$23^{\text {rd }}$ United States of America Mathematical Olympiad

April 28, 1994

Time Limit: $3 \frac{1}{2}$ hours

1. Let $k_{1}<k_{2}<k_{3}<\cdots$ be positive integers, no two consecutive, and let $s_{m}=$ $k_{1}+k_{2}+\cdots+k_{m}$ for $m=1,2,3, \ldots$. Prove that, for each positive integer n, the interval $\left[s_{n}, s_{n+1}\right)$ contains at least one perfect square.
2. The sides of a 99-gon are initially colored so that consecutive sides are red, blue, red, blue,, red, blue, yellow. We make a sequence of modifications in the coloring, changing the color of one side at a time to one of the three given colors (red, blue, yellow), under the constraint that no two adjacent sides may be the same color. By making a sequence of such modifications, is it possible to arrive at the coloring in which consecutive sides are red, blue, red, blue, red, blue, ..., red, yellow, blue?
3. A convex hexagon $A B C D E F$ is inscribed in a circle such that $A B=C D=E F$ and diagonals $A D, B E$, and $C F$ are concurrent. Let P be the intersection of $A D$ and $C E$. Prove that $C P / P E=(A C / C E)^{2}$.
4. Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of positive real numbers satisfying $\sum_{j=1}^{n} a_{j} \geq \sqrt{n}$ for all $n \geq 1$. Prove that, for all $n \geq 1$,

$$
\sum_{j=1}^{n} a_{j}^{2}>\frac{1}{4}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right) .
$$

5. Let $|U|, \sigma(U)$ and $\pi(U)$ denote the number of elements, the sum, and the product, respectively, of a finite set U of positive integers. (If U is the empty set, $|U|=0, \sigma(U)=0, \pi(U)=1$.) Let S be a finite set of positive integers. As usual, let $\binom{n}{k}$ denote $\frac{n!}{k!(n-k)!}$. Prove that

$$
\sum_{U \subseteq S}(-1)^{|U|}\binom{m-\sigma(U)}{|S|}=\pi(S)
$$

for all integers $m \geq \sigma(S)$.

> Copyright © Committee on the American Mathematics Competitions, Mathematical Association of America

