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CAVEAT

The reader is urged to recognize the report that follows for what
it is and for nothing more. A small. number of professional mathemati-
cians have attempted to express their tentative views upon the shape
and content of a pre-college mathematics curriculum that might be
brought into being over the next few decades. These views are intended
to serve as a basis for widespread further discussion and, above all,
 experimentation by mathematicians, teachers, and all others who share
the responsibility for the processes and goals of American education.
At this stage of their development they can not pretend to represent
guidelines for school administrators or mathematics teachers, and they
should not be read as such. If this report, however, fulfills its purposes
by provoking general debate and bold experimentation, those guidelines
may ultimately emerge.
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FOREWORD

BY FraNcis KEPPEL

United States Commissioner of Education

If one were to look for the most significant development in education
over the past decade, it would be reasonable to single out the wave of
curriculum reform which has swept the school system, and appears to be
maintaining its vigor undiminished. Beginning with mathematics and the
physical sciences, it has spread in scope until almost every discipline repre-
sented in the primary and secondary school curriculum has been in some
degree affccted.

These recent reforms have several characteristics that differentiate them
from the steady stream of curriculum reform of carlicr years. They have
been for the most part national, or at least regional, efforts. They have drawn
on university scholarship and skilled teachers not only for leadership but
for the immediate demands of day-to-day operation; to some extent they
have served to destroy (or at least to lower) the wall that has traditionally
separated the scholar from the teacher. Almost without cxception they have
passed from the determination of policy and program directly into the
preparation of materials for use in the schools.

For the most part, they have been eminently successful, and in the light
of their successes it has sometimes been difficult to distinguish their short-
comings. Yet the shortcomings are there, and they are by no means insig-
nificant. It can be argued, in fact, that the deficiencies of the present reform
movement are grave enough to threaten the expressed goals of the move-
ments themselves.

These deficiencies derive from the inherent inconsistency that character-
izes most curriculum reforms. On the one hand, therc is the intention to
represent in the revised curriculum the discipline in question as the scholar
himself regards that discipline, complete with its sense of adventure, its
unsolved questions, and its groping toward the future. Inscparably associated
with this intention is the belief that the student can be brought into contact
with the frontiers of knowledge, and that his capacity to learn is far beyond
anything we have been accustomed to attribute to him.
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But these ambitions are immediately dampened by the awareness that
serious limitations are imposed upon the student’s ability to learn by the
instructor’s ability to teach. If the student is to be brought to thc frontiers
of knowledge, the teacher must know the whereabouts of those frontiers. If
the student is to be encouraged to grope, the teacher must at lcast be able
to suggest which of his roads are likely to be blind alleys.

Most curriculum reforms, practically enough, have chosen to limit their
ambitions in the light of these realities. They have tended to create such
new courses as existing teachers, after enjoying the bencfits of bricf retrain-
ing, can compctently handle. They have done so fully aware that they are
thus setting an upper limit, and an upper limit that is uncomfortably closc.

If the matter were to end there, the result might well be disastrous. New
curricula would be frozen into the educational system that would come to
possess, in time, all the deficiencies of curricula that are now being swept
away. And in all likelihood, the present enthusiasm for curriculum rcform
will have long since been spent; the “new” curricula might remain in the
system until, like the old, they become not only inadequatc but in fact
intolcrable. Given the relative conservatism of the educational system, and
the tendency of the scholar to retreat to his own direct concerns, the lag
may well be at’least as long as it has been during the first half of this century.

The present report is a bold step toward meecting this problem. [t is
characterized by a complete impatience with the present capacities of the
educational system. It is not only that most teachers will be completely
incapable of teaching much of the mathematics set forth in the curricula
proposed here; most teachers would be hard put to comprchend it. No
brief period of retraining will suffice. Even the first grade curriculum em-
bodies notions with which the average teacher is totally unfamiliar.

None the less, these are the curricula toward which the schools should
be aiming. If teachers cannot achieve them today, they must set their
courses so that they may begin to achieve them in ten years, or twenty
ycars, or thirty. If this is what the teacher of the {uture must know, the
schools of education of the present must begin at once to think how to pre-
pare those teachers. There must still be short-term curriculum reforms, they
must look upon themselves as constituting a stage toward the larger goals,
and they must at all costs be consistent with those larger goals.

Can the goals sct forth in this report be trusted? Can we be confident that
the curricula sct forth herc will indeed be the optimum curricula for 19907
It should not disturb us to realize that any such confidence would be com-
pletely unwarranted. None of us knows what sort of society we will have
in thirty years, nor precisely what role mathematics will play in such a
society. This report simply states the views of twenty-nine outstanding mathe-
maticians and natural scientists as to the direction in which we should now
be going. They have set forth goals for the future simply so that we may have
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some informed notion of the steps we should be taking, right now, if we
are ever to make real progress. As the years pass, these goals may well
change, but at least we will be in motion in the general dircction of the
new goals, and in a fair way to get there sooner or later.

It would be a mistake to read this report solely in terms of the mathe-
matics curriculum. The step which has been taken here by mathematicians
is one that scholars in all the disciplines must sooner or later attempt to take.
If curriculum reform is to continue to play any vital role in American edu-
cation, it must be bold enough to look far beyond immecdiate needs and
immediate resources. To accomplish this will be far more difficult in disci-
plines which do not sharc the inherent simplicity of mathematics, but it is
certainly to be hoped that the precedent that has been set in this report will
be followed, no matter how great the difficulty, by those who pursue all
the other disciplines represented in general education.
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INTRODUCTION

Purpose of the Conference .

There is no disagreement today — nor will there be in the foresceable
future — on the vital importance of mathematics, both to the scientist,
engineer, or other specialist called upon to use mathematics in his work,
and to the intelligent layman in his everyday life. Mathematical education,
to fulfill the needs of an advanced and advancing community, must be under
continual scrutiny and undergo constant change, and it is the responsibility
of all mathematicians, working in university, school, or industry, to con-
cern themselves with the problem of keeping mathematical education vital
and up-to-date.

During the summer of 1963, a group of twenty-five professional mathe-
maticians and mathematics-users took time off from their normal work to
review school mathematics and to establish goals for mathematical educa-
tion. The present report sets down our tentative and highly provisional
thinking on the nature of a good curriculum. It includes considerable de-
tail, not so much for the sake of the detail itself but because the direction
of the group’s thinking is often better clarified by the provision of detail
than by the bare enunciation of general principles.

At the outset, it is important to recognize that this report is a discussion
document, and not a prescription. It would certainly not be appropriate,
here and now; as a guide for general teaching, if only because one would
be able to find so few teachers capable of teaching it. At this stage of the
effort at least, the aims are more modest: it is hoped that our intentions
and initiatives will commend this report to all who think about mathematical
education, whether or not they are actually cngaged in experimental work
in this field.

Organization of the Conference

A brief account of the manner in which the Cambridge Conference was
organized will be useful in considering the report which it has produced.

1
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In the summer of 1962, Professors J. R. Zacharias and William Ted
Martin, of the Massachusetts Institute of Technology, invited several Cam-
bridge mathematicians and representatives of the National Science Founda-
tion to an informal discussion of the state of mathematics instruction in the
schools, both primary and secondary. At that meeting, it was agrecd that
although various groups were already doing important and excellent work
in improving the curriculum, it was advisable to begin at once to move
toward more radical revisions than any at that time under way.

