$22^{\text {nd }}$ United States of America Mathematical Olympiad

April 29, 1993

Time Limit: $3 \frac{1}{2}$ hours

1. For each integer $n \geq 2$, determine, with proof, which of the two positive real numbers a and b satisfying

$$
a^{n}=a+1, \quad b^{2 n}=b+3 a
$$

is larger.
2. Let $A B C D$ be a convex quadrilateral such that diagonals $A C$ and $B D$ intersect at right angles, and let E be their intersection. Prove that the reflections of E across $A B, B C, C D, D A$ are concyclic.
3. Consider functions $f:[0,1] \rightarrow \mathbf{R}$ which satisfy
(i) $\quad f(x) \geq 0$ for all x in $[0,1]$,
(ii) $f(1)=1$,
(iii) $\quad f(x)+f(y) \leq f(x+y)$ whenever x, y, and $x+y$ are all in $[0,1]$.

Find, with proof, the smallest constant c such that

$$
f(x) \leq c x
$$

for every function f satisfying (i)-(iii) and every x in $[0,1]$.
4. Let a, b be odd positive integers. Define the sequence $\left(f_{n}\right)$ by putting $f_{1}=a$, $f_{2}=b$, and by letting f_{n} for $n \geq 3$ be the greatest odd divisor of $f_{n-1}+f_{n-2}$. Show that f_{n} is constant for n sufficiently large and determine the eventual value as a function of a and b.
5. Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of positive real numbers satisfying $a_{i-1} a_{i+1} \leq a_{i}^{2}$ for $i=1,2,3, \ldots$. (Such a sequence is said to be log concave.) Show that for each $n>1$,

$$
\frac{a_{0}+\cdots+a_{n}}{n+1} \cdot \frac{a_{1}+\cdots+a_{n-1}}{n-1} \geq \frac{a_{0}+\cdots+a_{n-1}}{n} \cdot \frac{a_{1}+\cdots+a_{n}}{n} .
$$

