$25^{ m th}$ United States of America Mathematical Olympiad

Part I 9 a.m. - 12 noon May 2, 1996

- 1. Prove that the average of the numbers $n \sin n^{\circ}$ (n = 2, 4, 6, ..., 180) is cot 1°.
- 2. For any nonempty set S of real numbers, let $\sigma(S)$ denote the sum of the elements of S. Given a set A of n positive integers, consider the collection of all distinct sums $\sigma(S)$ as S ranges over the nonempty subsets of A. Prove that this collection of sums can be partitioned into n classes so that in each class, the ratio of the largest sum to the smallest sum does not exceed 2.
- 3. Let ABC be a triangle. Prove that there is a line ℓ (in the plane of triangle ABC) such that the intersection of the interior of triangle ABC and the interior of its reflection A'B'C' in ℓ has area more than 2/3 the area of triangle ABC.

$25^{ m th}$ United States of America Mathematical Olympiad

Part II 1 p.m. - 4 p.m. May 2, 1996

- 4. An *n*-term sequence (x_1, x_2, \ldots, x_n) in which each term is either 0 or 1 is called a binary sequence of length n. Let a_n be the number of binary sequences of length n containing no three consecutive terms equal to 0, 1, 0 in that order. Let b_n be the number of binary sequences of length n that contain no four consecutive terms equal to 0, 0, 1, 1 or 1, 1, 0, 0 in that order. Prove that $b_{n+1} = 2a_n$ for all positive integers n.
- 5. Triangle ABC has the following property: there is an interior point P such that $\angle PAB = 10^{\circ}$, $\angle PBA = 20^{\circ}$, $\angle PCA = 30^{\circ}$, and $\angle PAC = 40^{\circ}$. Prove that triangle ABC is isosceles.
- 6. Determine (with proof) whether there is a subset X of the integers with the following property: for any integer n there is exactly one solution of a + 2b = n with $a, b \in X$.