Consequently, it was decided to organize a conference to deal with cur-
ricular reform in school mathematics. The facilities of Educational Services
Incorporated were enlisted to help organize the program, a steering com-
mittee was recruited, and a formal proposal was submitted to the National
Science Foundation, which quickly made available the necessary support.
Professor Martin and Professor Andrew M. Gleason of Harvard University
werc named as directors of the project.*

Basis of Procedure

In its discussions, the steering committee found itself in agreement upon
two major aspects of the general procedure that might be followed. These
areas of agreement, which to a large extent dictated the terms of reference
and the membership of the conference, may be summarized as follows:

1. The work of the University of [llinois Curriculum Study in Mathe-
matics (UICSM) and the School Mathematics Study Group (SMSG) and
others had shown that much can be accomplished in a relatively short time.
Their efforts, however, had been affected by many factors, of which the most
important have been the scarcity of adcquately trained teachers and the
necessity to work within the basic framework of the classical curriculum.
For several years into the future the main thrust of curriculum reform will
have to be in the direction of introducing into the schools the fresh out-
look developed by the new groups, and in implementing recommendations
for improved training of teachers such as those put forth by the Committee
on Undergraduate Program in Mathematics (CUPM). What was now re-
quired were the outlines of a new reform program which may begin to be-
come effective when current tasks have been accomplished and a new gencra-
tion of mathematics teachers has begun to appear. Consequently, it was de-
cided that the conference should deal primarily with the goals of school
mathematics, leaving aside the relationship of these goals to existing educa-
tional resources.

2. The question of what is or what is not worth teaching must be ap-
proached, initially at least, in terms of all the possibilities that are inherent
in the subject matter; the question of what is teachable and what is not

* The steering committee is identified on page iii.
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depends largely upon the organization of that subject matter. Only the
very top-level of expertise is likely to be sufficient to make the necessary
determinations, and to set the stage for broader discussions in which all
who are concerned with the goals of mathematics, and not merely the
mathematicians themselves, may take part. Accordingly, it was decided to
invite to the Cambridge Conference only those persons holding university
positions or the equivalent. This did not imply a restriction to pure mathe-
maticians; the importance of the applications of mathematics made it
mandatory that other fields be included. The list drawn up by the steering
committee included pure and applied mathematicians, statisticians, physi-
cists, chemists, and economists. Becausc of the speed with which the con-
ference was organized, many who would have liked to attend were unable
to reschedule their summers upon the short notice that was given; nonethe-
less, a glance at the list of participants will show that persons of widely
divergent interests in mathematics did indeed take part.

The Task of the Conference

The conference, as it in fact proceeded, bore a satisfactory resemblance
to the general plans made by the steering committee, except that Professor
Martin, who with Professor Gleason was to have been co-chairman, was
unable to join the dcliberations until the group reassembled in Boulder,
Colorado, late in August.

The task of the conference, as we conceived it, was exploratory thinking
with a view to a long-range futurc. We were therefore not concernced at all
with the sort of practical considerations which govern the work of the next
few years. Thus we ignored the whole problem of teacher training, and
acted on the assumption that if a teachable program were developed, teach-
ers would be trained to handle it. We also ignored many fine points of
pedagogic technique, partly because our ideas were not developed in suffi-
cient detail for such questions to come up, and partly because very few of
us were professionally qualified to teach young children. In this spirit,
we have not attempted to discuss the use of Cuisenaire® rods, and we have
not considered the question of how much (if any) of the mathematics
curriculum might lend itself to the methods of programmed learning. Some
of us have opinions, pro and con, on the latter question, but thesc arc not
professional opinions, and they are not discussed in this report.

We made no attempt to take account of recent resecarches in cognitive
psychology. It has been argued by Piaget and others that certain ideas and
degrees of abstraction cannot be learned until certain ages. We regard
this question as open, partly because there are cognitive psychologists on
both sides of it, and partly because the investigations of Piaget, taken at
face value, do not justify any conclusion relevant to our task. The point
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is that Piaget is not a teacher but an observer — he has tried to find out
what it is that children understand, at a given age, when they have been
taught in conventional ways. The essence of our enterprise is to alter the
data which have formed, so far, the basis of his research. If teaching fur-
nishes experiences which few children now have, then in the futurc such
observers as Piaget may observe quite different things. We therefore be-
lieve that no predictions, either positive or negative, are justified, and that
the only way to find out when and how various things can be taught is to
try various ways of teaching them.

We have also neglected a practical problem which figures in present
curricular work, namely, the development of political accommodations.
The members of the conference made no attempt to form such accommoda-
tions, even with each other, let alone with an unpredictable future public.
This point is essential for an understanding of the spirit in which the report
is written, for two reasons.

In the first place, the report includes, in many places, cxpositions of
mutually incompatible ideas. This should not be regarded as a sign of
vacillation or confusion. Our idea, rather, was that the disagreements which
remained at the end of the conference should be reported straightforwardly,
along with the agreements. Since thc issucs involved are incapable of being
adjudicated by four weeks of dialectic, the conference was in no position
to write a prescriptive document in any case; our only reasonable hope was
to help the future work of development and expcriment; and we simply
could not tell which of our conflicting ideas would be most helpful. We
believe that all approaches discussed here arc substantial enough to warrant
further thought and experimentation.

In the second place, it should be understood that at the points where we
report agreement, the agreements arc genuine. Onc of the most striking de-
velopments, in the first two weeks of the conference, was the disintcgration
of party lines. As the list of members indicates, the composition of the con-
ference was varied in the extreme: it included “pure mathematicians” of
several kinds, applicd mathematicians in both the conventional and various
unconventional senses, statisticians, several physicists, and a chemist. After
the first week, however, the views expressed bore no reliable refation, and
sometimes no recognizable relation at all, to the professional backgrounds of
the speakers; most of the time, alignments on controversial questions were
orthogonal to scientific specialties. For example, some of the most vigorous
remarks in favor of polynomial functions (versus formal polynomials) were
delivered by a topologist; and one of the prominent advocates of a solid
course in deductive synthetic geometry was a physicist, who argued that
such a course was a prototype of the later study of physics by mathematical
models. We believe that these developments are extremely encouraging for
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.the future: they indicate that when scholars work together on the curriculum
long enough to understand each other, they lose the urge to rescue the public
from each other’s predilections.

We also ignored the whole problem of designing, or even describing in
general terms, valid tests for our program. It is argued later in this report
that this problem is very serious.

To sum up: the direction of our efforts was governed by our conception
of our own qualifications, and by the limits of time in which we were work-
ing. All our curricular ideas should be regarded as exploratory; none of
them should be taken as prescriptive.

The Proposals of the Conference

The conference convened on June 18, 1963, in Cambridge, Massachu-
setts. After two days of gencral discussions the conference broke into three
groups, each of which discussed the program for grades K through 6. After
a fcw days of conversation the reports of these groups were discussed in
plenary session. Again the conference broke into groups, this time to try to
set operational criteria for the well-educated sixth grader. After these re-
ports were discussed at a general meeting, we turned our attention to the
problems of grades 7 through 12. .

