AMC 10 Student Practice Questions

You will find these and additional problems for the AMC 10 and AMC 12 on AMC's web site: http://www.unl.edu/amc, available from the current and previous AMC 10/12 Teacher Manuals, (http://www.unl.edu/amc/e-exams/e6-amc12/archive12.shtml) or from our Problems page archives (http://www.unl.edu/amc/a-activities/a7-problems/problem81012archive.shtml).

Triangle $A B C$ has a right angle at B. Point D is the foot of the altitude from $B, A D=3$, and $D C=4$.
What is the area of $\triangle A B C$?

(A) $4 \sqrt{3}$
(B) $7 \sqrt{3}$
(C) 21
(D) $14 \sqrt{3}$
(E) 42

2009 AMC 10 A, Problem \#10-

" $\triangle A D B$ and $\triangle B D C$ are similar."

Solution

Answer (B): By the Pythagorean Theorem, $A B^{2}=B D^{2}+9, B C^{2}=$ $B D^{2}+16$, and $A B^{2}+B C^{2}=49$. Adding the first two equations and substituting gives $2 \cdot B D^{2}+25=49$. Then $B D=2 \sqrt{3}$, and the area of $\triangle A B C$ is $\frac{1}{2} \cdot 7 \cdot 2 \sqrt{3}=7 \sqrt{3}$.

OR
Because $\triangle A D B$ and $\triangle B D C$ are similar, $\frac{B D}{3}=\frac{4}{B D}$, from which $B D=$ $2 \sqrt{3}$. Therefore the area of $\triangle A B C$ is $\frac{1}{2} \cdot 7 \cdot 2 \sqrt{3}=7 \sqrt{3}$.

At Jefferson Summer Camp, 60% of the children play soccer, 30% of the children swim, and 40% of the soccer players swim. To the nearest whole percent, what percent of the non-swimmers play soccer?
(A) 30%
(B) 40%
(C) 49%
(D) 51%
(E) 70%

2009 AMC 10 A, Problem \#18-
"Of the $\mathbf{6 0}$ soccer players, $\mathbf{4 0 \%}$ or $60 \times \frac{40}{100}=24$ are also swimmers."

Solution

Answer (D): For every 100 children, 60 are soccer players and 40 are non-soccer players. Of the 60 soccer players, 40% or $60 \times \frac{40}{100}=24$ are also swimmers, so 36 are non-swimmers. Of the 100 children, 30 are swimmers and 70 are non-swimmers. The fraction of non-swimmers who play soccer is $\frac{36}{70} \approx .51$, or 51%.

Segment $B D$ and $A E$ intersect at C, as shown, $A B=B C=C D=C E$, and $\angle A=\frac{5}{2} \angle B$. What is the degree measure of $\angle D$?

(A) 52.5
(B) 55
(C) 57.5
(D) 60
(E) 62.5

2009 AMC 10 B, Problem \#9-

"Notice that $\triangle A B C$ and $\triangle C D E$ are isosceles."

Solution

Answer (A): Because $\triangle A B C$ is isosceles, $\angle A=\angle C$. Because $\angle A=$ $\frac{5}{2} \angle B$, we have $\frac{5}{2} \angle B+\frac{5}{2} \angle B+\angle B=180^{\circ}$, so $\angle B=30^{\circ}$. Therefore $\angle A C B=\angle D C E=75^{\circ}$. Because $\triangle C D E$ is isosceles, $2 \angle D+75^{\circ}=$ 180°, so $\angle D=52.5^{\circ}$.

