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1. Determine all composite positive integers n for which it is possible to arrange all divisors

of n that are greater than 1 in a circle so that no two adjacent divisors are relatively prime.

Solution. No such circular arrangement exists for n = pq, where p and q are distinct

primes. In that case, the numbers to be arranged are p, q and pq, and in any circular

arrangement, p and q will be adjacent. We claim that the desired circular arrangement

exists in all other cases. If n = pe where e ≥ 2, an arbitrary circular arrangement works.

Henceforth we assume that n has prime factorization pe1
1 pe2

2 · · · pek
k , where p1 < p2 <

· · · < pk and either k > 2 or else max(e1, e2) > 1. To construct the desired circular

arrangement of Dn := {d : d|n and d > 1}, start with the circular arrangement of

n, p1p2, p2p3, . . . , pk−1pk as shown.

n p1p2
p2p3

pk−1pk

Then between n and p1p2, place (in arbitrary order) all other members of Dn that have p1

as their smallest prime factor. Between p1p2 and p2p3, place all members of Dn other than

p2p3 that have p2 as their smallest prime factor. Continue in this way, ending by placing

pk, p
2
k, . . . , p

ek
k between pk−1pk and n. It is easy to see that each element of Dn is placed

exactly one time, and any two adjacent elements have a common prime factor. Hence this

arrangement has the desired property.

Note. In graph theory terms, this construction yields a Hamiltonian cycle1 in the graph

with vertex set Dn in which two vertices form an edge if the two corresponding numbers

have a common prime factor. The graphs below illustrate the construction for the special

cases n = p2q and n = pqr.

1A cycle of length k in a graph is a sequence of distinct vertices v1, v2, . . . , vk such that
{v1, v2}, {v2, v3}, . . . {vk−1, vk}, {vk, v1} are edges. A cycle that uses every vertex of the graph is a Hamiltonian
cycle.
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This problem was proposed by Zuming Feng.

2. Prove that the system

x6 + x3 + x3y + y = 147157

x3 + x3y + y2 + y + z9 = 157147

has no solutions in integers x, y, and z.

First Solution. Add the two equations, then add 1 to each side to obtain

(x3 + y + 1)2 + z9 = 147157 + 157147 + 1. (1)

We prove that the two sides of this expression cannot be congruent modulo 19. We choose

19 because the least common multiple of the exponents 2 and 9 is 18, and by Fermat’s

Theorem, a18 ≡ 1 (mod 19) when a is not a multiple of 19. In particular, (z9)2 ≡ 0 or 1

(mod 19), and it follows that the possible remainders when z9 is divided by 19 are

−1, 0, 1. (2)

Next calculate n2 modulo 19 for n = 0, 1, . . . , 9 to see that the possible residues modulo

19 are

−8, −3, −2, 0, 1, 4, 5, 6, 7, 9. (3)

Finally, apply Fermat’s Theorem to see that

147157 + 157147 + 1 ≡ 14 (mod 19).

Because we cannot obtain 14 (or −5) by adding a number from list (2) to a number from

list (3), it follows that the left side of (1) cannot be congruent to 14 modulo 19. Thus the

system has no solution in integers x, y, z.



Second Solution. We will show there is no solution to the system modulo 13. Add the

two equations and add 1 to obtain

(x3 + y + 1)2 + z9 = 147157 + 157147 + 1.

By Fermat’s Theorem, a12 ≡ 1 (mod 13) when a is not a multiple of 13. Hence we compute

147157 ≡ 41 ≡ 4 (mod 13) and 157147 ≡ 13 ≡ 1 (mod 13). Thus

(x3 + y + 1)2 + z9 ≡ 6 (mod 13).

The cubes mod 13 are 0,±1, and ±5. Writing the first equation as

(x3 + 1)(x3 + y) ≡ 4 (mod 13),

we see that there is no solution in case x3 ≡ −1 (mod 13) and for x3 congruent to 0, 1, 5,−5

(mod 13), correspondingly x3 + y must be congruent to 4, 2, 5,−1. Hence

(x3 + y + 1)2 ≡ 12, 9, 10, or 0 (mod 13).

Also z9 is a cube, hence z9 must be 0, 1, 5, 8, or 12 (mod 13). It is easy to check that 6

(mod 13) is not obtained by adding one of 0, 9, 10, 12 to one of 0, 1, 5, 8, 12. Hence the

system has no solutions in integers.

Note. This argument shows there is no solution even if z9 is replaced by z3.

This problem was proposed by Răzvan Gelca.

3. Let ABC be an acute-angled triangle, and let P and Q be two points on side BC. Con-

struct point C1 in such a way that convex quadrilateral APBC1 is cyclic, QC1 ‖ CA, and

C1 and Q lie on opposite sides of line AB. Construct point B1 in such a way that convex

quadrilateral APCB1 is cyclic, QB1 ‖ BA, and B1 and Q lie on opposite sides of line AC.

Prove that points B1, C1, P , and Q lie on a circle.