The conference operated quite differently in making recommendations
for the upper grades. There was always at least one discussion afoot con-
cerning the overall organization of some broad topic such as algebra or
geometry. At the same time several conference members busied themselves
with setting down detailed plans for smaller portions of the curriculum. One
group studicd the abstfact concepts of modern purc mathematics in an
effort to sce just which ones might profitably be introduced into school
mathematics.

Physically adjacent to the conference, Educational Services Incorporated
was conducting an experimental summer school in connection with the teach-
ing of science in the elementary schools. This made it possible for some of
our members to try some of our ideas with children of various ages. While
this experience may have given us a little more feeling for how children
respond, we are under no illusions that we understand all the problems.

[t was realized from the beginning that the feasibility of the program de-
signed for the upper grades would depend on the success of thc elementary
school program. Since no one has had any experience with a class that has
had seven years of well-organized pre-mathematical training, we simply had
to guess what level of sophistication would in fact be appropriate. In view
of this fact, it must be understood that these proposals are offcred in a tenta-
tive spirit. We propose an ambitious program, aware that it may be im-
possible, but still convinced that it is worth shooting toward.
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* * *

This report was drafted in the two weeks after the close of the con-
ference by Davis, Gleason, Lomon, Moise, and Springer. A brief
summary of the report was drafted by Gleason.

Late in August, copies of the summary were made available to all
those attending the various mathematics meetings in Boulder,
Colorado, and 75 copies of the full report were distributed, some-
what haphazardly. The response was remarkably heartening. The
report came to be one of the most popular topics of discussion
throughout the week. An open meeting called to discuss the report
had to be transferred to the largest available auditorium, and more
than 400 mathematicians attended. '

At the end of the week, a sub-group of the Cambridge Conference
met for two days and subjected the draft report to a page-by-page
scrutiny. Frank Allen, Max Beberman, and Walter Prenowitz
were invited to participate, and were present during both days.
The present version of the report is a result of that meeting. In
addition, a new summary has been prepared by Buck, Hilton,
and Pollak.
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BROAD GOALS OF THE SCHOOL
MATHEMATICS CURRICULUM

The subject matter which we are proposing can be roughly described by
saying that a student who has worked through the full thirteen years of
mathematics in grades K to 12 should have a level of training comparable to
three years of top-level college training today; that is, we shall expect him
to have the equivalent of two years of calculus, and one semester each of
modern algebra and probability theory. At first glance this seems to be
totally unrealistic; yet we must remember that, since the beginning of this
century, there has been about a three-year speed-up in the teaching of
mathematics. Of course, one cannot argue that such steps can be taken in-
definitely, but it is comforting to realize that the proposed changes are no
more radical on their face than changes which have actually taken place
within the memory of many.

Acquisition of Skills

Since the amount of time to be spent on mathematics will certainly not
increase in the face of the additional effort now being focused on the sciences
in elementary schools, and the mean level of native ability of students prob-
ably does not change appreciably in periods shorter than geological, it is
clear that the inclusion of more content at the top must be compensated by
the omission of something else. There are a few topics whose omission has
been frequently signaled over the recent past, the most obvious being the
numerical solution of triangles. Dropping these will not release three years,
however. We propose to gain three years through a new organization of the
subject matter and the virtually total abandonment of drill for drill’s sake, re-
placing the unmotivated drill of classical arithmetic by problems which illus-
trate new mathematical concepts.
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Lest there be any misunderstanding concerning our viewpoint, let it be
stated that reasonable proficiency in arithmetic calculation and algebraic
manipulation is essential to the study of mathematics. However, the means
of imparting such skill need not rest on methodical drill. We belicve that
entirely adequate technical practice can be woven into the acquisition of new
concepts. But our belief goes farther. It is not merely that adequate practice
can be given along with more mathematics; we believe that this is the only
truly effective way to impart technical skills. Pages of drill sums and repeti-
tious “real-life” problems have less than no merit; they impede the learning
process. We believe that arithmetic as it has been taught in grade schools
until quite recently has such a meagre intellectual content that the oft-noted
reaction against the subject is not an unfortunaté rebellion against a difficult
subject, but a perfectly proper response to a preoccupation with triviality.

We are not saying that some drill problems may not be appropriate for the
individual student whose technical skill is bchind, but we do belicve that this
should be the exception, not the rule. We are definitely opposed to the view
that the main objective is arithmetic proficiency and that new, intcresting
concepts are being introduced primarily to sugar-coat the bitter pill of com-
putational practice.

Familiarity with Mathematics

The reorganization which we refer to above has as its principal aspect the
parallel development of geometry and arithmetic (or algebra in later years)
from kindergarten on. However, a mere recital of the topics proposed for
the future curriculum does scant justice to our goals. Familiarity is our real
objective.

We hope to make each student in the early grades truly familiar with the
structure of the real number system and the basic ideas of geometry, both
synthetic and analytic. In particular we urge that considerable attcntion
should be paid to inequalities starting in the earliest grades immediately
after learning to count. It is a matter of common experience that college
students are often bewildered by the importance of inequalities in the study
of calculus. This, of course, is the result of the almost complete preoccupa-
tion of the classical curriculum with problems of cquality.

Moreover, we want to make students familiar with part of the global
~ structure of mathematics. This we hope to accomplish by the *“spiral” cur-
riculum which repeatedly returns to each topic, always expanding it and
showing more connections with other topics.

On this firm foundation we believe a very solid mathematical superstruc-
ture can be erected which will make the pupils familiar with the idcas of
calculus, algebra, and probability. The elementary school program (K-6)
should be understandable by virtually all students; it should lead to a Icvel
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of competence well above that of the general population today. As students
advance through junior and senior high school we must expect that fewer
and fewer will elect mathematics; consequently we have attempted to move
first in the dircctions most suitable for those who take mathematics for only a
few years after grade school. Of particular importance is an clementary feel-
ing for probability and statistics. Although there was considerable difference
of opinion on this point (see Section 6) many fclt that a nodding acquaint-
ance with the calculus had the next priority.

Mathematics in Liberal Education

The conference felt that mathematics is a subject of great humanistic
value: its importance to the educated man is almost as great as its importance
to many technical specialists. The strongest argument for the early inclusion
of the caleulus was one of general education: liberal education requires the
contcmplation of the works of genius, and the calculus is one of the grandest
edifices constructed by mankind.

Many poor patterns of thought common in ordinary life may be modified
by the study of mathematics. The misleading, but almost universal, assump-
tion that things must be ordered linearly might be dispelled by the study of
partial orderings. Just a little experience with logic and inference can do
away with some of the unfortunate reasoning we meect all too often. Even a
nodding acquaintance with probability can clarify the “law of averages.”

Mathematics is a growing subject and all students should be made aware
of this fact. This recommendation is not made merely because we feel that
every educated person should know the fact, but also because the knowledge
that there are unsolved problems and that they are gradually being solved
puts mathematics in a new light, strips away some of its mystique, and serves
to undermine the authoritarianism which has iong dominated clementary
teaching in the arca.

