$38^{\text {th }}$ International Mathematical Olympiad
Mar del Plata, Argentina
\section*{Day I}
July 24, 1997

1. In the plane the points with integer coordinates are the vertices of unit squares. The squares are colored alternately black and white (as on a chessboard).
For any pair of positive integers m and n, consider a right-angled triangle whose vertices have integer coordinates and whose legs, of lengths m and n, lie along edges of the squares.
Let S_{1} be the total area of the black part of the triangle and S_{2} be the total area of the white part. Let

$$
f(m, n)=\left|S_{1}-S_{2}\right|
$$

(a) Calculate $f(m, n)$ for all positive integers m and n which are either both even or both odd.
(b) Prove that $f(m, n) \leq \frac{1}{2} \max \{m, n\}$ for all m and n.
(c) Show that there is no constant C such that $f(m, n)<C$ for all m and n.
2. The angle at A is the smallest angle of triangle $A B C$. The points B and C divide the circumcircle of the triangle into two arcs. Let U be an interior point of the arc between B and C which does not contain A. The perpendicular bisectors of $A B$ and $A C$ meet the line $A U$ at V and W, respectively. The lines $B V$ and $C W$ meet at T. Show that

$$
A U=T B+T C .
$$

3. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers satisfying the conditions

$$
\left|x_{1}+x_{2}+\cdots+x_{n}\right|=1
$$

and

$$
\left|x_{i}\right| \leq \frac{n+1}{2} \quad i=1,2, \ldots, n
$$

Show that there exists a permutation $y_{1}, y_{2}, \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
\left|y_{1}+2 y_{2}+\cdots+n y_{n}\right| \leq \frac{n+1}{2} .
$$

$38^{\text {th }}$ International Mathematical Olympiad
 Mar del Plata, Argentina
 Day II
 July 25, 1997

4. An $n \times n$ matrix whose entries come from the set $S=\{1,2, \ldots, 2 n-1\}$ is called a silver matrix if, for each $i=1,2, \ldots, n$, the i th row and the i th column together contain all elements of S. Show that
(a) there is no silver matrix for $n=1997$;
(b) silver matrices exist for infinitely many values of n.
5. Find all pairs (a, b) of integers $a, b \geq 1$ that satisfy the equation

$$
a^{b^{2}}=b^{a} .
$$

6. For each positive integer n, let $f(n)$ denote the number of ways of representing n as a sum of powers of 2 with nonnegative integer exponents. Representations which differ only in the ordering of their summands are considered to be the same. For instance, $f(4)=4$, because the number 4 can be represented in the following four ways:

$$
4 ; 2+2 ; 2+1+1 ; 1+1+1+1
$$

Prove that, for any integer $n \geq 3$,

$$
2^{n^{2} / 4}<f\left(2^{n}\right)<2^{n^{2} / 2} .
$$

