- Find the number of ordered pairs of real numbers (a,b) such that $(a+bi)^{2002}=a-bi$.
 - **(A)** 1001
- **(B)** 1002
- **(C)** 2001
- **(D)** 2002
- **(E)** 2004

2002 AMC 12 A, Number #24— "Use the complex modulus"

- **Solution (E)** Let z=a+bi, $\overline{z}=a-bi$, and $|z|=\sqrt{a^2+b^2}$. The given relation becomes $z^{2002}=\overline{z}$. Note that

$$|z|^{2002} = |z^{2002}| = |\overline{z}| = |z|,$$

from which it follows that

$$|z| \left(|z|^{2001} - 1 \right) = 0.$$

Hence |z|=0, and (a,b)=(0,0), or |z|=1. In the case |z|=1, we have $z^{2002}=\overline{z}$, which is equivalent to $z^{2003}=\overline{z}\cdot z=|z|^2=1$. Since the equation $z^{2003}=1$ has 2003 distinct solutions, there are altogether 1+2003=2004 ordered pairs that meet the required conditions.

This problem is similar to problem #2 on the 1999 AIME Difficulty: Hard

NCTM Standard: Number and Operations Standard for Grades 9–12: Understand complex numbers as solutions to quadratic equations that do not have real solutions.

Mathworld.com Classification:

 ${\it Calculus \ and \ Analysis} > {\it Complex \ Analysis} > {\it Complex \ Numbers}$