Building Self-Confidence

The authoritarian methods which have been used in elementary mathe-
matics teaching have already received blows cnough, but one point which has
not often been stated is that, beyond the stifling of creativity of students,
they carry the suggestion that one is helpless if he forgets the “formula.”
Actually the reversc is true. Even modestly endowed students can recreate
large parts of mathematics if they can remember just a fcw basic idcas. This
fact repeatedly has been demonstrated in the classroom by proponents of
the so-called discovery method. The building of confidence in onc’s own
analytical powers is another major goal of mathematics education.

Mathematics is the discipline par excellence in which intellectual effort
can be a real labor-saving device. Multiplication of integers, which is basi-
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cally a problem of counting rectangular arrays, becomes easier when the as-
sociative, commutative, and distributive laws are taken into account and a
short algorithm is found which effects in a few seconds a calculation which
would take a lifetime of simple counting. Problems which could be solved
by guesswork methods are solved quickly through the introduction and alge-
braic manipulation of a literal unknown. The approximate calculation of
=, which was for Archimedes an arithmetic problem of great length, is re-
duced through the study of [unctions to a short homework problem for
calculus students. These examples should be brought home to the student in
these terms and at the same time he should be shown that similar, if not such
spectacular, short-cuts are within his own powers. Moreover, he should be
convinced that he can rely on the results of analytical thinking.

. The Role of “"Modern'’ Mathematics

Some have argued that the mathematics curriculum should be organized
to provide the quickest possible introduction to contemporary mathematical
research. This view we reject. Contcmporary mathematical research
has given us many new concepts with which to organize our mathematical
thinking; it is typical of the subject that some of the most important of thcse
are very simple. Concepts like sct, function, transformation group, and
isomorphism can be introduced in rudimentary form to very young children,
and repeatedly applied until a sophisticated comprehension is built up. We
believe that these concepts belong in the curriculum not becausc they are
modern but because they are useful in organizing the material we want to
present.

Technical Yocabulary and Symbolism

Similarly we view the problems of language, notation, and symbolism.
It is unquestionably possible to obscure a subject by introducing too much
special terminology and symbolism; but we feel that most errors of this sort
in fact cover an inadequate understanding of the subject matter. The func-
tion of language is to communicate. In mathematics its function is to com-
municate with extraordinary precision; it is inevitable therefore that mathe-
matics requires some special terminology. Special terms are good or bad
exactly according to their effectiveness in communication, and the same
applies to special notations and symbols.

This principle must not only guide textbook writers, it must be brought
home to the student. Mathematics is, to a large extent, a process of organiz-
ing data. Through symbolization and the precise formulation of new con-
cepts, large blocks of information are brought within the grasp of the mind.
One of our members related that a professor lecturing on currents (in the
sense of manifold theory) had defined the concept of continuity for cur-
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rents and developed a number of facts before he ran into a snag and an-
nounced, “Our definition of continuity for currents is inappropriate,” and
started over. Our panelist recalled the deep impression this made on him
because it showed so clearly the sense in which mathematical definitions
are arbitrary and at thc same time that they must stand judgment on the
question of their utility in organizing the subject.

Pure and Applied Mathematics

We hold no bricf for a dichotomy between “pure” and “applied” mathe-
matics, yet we must recognize as incvitable that there will be more users of
mathematics than makers. One of the oft-expressed fears concerning the
early introduction of rigorous mathematics is that students will become so
enamoured of the logical precision possible in this field that they will lose
interest in the less precise disciplines. A slight variation holds that a stu-
dent required to prove every small point in his mathematics, course will
become so rigid that he can do nothing in a typical applicd situation. Both
of these fears are real and justified in part by experience. Once again we
believe that the remedy lics not in flight but in intcllectual honesty. If the
naturc and limitations of the mathematical models used in scicnce are care-
fully described and if the intuitive steps which go into their construction are
fairly presented, then the inhcrent attraction of unlocking thc secrets of
naturc or solving a practical problem should ecasily balance the attraction
of logical certitude.

To foster the proper attitude toward both pure and applicd mathematics
we recommend that each topic should be approached intuitively, indeed
through as many different intuitive considerations as possible. In such a pro-
gram, the student must be kept informed of where he stands. A curriculum
which oscillates between logical rigor and guesswork can be confusing
unless the student knows the level at all times. To present mathematics
entirely in the rigorous deductive spirit not only precludes any possibility of
" applying mathematics, it is dishonest, even as a picture of contemporary
pure mathematics. We hope that many problems can be found (we know
a few) that read, “Here is a situation — think about it — what can you
say?”

The Power of Mathematics

Another goal of our program is the inculcation of an understanding of
what mathematics is (and what it is not). We necd not here belabor the
point that the man in the street has considerable misinformation on this
point; suffice it to say that this misunderstanding frequently secms to take
the paradoxical form of ascribing both too much and too little power to
mathematics.
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Concentration on equality is probably the reason why so many people
are convinced that mathematics deals only with “exact answers.” This
feeling was nicely illustrated at the conference by a statement made by a
fifth-grader during a Socratic session on probability theory. Showing a
firm belief in the “law of averages,” but somewhat shaken by the question
“How does the coin remember that it has just come up heads?” he stated,
“The law of averages says it will even up and mathematics only deals with
exact laws.” The fact that mathematics is able to deal effectively with both
qualitative and uncertain relationships has only recently becn known to
any but professional mathematicians. Today, however, qualitative and
probabilistic mathematical techniques are playing an ever larger role in
disciplines ranging from the exact sciences to the practical field of manage-
ment. We believe that a high school student can and should learn somcthing
of the mathematics which underlies these methods.

Understanding the Limitations of Mathematics

While everyone should know about the wide range of topics suitable for
mathematical analysis, it is almost equally important to understand the
limitations of mathematics. The success of mathematics in one area often
conjures up an inflated image of what it can do in another. It cannot solve
the fundamental problems of politics, economics, or social relations. Opera-
tions analysis, one of the glamorous new tools of management, can be de-
scribed as the process of organizing the available evidence to help predict
the consequences of various decisions. But it is essential to realize that
mathematics does not provide new evidence; a decision based on poor evi-
dence is likely to be bad no matter how careful the analysis.

The limitations of mathematics are by no means confined to its newer
applications. Mathematics per se does nothing directly for cven the classi-
cal, exact disciplines of physics and astronomy. Only after a model of the
real world has been formulated does mathematics cnter the picturc. Every
application of mathematics depends on a model, and the value of a deduc-
tion is more an attribute of the model than it is of mathematics. We believe
that students can be made aware of the distinction between the real world
and its various mathematical models; in this we can look forward to co-
operation from the sciences.




Section 3

PEDAGOGICAL PRINCIPLES
AND TECHNIQUES

In reaching the goals discussed above, the selection of germane material
and the method of presentation are of prime importance. An omission of
a subject from a student’s curriculum can be made up readily later, in
college or adult education courses, if the student has previously developed
a sound approach to mathematics. On the other hand, improperly taught
material may confusc the student’s understanding of the facts, inhibit good
mathematical reasoning, and lead to dislike of the whole subject.

The conference agreed on several principles of instruction and on basic
content important to the rcalization of these principles. We believe that
sufficient implementation of the majority of the proposals discussed below
is very rare in contemporary curricula. Often the contrary occurs.

