22^{nd} United States of America Mathematical Olympiad

April 29, 1993 Time Limit: $3\frac{1}{2}$ hours

1. For each integer $n \geq 2$, determine, with proof, which of the two positive real numbers a and b satisfying

$$a^n = a + 1, \qquad b^{2n} = b + 3a$$

is larger.

- 2. Let ABCD be a convex quadrilateral such that diagonals AC and BD intersect at right angles, and let E be their intersection. Prove that the reflections of E across AB, BC, CD, DA are concyclic.
- 3. Consider functions $f:[0,1]\to \mathbf{R}$ which satisfy
 - (i) $f(x) \ge 0$ for all x in [0, 1],
 - (ii) f(1) = 1,
 - (iii) $f(x) + f(y) \le f(x+y)$ whenever x, y, and x+y are all in [0,1].

Find, with proof, the smallest constant c such that

$$f(x) \le cx$$

for every function f satisfying (i)-(iii) and every x in [0,1].

- 4. Let a, b be odd positive integers. Define the sequence (f_n) by putting $f_1 = a$, $f_2 = b$, and by letting f_n for $n \ge 3$ be the greatest odd divisor of $f_{n-1} + f_{n-2}$. Show that f_n is constant for n sufficiently large and determine the eventual value as a function of a and b.
- 5. Let a_0, a_1, a_2, \ldots be a sequence of positive real numbers satisfying $a_{i-1}a_{i+1} \leq a_i^2$ for $i = 1, 2, 3, \ldots$ (Such a sequence is said to be $log\ concave$.) Show that for each n > 1,

$$\frac{a_0+\cdots+a_n}{n+1}\cdot\frac{a_1+\cdots+a_{n-1}}{n-1}\geq \frac{a_0+\cdots+a_{n-1}}{n}\cdot\frac{a_1+\cdots+a_n}{n}.$$

Copyright © Committee on the American Mathematics Competitions,

Mathematical Association of America