Points A and C lie on a circle centered at O, each of $\overline{B A}$ and $\overline{B C}$ are tangent to the circle, and $\triangle A B C$ is equilateral. The circle intersects $\overline{B O}$ at D. What is $\frac{B D}{B O}$?
(A) $\frac{\sqrt{2}}{3}$
(B) $\frac{1}{2}$
(C) $\frac{\sqrt{3}}{3}$
(D) $\frac{\sqrt{2}}{2}$
(E) $\frac{\sqrt{3}}{2}$

2009 AMC 10 B, Problem \#16-

" $\triangle B C O$ is a right triangle with a 30° angle at $B . "$

Solution

Answer (\mathbf{B}): Let the radius of the circle be r. Because $\triangle B C O$ is a right triangle with a 30° angle at B, the hypotenuse $\overline{B O}$ is twice as long as $\overline{O C}$, so $B O=2 r$. It follows that $B D=2 r-r=r$, and

$$
\frac{B D}{B O}=\frac{r}{2 r}=\frac{1}{2} .
$$

Triangle $A B C$ has a right angle at $B, A B=1$, and $B C=2$. The bisector of $\angle B A C$ meets $\overline{B C}$ at D. What is $B D$?

(A) $\frac{\sqrt{3}-1}{2}$
(B) $\frac{\sqrt{5}-1}{2}$
(C) $\frac{\sqrt{5}+1}{2}$
(D) $\frac{\sqrt{6}+\sqrt{2}}{2}$
(E) $2 \sqrt{3}-1$

2009 AMC 10 B, Problem \#20-

"Angle Bisector Theorem."

Solution

Answer (B): By the Pythagorean Theorem, $A C=\sqrt{5}$. By the Angle Bisector Theorem, $\frac{B D}{A B}=\frac{C D}{A C}$. Therefore $C D=\sqrt{5} \cdot B D$ and $B D+C D=$ 2, from which

$$
B D=\frac{2}{1+\sqrt{5}}=\frac{\sqrt{5}-1}{2}
$$

OR
Let $\overline{D E}$ be an altitude of $\triangle A D C$. Then note that $\triangle A B D$ is congruent to $\triangle A E D$, and so $A E=1$. As in the first solution $A C=\sqrt{5}$. Let $x=B D$. Then $D E=x, E C=\sqrt{5}-1$, and $D C=2-x$. Applying the Pythagorean Theorem to $\triangle D E C$ yields $x^{2}+(\sqrt{5}-1)^{2}=(2-x)^{2}$, from which $x=\frac{\sqrt{5}-1}{2}$.

What number is one third of the way from $\frac{1}{4}$ to $\frac{3}{4}$?
(A) $\frac{1}{3}$
(B) $\frac{5}{12}$
(C) $\frac{1}{2}$
(D) $\frac{7}{12}$
(E) $\frac{2}{3}$

2009 AMC 12 A, Problem \#3-

"Find one third of the difference between $\frac{1}{4}$ and $\frac{3}{4}$, then calculate the required number."

Solution

Answer (B): The number is

$$
\frac{1}{4}+\frac{1}{3}\left(\frac{3}{4}-\frac{1}{4}\right)=\frac{1}{4}+\frac{1}{3} \cdot \frac{1}{2}=\frac{1}{4}+\frac{1}{6}=\frac{5}{12}
$$

Functions f and g are quadratic, $g(x)=-f(100-x)$, and the graph of g contains the vertex of the graph of f. The four x-intercepts on the two graphs have x coordinates x_{1}, x_{2}, x_{3}, and x_{4}, in increasing order, and $x_{3}-x_{2}=150$. The value of $x_{4}-x_{1}$ is $m+n \sqrt{p}$, where m, n, and p are positive integers, and p is not divisible by the square of any prime. What is $m+n+p$?
(A) 602
(B) 652
(C) 702
(D) 752
(E) 802

2009 AMC 12 A, Problem \#23-
"Write $f(x)$ in "completing-the-square" form, then express $g(x)$ in terms of $f(x)$."

Solution

Answer (D): Let (h, k) be the vertex of the graph of f. Because the graph of f intersects the x-axis twice, we can assume that $f(x)=a(x-h)^{2}+k$ with $\frac{-k}{a}>0$. Let $s=\sqrt{\frac{-k}{a}}$; then the x-intercepts of the graph of f are $h \pm s$. Because $g(x)=-f(100-x)=-a(100-x-h)^{2}-k$, it follows that the x-intercepts of the graph of g are $100-h \pm s$.
The graph of g contains the point (h, k); thus