Degrees of Rigor

The importance of a suitable background of experience, involving diversi-
fied sensory input, in developing clear mathcmatical concepts suggests that
full use be made of general heuristic cognitive patterns to be called hence-
forth “pre-mathcmatics” to introduce each new topic of study. In ex-
plicitly introducing “pre-mathematics” as distinguished from the “formal
study” of mathematics we recognize the existence of various levels of rigor
which naturally supplement and in part complement each other in the course
of development of the student’s mathematical maturity.

The use of a spiral curriculum, in which the same subject arises at differ-
ent times with increasing degrees of complexity and rigor, offers many ad-
vantages. At the first stage an intuitive or pre-mathematics approach offers
the opportunity of an early introduction of important concepts. There is
time for each of these concepts, first drawn from the student’s general ex-
perience, to be made more familiar and more precise, and time to develop

13



14 SECTION 3

the concept further. The concept can be used by the student from the begin-
ning in appropriate simple contexts.

The intuitive discussion should not be wrong or misleading, as it often is,
but incomplete structurally. Frankly stated assumptions should replace
many theorems later proved in terms of a set of axioms. These assumptions
are to be made reasonable in terms of previous experience. When possible
the limitations involved are to be described and counter examples estab-
lished. The student is given the confidence to use the results of an intuitive
discussion, but with care. He should have the expectation that the result is
powerful enough to be usable in situations he is likely to meet soon, but that
he may later meet problems where the result nceds modification.

After an interval in which the concepts have become more concrete in
the student’s mind through use in other contexts, the subject is brought
back to the student’s attention with a greater degree of formal organi-
zation. It is important that this more difficult approach should immediately
'yield more power and a greater scope of accomplishment. The borcdom of
pure review and reiteration must be avoided.

The rules of logic will have to be evolved to a sufficient level before this
second stage is reached. The cohesiveness of farge areas of mathcmatics
now becomes apparent and this is a reward in addition to the greater power
achieved.

The first stage of pre-mathematics training will here enable the student
to see through the formal discussion to the structure and meaning of the
proof. Sighting the goal will alleviate the danger of tedium in proving the
more difficult theorems. When an important theorem is proved, its implica-
tions and meaning must be brought out by discussion and by application.

Later the learning of other material may enable the student to handle
problems that require several techniques and to extend the level of the first
subject matter once again. Then that subject will arise again in a major way.
For instance, the development of analysis and calculus will allow the treat-
ment of continuous probability distributions. The course will then be able
to return to probability for a new, more advanced treatment with the proofs
of theorems concerning continuous distributions.

The frequent use of older material throughout the course is related to the
spiral technique of teaching. It also develops the theme of the unity and
interdependence of mathematics.

Although more and more rigor is introduced for older topics as the course
proceeds, at the same time new topics and advanced concepts are being in-
troduced pre-mathematically. The student should not obtain the impression
that rigor will eventually replace intuition in all of his mathematical cn-
deavour. That would kill his creative potential. He should realize that he
can think ahead and even apply operationally in advance of “certain knowl-
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edge.” Hypotheses usually come before proofs in creative mathematics.
This is an historic fact, but even more, conjectures such as Riemann’s and
Fermat’s have influenced mathematics in important ways, although they are
still unproved.

Nevertheless the importance of proceeding to a rigorous development is
madc clear. The student discovers the qualifications of his original con-
cepts and finds out which axioms are required. Expcrience indicates that
many students obtain a deep satisfaction from the logical connections real-
ized, and a newly clear idea of what they have been talking about. The
precise viewpoint improves their “feel” for the material, filling in parts of
the picture for which their intuition was inadequate. Their appreciation of
the whole concept is advanced immensely.

Logical development should often follow the intuitive one rapidly in the
later years of the curriculum, sometimes arising in thc same serics of les-
sons. At other times it may have to await the interval of one or more
semesters in order that the student be prepared with all the required con-
cepts for the rigorous devclopment. At the clementary school level the
amount of logical or inductive reasoning that will be appreciated is un-
certain. More information through expcriment is needed. However, there
-is sufficient information from experimental courses now operating (such as
the R. Davis and the P. Suppes projects) to establish that a nonnegligible
amount of such work can be included from the fourth grade on. A tentative
list of proofs that should be included is discussed for the elementary school
curriculum.

The Use of Several Approaches

The spiral method proposes e-theorem be dealt
with upon several ocea iculum, separated by varying in-
tervals of time.~ Upon each of those several occasions, however, scveral

approaches should be employed, all of them on approximately the same
level of rigor. The advantages to be gained on occasion by this multiple
discussion of a topic arc several. A student who docs not “sce” one ap-
proach may find another understandable. Fewer students are left behind
this way. Also differcnt aspects of a concept or proof are emphasized by
each approach, each approach may show the reievance of different topics to
the one at hand, and a larger range of ramifications comes into view. The
use of different notations, most dpproprlatc to each approach, may come
in here.

On a large scale, mathematics is a unified subject in which each part may
benefit from systematic investigations with different starting points. Geom-
etry and algebra or function theory are unified by analytic geometry.
Nevertheless geometry and algebra are differcnt in the intuitions and ex-
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periences they are based on. This is reflected in their different axiom sys-
tems. They lead to the same results through different paths often of different
lengths. They illuminate different aspects of the results. The coordinated
development of these two main streams of mathematics is a central theme of
the curriculum proposed here. We believe that, if the relations between
arithmetic and geometry are brought out so that arithmetic ideas can be
interpreted geometrically and vice versa, this will contribute to the student’s
understanding of both.

Often in advanced topics there is a choicc between a constructive and a
non-constructive proof. If both cannot be given, then the constructive proof
is usually to be preferred because it develops a concrete feeling for the result
and because it may be operationally useful.

Development of Skills

The conventional program spends too much of its time (certainly in K
\<through 6) on the development of manipulative skills, supposedly leading to
#\speed-and.mechanical accuracy. The traditional curriculum has stressed

arithmetic drill throughout clementary school. This is natural if the only use
of arithmetic by the student is in the drill. The time spent on drill then
prevents the teaching of new material, and a vicious circle has been estab-
lished. By going forward to new work utilizing arithmetic and other skills,
these skills are improved and more interesting developments are obtained at
the same time.

The conference felt strongly that the, understanding of the algorithms
justifying the manipulations will in the end lead to better skills while opening
the door to deeper and more advanced mathematics. The last allows more
advanced skills to evolve.

When skills are being required of the student it is proposed that accuracy
is more important than speed. For this reason adequate time for checking
should be allowed and mecthods of checking discussed. These methods have
their own mathematical interest as they make use of the laws and structure
of the problem. The finding of rapid checks also develops ingenuity.

It should be emphasized that the student is not necessarily wrong if he
uses a clumsy opcrational procedure. Counting on fingers goes back to
fundamentals in calculating, and the student who does this occasionally may
learn better what the operations of arithmetic involve than the good mem-
orizer of tables. We do not want a student who is restricted to calculating
in this way; he should certainly be expected to learn a more powerful
algorithm, but he should not be told he is wrong; rather he should be given
approval for knowing how to go back to fundamentals.
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Fostering Independent and Creative Thinking

1. Discovery approach. The discovery approach, in which the student
is asked to explore a situation in his own way, is invaluable in developing
creative and independent thinking in the individual. In this system memoriz-
ing a mechanical response does not help the student to advance. His innate
interest and competitive naturc force him to concentrate on the creative
problem at hand,

2. Aiding discovery. It is obvious, however, that the discovery method
is slow. It took mankind thousands of yecars to discover, collectively, the
concepts we wish to teach. Cut off from communication with the knowl-
edge of others the student can proceed but ‘a little way along the path of
wisdom in his allotted time. This is at least tacitly admitted by all pro-
ponents of discovery, but there is considerable variation in the amount of
feedback and reinforcement used to guide the student. As a minimum the
context and the very statement of the problem, or the equipment given to
work with, is a guide to the student — a very important one.

