$18^{\text {th }}$ USA Mathematical Olympiad

April 25, 1989
Time Limit: $3 \frac{1}{2}$ hours

1. For each positive integer n, let

$$
\begin{aligned}
S_{n} & =1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \\
T_{n} & =S_{1}+S_{2}+S_{3}+\cdots+S_{n} \\
U_{n} & =\frac{T_{1}}{2}+\frac{T_{2}}{3}+\frac{T_{3}}{4}+\cdots+\frac{T_{n}}{n+1} .
\end{aligned}
$$

Find, with proof, integers $0<a, b, c, d<1000000$ such that $T_{1988}=$ $a S_{1989}-b$ and $U_{1988}=c S_{1989}-d$.
2. The 20 members of a local tennis club have scheduled exactly 14 twoperson games among themselves, with each member playing in at least one game. Prove that within this schedule there must be a set of 6 games with 12 distinct players.
3. Let $P(z)=z^{n}+c_{1} z^{n-1}+c_{2} z^{n-2}+\cdots+c_{n}$ be a polynomial in the complex variable z, with real coefficients c_{k}. Suppose that $|P(i)|<1$. Prove that there exist real numbers a and b such that $P(a+b i)=0$ and $\left(a^{2}+b^{2}+1\right)^{2}<4 b^{2}+1$.
4. Let $A B C$ be an acute-angled triangle whose side lengths satisfy the inequalities $A B<A C<B C$. If point I is the center of the inscribed circle of triangle $A B C$ and point O is the center of the circumscribed circle, prove that line $I O$ intersects segments $A B$ and $B C$.
5. Let u and v be real numbers such that
$\left(u+u^{2}+u^{3}+\cdots+u^{8}\right)+10 u^{9}=\left(v+v^{2}+v^{3}+\cdots+v^{10}\right)+10 v^{11}=8$.
Determine, with proof, which of the two numbers, u or v, is larger.