$$
k=f(h)=g(h)=-a(100-2 h)^{2}-k,
$$

from which $h=50 \pm \frac{\sqrt{2}}{2} s$. Regardless of the sign in the expression for h, the four x-intercepts in order are
$50-s\left(1+\frac{\sqrt{2}}{2}\right)<50-s\left(1-\frac{\sqrt{2}}{2}\right)<50+s\left(1-\frac{\sqrt{2}}{2}\right)<50+s\left(1+\frac{\sqrt{2}}{2}\right)$.
Because $x_{3}-x_{2}=150$, it follows that $150=s(2-\sqrt{2})$, that is $s=$ $150\left(1+\frac{\sqrt{2}}{2}\right)$. Therefore $x_{4}-x_{1}=s(2+\sqrt{2})=450+300 \sqrt{2}$, and then $m+n+p=450+300+2=752$.

Ten women sit in 10 seats in a line. All of the 10 get up and then reseat themselves using all 10 seats, each sitting in the seat she was in before or a seat next to the one she occupied before. In how many ways can the women be reseated?
(A) 89
(B) 90
(C) 120
(D) 2^{10}
(E) $2^{2} 3^{8}$

2009 AMC 12 B, Problem \#21-

"Try cases for 1 woman, 2 women, 3 women first."

Solution

Answer (A): Let S_{n} denote the number of ways that n women in n seats can be reseated so that each woman reseats herself in the seat she occupied before or a seat next to it. It is easy to see that $S_{1}=1$ and $S_{2}=2$. Now consider the case with $n \geq 3$ women, and focus on the woman at the right end of the line. If this woman sits again in this end seat, then the remaining $n-1$ women can reseat themselves in S_{n-1} ways. If this end woman sits in the seat next to hers, then the former occupant of this new seat must sit on the end. Then the remaining $n-2$ women can seat themselves in S_{n-2} ways. Thus for $n \geq 3, S_{n}=S_{n-1}+S_{n-2}$. Therefore $\left(S_{1}, S_{2}, \ldots, S_{10}\right)=(1,2,3,5,8,13,21,34,55,89)$, which are some of the first few terms of the Fibonacci Sequence. Thus $S_{10}=89$.

For how many values of x in $[0, \pi]$ is $\sin ^{-1}(\sin 6 x)=$ $\cos ^{-1}(\cos x) ?$
Note: The functions $\sin ^{-1}=\arcsin$ and $\cos ^{-1}=$ arccos denote inverse trigonometric functions.
(A) 3
(B) 4
(C) 5
(D) 6
(E) 7

2009 AMC 12 B, Problem \#24-

"If $0 \leq x \leq \pi / 12$, then $\sin ^{-1}(\sin 6 x)=6 x$."

Solution

Answer (B): Let $f(x)=\sin ^{-1}(\sin 6 x)$ and $g(x)=\cos ^{-1}(\cos x)$. If $0 \leq x \leq \pi$, then $g(x)=x$. If $0 \leq x \leq \pi / 12$, then $f(x)=6 x$. Note also that $\sin \left(6\left(\frac{\pi}{6}-x\right)\right)=\sin 6 x, \sin \left(6\left(\frac{\pi}{3}-x\right)\right)=-\sin 6 x$, and $\sin \left(6\left(\frac{\pi}{3}+x\right)\right)=\sin 6 x$, from which it follows that $f\left(\frac{\pi}{6}-x\right)=f(x)$, $f\left(\frac{\pi}{3}-x\right)=-f(x)$, and $f\left(\frac{\pi}{3}+x\right)=f(x)$. Thus the graph of $y=f(x)$ has period $\frac{\pi}{3}$ and consists of line segments with slopes of 6 or -6 and endpoints at $\left((4 k+1) \frac{\pi}{12}, \frac{\pi}{2}\right)$ and $\left((4 k+3) \frac{\pi}{12},-\frac{\pi}{2}\right)$ for integer values of k. The graphs of f and g intersect twice in the interval $\left[0, \frac{\pi}{6}\right]$ and twice more in the interval $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$. If $\frac{\pi}{2}<x \leq \pi$, then $g(x)=x>\frac{\pi}{2}$, so the graphs of f and g do not intersect.