We believe that usually one should go farther than this in aiding dis-
covery: that the teacher should be prepared to introduce required ideas
when they arc not forthcoming from the class; that he should bring attention
to misleading statements in the way of the discussion, and summarize re-
sults clearly as they come forward. He should not allow the “moments of
triumph” to pass by unnoticed.

This must be done, however, with a minimum of authority. The student
should never, for fear of becing wrong, hesitate to state the results of his
best efforts. Wrong statements are not to be cmbarassingly rejected, as is
the common practice. Worse, correct statements that the teacher did not
want are often rejected. Half-formed ideas should be used as steppingstones
to true or more relevant statements.

This development of independent and creative habits of thought does not
requirc the complete devotion of the curriculum to the discovery method.
Discovery dirccted by a dialogue between tcacher and class, and the direct
teacher presentation of material, will be required to attain a reasonable rate
of advancement. This is espccially trud in the later ycars when large num-
bers of concepts and proofs of theorems are to be taught. A good bal-
ance may be as follows, although experimentation is nccded to make a
final decision. 1n the carliest grades the discovery approach, teacher aided,
should dominate. By grade 7 most of the classroom time will be occupiced
by more direct teaching procedures. However, in these later grades, crea-
tive thinking and independence should be fostered extensively by the
exercises in school time and homework. A transition should take place in
the intermediate years.
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In utilizing discovery the class may be expected to find a yes or no answer §
to a stated question. Usually it will be more valuable to define the area the
class is to explore and allow the results to arise from the flow of the con-
versation. Even in the later grades new concepts should often be introduced
by asking the class to explore possibilities. This will help develop intuition
equally with logical processes and keep alive a willingness to enter into a
pre-mathematical approach to new areas of mathematics. Examples of this
technique are furnished in appendix D.

3. Advantages of directed approach. The directed discussion offcrs
some important advantages. Communication between a student and his
peers opens to him a large pool of ideas. These ideas are fed in close to the
student’s own level of understanding. The young student is awarc that the
knowledge and facility of his pcers covers a range closer to his own than the
teacher’s. He usually believes that he can be right on occasion when his peers
disagree, but may well doubt this with respect to the teacher. Thus we can
expect that he will think critically before accepting a suggestion of other
students. Statements from them that he cannot understand or with which
he disagrees will be rejected, whereas coming from the teacher they will be
remembered as at least uscful for mechanical response. In disagreeing he
will defend his point of view against that of a peer, but may well avoid a
confrontation with the teacher’s argument. Thus, this type of communication
does not interfere with the independent attitude desired and should be
fostered. Even the confused statements of his peers are valuable to the
student, as he is likely to share many of these confusions and they should
be brought to light. '

As some students will be supcrior and may begin to assert an authority
that will make the others timorous, the teacher may consider partially sepa- }
rating them from the discussion. This could be done, for example, by giving
them another point to work on at their desks or at the board. Or they may
be designated explicitly as “experts” who will speak after the discussion by
the rest of the class.

4. Motivation. The role of tricks deserves some discussion. It has been
remarked that a mathematician’s chief incentive is laziness; frequently a }
trick calculation may obviatc much laborious computation. Some of these
tricks should be presented, both for fun and as an aid to the acquisition of
manipulative skill. 1t is essential that such tricks be discussed in thecoretical
terms. In this way they can illustrate the power of mathematical analysis
in a general way and at the same time provide applications of specific
theorems. The studcent should be encouraged to seck similar short cuts by
continually asking what is the relevance of the theory to his problem. This
will foster a truly mathematical spirit. Shorn of adequate explanation, tricks
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seem disconnected and arbitrary and frequently serve to discourage a stu-
dent from any hope of being able to advance by his own intellect.

It is clear in this context that the exercises are of great importance. In-
deed it is urged that they are the most important part of the prepared course
material. The exerciscs should guide the student, and also the teacher, to
the mecaning and rclevance of the theorems and concepts; they should train
and devclop the skills, stimulate creative thinking, and develop ingenuity.
It is suggested that when the material for the curriculum is written that it is
most likely to emerge with the proper perspective if the exercises for cach
section be composcd immediately after the theme of the section is formu-
lated. The textual discussion should then be written to illuminate the theme.
Some extensions of the main theme will appear in the cxercises and not need
discussion beforchand. Alternate approaches to the same result can be de-
veloped in the problems and need not be stated in the discussion where they
may give the impression of redundancy. The operational nceds of the ex-
erciscs will isolate points that must be made clear in the discussion. These
advantages indicate that the text be written excreises first, discussion after-
ward, cven though it may not appear in print in that order.

The historical background of a topic often makes clear the motivation
for discussing it. This background stimulates many students by providing
the human intercst and showing the connection of mathematics with other
important events. It is of value in the understanding of the processes
of mathematical creativity: all known mathematics was discovered by
somebody.

Symmetrically, looking into the futurc provides an encouragement to
originality and will supply to some individuals the basic rcason for becom-
ing a mathematician. To show that mathematics is open-ended, unsolved
problems should be discussed in the appropriate context.

Sctting aside time for a mathematical laboratory is another way of stimu-
lating interest and a creative approach. In elementary school several hours
each month should be made available for mathematical games, special
topics, experiments with apparatus such as needles and lines, thumbtacks,
and computers, etc. This provides a means of reaching many students not
responding well to the regular classroom instruction. It gives regular op-
portunity for progress through experimentation with the curriculum and
with pedagogical techniques. As many such laboratory sessions cut across
grade and ability levels several classes may be handled together. This gives
opportunity for several mathematics teachers in the same school to pool
their time and talents in the design of these sessions and in their supervision.
On occasion one may use this opportunity to bring in a visiting teacher.

In secondary school enrichment and stimulation may be obtained prac-
tically by having available a series of pamphlets on interesting or advanced
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material growing out of classroom work. This helps solve the problem of
what to do for the superior student, without requiring a separate curriculum.

5. Testing Achievement. When we take so much care to develop under-
standing and creativity in the student, it would be a pity to test his achieve-
ment only in terms of the mechanical skills and rote responses he has
learned. Unfortunately it is extremely difficult to prevent these last clements
‘from dominating any examination. The difficulty of formulating questions
testing understanding and creative ability is magnified by the uncontrollable
tendency of teachers and schools to “teach for the exams.” Almost any
question can be reduced to a rote response when the teacher knows the
class of question the student will have to answer, and uses his (the teacher’s)
ingenuity to find a “formula” type of response.

