$39^{\text {th }}$ International Mathematical Olympiad
Taipei, Taiwan
Day I
July 15, 1998

1. In the convex quadrilateral $A B C D$, the diagonals $A C$ and $B D$ are perpendicular and the opposite sides $A B$ and $D C$ are not parallel. Suppose that the point P, where the perpendicular bisectors of $A B$ and $D C$ meet, is inside $A B C D$. Prove that $A B C D$ is a cyclic quadrilateral if and only if the triangles $A B P$ and $C D P$ have equal areas.
2. In a competition, there are a contestants and b judges, where $b \geq 3$ is an odd integer. Each judge rates each contestant as either "pass" or "fail". Suppose k is a number such that, for any two judges, their ratings coincide for at most k contestants. Prove that $k / a \geq(b-1) /(2 b)$.
3. For any positive integer n, let $d(n)$ denote the number of positive divisors of n (including 1 and n itself). Determine all positive integers k such that $d\left(n^{2}\right) / d(n)=k$ for some n.

$39^{\text {th }}$ International Mathematical Olympiad

Taipei, Taiwai
Day II
July 16, 1998
4. Determine all pairs (a, b) of positive integers such that $a b^{2}+b+7$ divides $a^{2} b+a+b$.
5. Let I be the incenter of triangle $A B C$. Let the incircle of $A B C$ touch the sides $B C, C A$, and $A B$ at K, L, and M, respectively. The line through B parallel to $M K$ meets the lines $L M$ and $L K$ at R and S, respectively. Prove that angle RIS is acute.
6. Consider all functions f from the set N of all positive integers into itself satisfying $f\left(t^{2} f(s)\right)=s(f(t))^{2}$ for all s and t in N. Determine the least possible value of $f(1998)$.

