- Let $\{a_k\}$ be a sequence of integers such that $a_1=1$ and $a_{m+n} = a_m + a_n + mn$, for all positive integers m and n. Then a_{12} is
 - **(A)** 45

- **(B)** 56 **(C)** 67 **(D)** 78
- **(E)** 89

2002 AMC 10 B, Number #23— "Create the sequence"

- **Solution (D)** By setting n=1 in the given recursive equation, we obtain $a_{m+1}=a_m+a_1+m$, for all positive integers m. So $a_{m+1}-a_m=m+1$ for each $m = 1, 2, 3, \ldots$ Hence,

$$a_{12} - a_{11} = 12$$
, $a_{11} - a_{10} = 11$, ..., $a_2 - a_1 = 2$.

Summing these equalities yields $a_{12} - a_1 = 12 + 11 + \cdots + 2$. So

$$a_{12} = 12 + 11 + \dots + 2 + 1 = \frac{12(12+1)}{2} = 78.$$

Difficulty: Hard

NCTM Standard: Algebra Standard for Grades 9-12: Generalize patterns using explicitly defined and recursively defined functions.

Mathworld.com Classification:

Discrete Mathematics > Computer Science > Algorithms > Recursion > Recursive Sequence;

Discrete Mathematics > Recurrence Equations > Recursive Sequence