Solution. Let α, β, γ denote the angles of ∆ABC. Without loss of generality, we assume

that Q is on the segment BP .
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We guess that B1 is on the line through C1 and A. To confirm that our guess is correct

and prove that B1, C1, P , and Q lie on a circle, we start by letting B2 be the point

other than A that is on the line through C1 and A, and on the circle through C,P ,

and A. Two applications of the Inscribed Angle Theorem yield ∠PC1A ∼= ∠PBA and

∠AB2P ∼= ∠ACP , from which we conclude that ∆PC1B2 ∼ ∆ABC.

Q

A

B C

C1

B2

P

γ

γ

β

β

α

From QC1 ‖ CA we have m∠PQC1 = π − γ so quadrilateral PQC1B2 is cyclic. By the

Inscribed Angle Theorem, m∠B2QC1 = α.
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Finally, m∠PQB2 = (π − γ) − α = β, from which it follows that B1 = B2 and thus

P, Q,C1, and B1 are concyclic.

This problem was proposed by Zuming Feng.

4. Legs L1, L2, L3, L4 of a square table each have length n, where n is a positive integer. For

how many ordered 4-tuples (k1, k2, k3, k4) of nonnegative integers can we cut a piece of

length ki from the end of leg Li (i = 1, 2, 3, 4) and still have a stable table? (The table is

stable if it can be placed so that all four of the leg ends touch the floor. Note that a cut

leg of length 0 is permitted.)

Solution. Turn the table upside down so its surface lies in the xy-plane. We may as-

sume that the corner with leg L1 is at (1, 0), and the corners with legs L2, L3, L4 are at

(0, 1), (−1, 0), (0,−1), respectively. (We may do this because rescaling the x and y coor-

dinates does not affect the stability of the cut table.) For i = 1, 2, 3, 4, let `i be the length

of leg Li after it is cut. Thus 0 ≤ `i ≤ n for each i. The table will be stable if and only if

the four points F1(1, 0, `1), F2(0, 1, `2), F3(−1, 0, `3), and F4(0,−1, `4) are coplanar. This

will be the case if and only if F1F3 intersects F2F4, and this will happen if and only if the

midpoints of the two segments coincide, that is,

(0, 0, (`1 + `3)/2) = (0, 0, (`2 + `4)/2). (∗)

Because each `i is an integer satisfying 0 ≤ `i ≤ n, the third coordinate for each of these

midpoints can be any of the numbers 0, 1
2
, 1, 3

2
, . . . , n.

For each nonnegative integer k ≤ n, let Sk be the number of solutions of x + y = k where

x, y are integers satisfying 0 ≤ x, y ≤ n. The number of stable tables (in other words, the

number of solutions of (∗)) is N =
∑n

k=0 S2
k .



Next we determine Sk. For 0 ≤ k ≤ n, the solutions to x + y = k are described by the

ordered pairs (j, k− j), 0 ≤ j ≤ k. Thus Sk = k +1 in this case. For each n+1 ≤ k ≤ 2n,

the solutions to x + y = k are given by (x, y) = (j, k − j), k − n ≤ j ≤ n. Thus

Sk = 2n− k + 1 in this case. The number of stable tables is therefore

N = 12 + 22 + · · ·n2 + (n + 1)2 + n2 + · · ·+ 12

= 2
n(n + 1)(2n + 1)

6
+ (n + 1)2

=
1

3
(n + 1)(2n2 + 4n + 3).

This problem was proposed by Elgin Johnston.

5. Let n be an integer greater than 1. Suppose 2n points are given in the plane, no three

of which are collinear. Suppose n of the given 2n points are colored blue and the other

n colored red. A line in the plane is called a balancing line if it passes through one blue

and one red point and, for each side of the line, the number of blue points on that side is

equal to the number of red points on the same side. Prove that there exist at least two

balancing lines.

Solution. We will show that every vertex of the convex hull of the set of given 2n points

lies on a balancing line.

Let R be a vertex of the convex hull of the given 2n points and assume, without loss of

generality, that R is red. Since R is a vertex of the convex hull, there exists a line ` through

R such that all of the given points (except R) lie on the same side of `. If we rotate `

about R in the clockwise direction, we will encounter all of the blue points in some order.

Denote the blue points by B1, B2, . . . , Bn in the order in which they are encountered as `

is rotated clockwise about R. For i = 1, . . . , n, let bi and ri be the numbers of blue points

and red points, respectively, that are encountered before the point Bi as ` is rotated (in

particular, Bi is not counted in bi and R is never counted). Then

bi = i− 1,

for i = 1, . . . , n, and

0 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n− 1.

We show now that bi = ri, for some i = 1, . . . , n. Define di = ri − bi, i = 1, . . . , n.

