps are on again;
(b) If $n=2^{k}$, we can take $M(n)=n^{2}-1$;
(c) If $n=2^{k}+1$, we can take $M(n)=n^{2}-n+1$.