It is possible that a continuing committee can formulate probing ques-
tions at a sufficient rate to overcome the skill of others at ferreting out ex-
pected examination questions. The developing of good questions in volume
is in any case valuable and should be pursued. Another tactic, perhaps one
of desperation, is to use only a few problems of this.probing nature on an
examination, or to use them in informal tests not used for grading. As
neither the student nor the school will then gain much in public merit by the
effort of reducing these questions to a rote response, they will concentrate
their efforts on the other questions. In this way a natural response may be
obtained to the important questions; but these responses will be usable only
by curriculum designers, not by admissions offices.

Language and Notation

Itis ge i arly years the student understands more
than_l_]g_,cm-uuhﬂxm Both the words and the habit of using them are not
a_t_tmsr__wlﬁ‘_le. In the first instance the teacher compensates for this, or

should, by patient and sympathetic listcning to find the child’s meaning. A
too early insistence on the use of the “correct” word may well stifle the
child’s idea and will encourage parrotlike responses.

However, making a language available to the children early will help them
in thinking about mathcmatics as well as talking about it. So whilec any
mode of expression of a good idea should be accepted, useful words should
be introduced at all times. As the students connect the words to the con-
cepts, the concepts become better and more uniformly defined. The chil-
dren can then talk to each other understandably, enabling collective think-
ing. Finally, rapid communication between the teacher and student is pos-
sible. It is therefore recommended that conventional and precise mathe-
matical language be introduced to the extent suggested by the subject
matter. Superfluous language is indeed to be avoided. But unusual or
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foreign words are poharder to learn than usual words, and the choice should
be based on the considerations of clarity and utiity.

The same points are rclevant to mathematical notation; moreover, nota-
tion is often ambiguous. The student should be prepared for this by oc-
casionally bcing shown alternate notation. Often the need for different no-
tation is inherent in the subject matter, as when the numbcer system is being
written in different bases. There is no point in requiring a fixed notation
from the student if he shows his ability to handle variants.

The Role of Applications

All mathematical ideas arc motivated by applications of some sort: They
enable us to solve new problems and to understand situations which we did
not understand before. Many of these applications arc to the physical sci-
ences or to other aspects of the rcal world. But many of them are internal
applications, to mathematics itself. Both the intcrnal and the external
applications should be taught, so that the student will understand both the
power of mathematics as a scientific method and the unity and beauty of
mathematics as a science in its own right.

When introducing or generalizing a mathematical concept, it is important
to have applications. A concept should always be motivated. Its need in
an application is a strong motive. Applications afford to the student the
opportunity of discovering whether he has the appropriate ingenuity and
flexibility in the use of the thcorems that he knows.

Some conditions ‘must be met if cxternal applications are to play the
proper role in the student’s training. To be mecaningful, external applica-
tions require a knowledge of another discipline. The added concepts re-
quired for any application compound the difficulty of understanding the
mathematical material at hand, unless the student is alrcady acquainted with
them. It is uscless and can be harmful to introduce apptlications whose con-
text the student does not understand. At best it is then a relabeling of the
student’s mathematical cntities. At worst it both confuses the new mathe-
matical context and causes misunderstanding of the other subject matter.
Applications must be chosen that minimize this difficulty. The student-
should have-mastered. the. mathematical topic sufficiently so that the extra
difficulties_of the application arc not overwhelming. Only then can an
application serve to advantage. o )

This stricture applies equally to internal and external applications of
mathematics, but its force is greater for external applications. For an cx-
ternal application to be valuable, the experimental background and the
mathematical identifications of the model must be in the student’s ex-
perience, taught to him previously in the curriculum of the other discipline,
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or supplied in the mathematics course. The last alternative offers formidable
difficulties.

In fact, the use of mathematical models in describing the real world is a
very delicate matter. If models were judged in terms of the dichotomy, right
or wrong, then all would be wrong; the real world is far too complex to be
represented accurately by anything but the analogue computer COSMOS.
Models must be evaluated along a spectrum from good to bad according
to the validity and usefulness of the predictions based on them. Every model
has its limitations; in using it, one should know at lcast those-limitations
which are important operationally.

The design of mathematical models is a complicated process indeed, in-
volving intuitions drawn from long experience with the object discipline and
from mathematics itself. Usually models are not simply designed; they
evolve from a long sequence of experimentation, guesswork, and logical
inference. It is only when the model is fully formulated that the purely
deductive methods of mathematics take over. We regard it as an open
question just which parts of this process should be taught in mathcmatics
courses and which should be taught in other science courses.

Besides the recognized applications in the sciences there are many of
importance to the professional and business spheres of life. It is of critical
importance in these spheres to have adequate mcans of estimating and
synthesizing facts, and methods of making decisions based on those facts.
Arithmetic together with elementary geometry and algebra suffices for many
everyday operations; but a large and important part of the population fre-
quently needs to make decisions requiring probability theory, computer
methods, the calculus, or other advanced mathematics. Those so involved
may hire or designate mathematicians to do the work, but must be aware
of the concepts to control the goals wisely and know what personnel they
require. Without blind faith in their professional advisers, thcy must under-
stand the basic principles to be able to make decisions for which they are
responsible.

Many such decisions do not require the deliberation of a professional
mathematician but only a better understanding of important mathematical
results than the populace now generally has. For instance, consider the
relevance of making two independent quality control checks, each of which
eliminates the same defect with an error of one in a thousand. The simple
fact that the use of both tests reduces the crror to one in a million is basic
to deciding how many independent checks to institute. If an individual
believed that the combined chance of error was one in two thousand in
the above case, he might well decide that there was insufficicnt advantage
to warrant a new checking system. If an error worse than one in a million
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is intolerable, he may erroneously decide that a thousand independent checks
are required.

Topics such as game theory, queuing theory (and other operations analy-
sis), and digital computer methods should be included so that the population
becomes aware of the widespread uses of mathematics outside of scientific.
endeavors.

The applied aspects of mathematics go beyond the application of
mathematical results to specific problems. The transfer of a mathematical
way of thinking to the rest of our intellectual effort is, in a sense, an ap-
plication of mathematics. Concepts such as probability distribution, limit,
and instantaneous rate of change have a deep cultural significance beyond
their immediate uses. They introduce important ways of thinking, involving
the whole spectrum of thought, of which the nonmathematician is often not
aware.

Among such concepts those of order and of order of magnitude can and
should be brought into the curriculum at a very early stage. The concept
of order, in the sense of less than or greater than, is at least as elementary
as that of equality. It should be introduced in the carliest grades. The
concept of order of magnitude is basic to approximation and cstimation.
These latter should be used throughout the course for quick understanding
and checking of results, and also for sensible manipulation of applied cal-
culations. The fact that a precisc numerical answer is not usually required
and may not even be consistent with the input and structure of the model
is important. Reasonable “rounding off” procedures should be understood
and used.