Then d1 = r1 ≥ 0 and dn = rn − bn = rn − (n − 1) ≤ 0. Thus the sequence d1, . . . , dn



starts nonnegative and ends nonpositive. As i grows, ri does not decrease, while bi always

increases by exactly 1. This means that the sequence d1, . . . , dn can never decrease by

more than 1 between consecutive terms. Indeed,

di − di+1 = (ri − ri+1) + (bi+1 − bi) ≤ 0 + 1 = 1,

for i = 1, . . . , n − 1. Since the integer-valued sequence d1, d2, . . . , dn starts nonnegative,

ends nonpositive, and never decreases by more than 1 (so it never jumps over any integer

value on the way down), it must attain the value 0 at some point, i.e., there exists some

i = 1, . . . , n for which di = 0. For such an i, we have ri = bi and RBi is a balancing line.

Since n ≥ 2, the convex hull of the 2n points has at least 3 vertices, and since each of

the vertices of the convex hull lies on a balancing line, there must be at least two distinct

balancing lines.

Notes. The main ingredient in the solution above is a discrete version of a “tortoise-and-

hare” argument. Indeed, the tortoise crawls slowly but methodically and is at distance

bi = i − 1 from the start at the moment i, i = 1, . . . , n, while the hare possibly jumps

ahead at first (r1 ≥ 0 = b1), but eventually becomes lazy or distracted and finishes at

most as far as the tortoise (rn ≤ n − 1 = bn). Since the tortoise does not skip any value

and the hare never goes back towards the start, the tortoise must be even with the hare

at some point.

We also note that a point not on the convex hull need not lie on any balancing line (for

example, let n = 2 and let the convex hull be a triangle).

One can show (with much more work) that there are always at least n balancing lines; this

is a theorem of J. Pach and R. Pinchasi (On the number of balanced lines, Discrete and

Computational Geometry 25 (2001), 611–628). This is the best possible bound. Indeed,

if n consecutive vertices in a regular 2n-gon are colored blue and the other n are colored

red, there are exactly n balancing lines.

This problem was proposed by Kiran Kedlaya.

6. For m a positive integer, let s(m) be the sum of the digits of m. For n ≥ 2, let f(n) be the

minimal k for which there exists a set S of n positive integers such that s
(∑

x∈X x
)

= k

for any nonempty subset X ⊂ S. Prove that there are constants 0 < C1 < C2 with

C1 log10 n ≤ f(n) ≤ C2 log10 n.



Solution: For the upper bound, let p be the smallest integer such that 10p ≥ n(n + 1)/2

and let

S = {10p − 1, 2(10p − 1), . . . , n(10p − 1)}.
The sum of any nonempty set of elements of S will have the form k(10p − 1) for some

1 ≤ k ≤ n(n + 1)/2. Write k(10p − 1) = [(k − 1)10p] + [(10p − 1) − (k − 1)]. The second

term gives the bottom p digits of the sum and the first term gives at most p top digits.

Since the sum of a digit of the second term and the corresponding digit of k− 1 is always

9, the sum of the digits will be 9p. Since 10p−1 < n(n + 1)/2, this example shows that

f(n) ≤ 9p < 9 log10(5n(n + 1)).

Since n ≥ 2, 5(n + 1) < n4, and hence

f(n) < 9 log10 n5 = 45 log10 n.

For the lower bound, let S be a set of n ≥ 2 positive integers such that any nonempty

X ⊂ S has s
(∑

x∈X x
)

= f(n). Since s(m) is always congruent to m modulo 9,
∑

x∈X x ≡
f(n) (mod 9) for all nonempty X ⊂ S. Hence every element of S must be a multiple of

9 and f(n) ≥ 9. Let q be the largest positive integer such that 10q − 1 ≤ n. Lemma 1

below shows that there is a nonempty subset X of S with
∑

x∈X x a multiple of 10q − 1,

and hence Lemma 2 shows that f(n) ≥ 9q.

Lemma 1. Any set of m positive integers contains a nonempty subset whose sum is a

multiple of m.

Proof. Suppose a set T has no nonempty subset with sum divisible by m. Look at the

possible sums mod m of nonempty subsets of T . Adding a new element a to T will give at

least one new sum mod m, namely the least multiple of a which does not already occur.

Therefore the set T has at least |T | distinct sums mod m of nonempty subsets and |T | < m.

Lemma 2. Any positive multiple M of 10q − 1 has s(M) ≥ 9q.

Proof. Suppose on the contrary that M is the smallest positive multiple of 10q − 1 with

s(M) < 9q. Then M 6= 10q − 1, hence M > 10q. Suppose the most significant digit of M

is the 10m digit, m ≥ q. Then N = M − 10m−q(10q − 1) is a smaller positive multiple of

10q − 1 and has s(N) ≤ s(M) < 9q, a contradiction.



Finally, since 10q+1 > n, we have q + 1 > log10 n. Since f(n) ≥ 9q and f(n) ≥ 9, we have

f(n) ≥ 9q + 9

2
>

9

2
log10 n.

Weaker versions of Lemmas 1 and 2 are still sufficient to prove the desired type of lower

bound.

This problem was proposed by Titu Andreescu and Gabriel Dospinescu.
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