Section 4
SOME OVERALL OBSERVATIONS

The Children

Anyone who reads our curriculum proposals, particularly for Grades
7-12, will certainly realize that the conference showed a far greater
respect than is customary for the intellectual competence of students in the
schools. This respect rcsts primarily on the fact that almost everyone who
has tried to teach what have been generally considered advanced topics to
children reports success. Such success does not necessarily imply, however,
that a curriculum heavily loaded with mathematical ideas can be successful.
Most of the experiments represent quick thrusts into a restricted arca of
mathematics, and it is not at all clear that with very young students success-
~ ful work in these acccssible subjects will scrve as a foundation for more
advanced work. It is quitc possible that the intercorrclation between the
various topics in the student’s mind will simply not develop sufficiently
rapidly to make possible the schedule sct forth below. If the obscrvation of
Piaget represented an intrinsic inability of young children, then this would
indeed be the case, but Piaget himsclf does not claim that the difficulty is
intrinsic, only that it is observable among children cducated in the presently
traditional manner. How much we can change is not a matter for debatc but
for experiment.

Any attempt to move mathematics teaching in the direction here proposed
will raise another important consideration. With the present rather slow
pace, all but a few have been able to keep to the minimum standard.
Hence it has been possible to teach arithmetic on a grade-by-grade basis.
Although we believe that, when properly taught, everyone will be able to
go faster, it secms quite likely that in an environment containing so many
more ideas, differcnces in native ability will become more significant. The
intercalation of enrichment material to attract the attention of the more
gifted student may no longer suffice to keep children of the same age to-

gether, in which casc it will become totally impractical to teach mathematics
- T e e e et 4 b,
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. an_a grade basis. We have no solution to the problems this raises, but we
note that many school systems are already experimenting with ungraded
classes.

Another aspect of our respect for the child’s intellect leads to the fol-
lowing suggestion. If a mathematical idea seems not to be understood by
the children, then we should recheck our own ideas to be sure that we have
in fact presented the ideas correctly. We belicve no mathematical idea can
be presented clearly unless it is also presented correctly. Various comments
to this effect have been made concerning sophisticated topics like gcometry
and algcbra, but even at the most clementary level, in the teaching of count-
ing, we find inadequacies of presentation. Reviewing a number of the most
recent books for kindergarten and first grade, we found that they often 1

\
emphasize the notion of a one-to-one correspondence between two sets. |

Very good. But none of the books made any effort to bring out_the _point \

that the existence of a one-to-one correspondence between two sets is in™
dependent of the way in which the correspondence is set up. We have no |
evidence that children arc in any doubt on this point, but it scems clear that
counting must be an entirely meaningless process to any child who does not
understand this fact. Even if it were certain that cach child understands the
principle, there would be much merit in making it verbally cxplicit. Of
course, we do not argue that a formal mathematical proof should be given.
But cach child should be aware that this is the fact on which counting and
ultimately the whole of the arithmetic rest.

As adults we have grown so accustomed to such basic facts that we fail
to appreciate that they arc not nccessarily obvious. Indced, somc “‘geo-
metrically obvious” facts arc now doubted insofar as the real world is con-
cerned. In many cases, it has required the greatest geniuses to see the
significance of (or to question) the obvious. To avoid major crrors of
presentation, we believe that the serious thought of our best mathematical
minds will be required in the design of even the kindergarten curriculum.

The Teacher

As we explained in the introduction of this report, our recommendations
were developed without any regard to the question of staff resources or the
problem of tcacher training. Partly as a result of this, our program makes
extremely heavy demands on the teacher.

This is obvious as carly as the seventh grade, in which we proposc algebra
and gcometry on a higher intcllectual level than those now commonly taught
in the ninth and tenth grades. It becomes more obvious in the later grades
of high school: here our courses would include more content, on a higher
level of sophistication, than most colleges now offcr. (It should be recalled
that the number of college mathematics teachers with Ph.D.’s is less than
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twice the number of colleges. The majority of colleges have none.) For
this reason our high school program will not be feasible, as a part of mass
education, until the number of students reaching the present M.A. level in
mathematics has increased by an order of magnitude. This is, however, not
an unreasonable hope. College mathematics departments are increasingly
overloaded by sharply rising enrollments in advanced courses. If this
tendency continues, then the overwork of the present generation of col-
lege teachers will contribute to the solution of the problems of the next
generation.

In less obvious ways, our program for the first six grades is equally de-
manding. In the first place, the pre-mathematical topics range rather widely.
[t appears that many tcachers do a better job than the state of their own
knowledge would give anybody a right to expect: the craft of the school-
master, plus a reasonably good textbook that the schoolmaster can manage
to keep up with, goes a long way in place of the basic knowledge which we
would like to regard as normal. With due allowance for this principle, the
gulf between the demands that we propose to make on teachers and the
qualifications of the present generation of teachers is very wide. It is com-
mon knowledge that the average elementary teacher knows, at most, formal
arithmetic narrowly construcd, and some of those now ecntering the pro-
fession have a proficiency in arithmetic which is below the cighth-grade
norm.

For a differcnt and less obvious reason, our program makes even heavier
demands on teachers than our remarks so far would suggest. Almost any

~drill material can be taught by almost any good drillmaster. But we do
" not propose to teach by drill. At every level we propose to present math-
ematics as the pursuit of the truth by a process of inquiry; we propose to
clicit all the insight and all the creative responses that the student is capable
of. Just how much they will turn out to be capable of we do not know; but
the experience of a few bold experimenters amply proves that the present
apparent limits on the insight and creativity of children arc being sct by
the materials presented to them, and not by the native talent of the children.

Obviously the task of lcadership in a Socratic inquiry is harder, as a
matter of pedagogic technique, than the task of tcaching by drill. It also
requires a much decper mastery, in a purcly mathematical sense, of the
subject matter. It requires that the teacher recognize, as quickly as possible,
the validity of unexpected responses. It requires also that the teacher be
able to tell when a response which is not correct as stated nevertheless
includes a vaﬁ_cl_id_eg,_ so that the discussion can then be guided in the
direction of the valid idea. Such work requires far dceper undcrstanding
than lecturing does. Without deep understanding, the only responscs whose
validity the teacher can recognize arc the expected responscs given in “the
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book.” Often the result is that at moments when the students are most
entitled to feel proud of themselves they get called down and marked wrong.
The only way that we can see to eliminate such behaviour in well-inten-
tioned teachers is to alleviate the purely intellectual incomprehension which
forces them into it.

" This means that an ambitious program will have to be developed, de-
signed to provide an understanding not merely of the matcrial to be presented
in the classroom but also of its immediate mathematical context and of its
surrounding folklore. Fragments of algebra and number thcory are going
to appear in the classroom; the teacher should thercfore know more than

fragments of both. The same is true of ‘geometry and probability. We

propose, as a rough criterion, that the tcacher should know enough about
the mathematical background to be pleased, instcad of being cmbarrassed,
by nearly all the questions that an cager and able student is likely to ask.

Thus the training of teachers involves a threshold phenomenon. The
point is that we propose to teach ideas. The mechanical processes of
arithmetic can be taught, after a fashion, by rote and drill. Ideas cannot
be. If the clementary teachers in the next gencration do not understand
the ideas that they are supposed to be teaching, then the results may easily
be worse than the results that we are getting now.

There is a special reason why the training of teachers should be rapid
and highly coordinated. Probably the easiest part of our program to put
into the classroom is its first part, in the first three grades. If this is done,
then children will develop a set of expectations which will be disappointed

-by teachers in later grades unless the training of teachers has kept pace with

the progress of the children themselves. This sort of problem is already
arising in the weaker colleges. In most of these the mathematics staff is very
poorly trained, and hardly competent to teach advanced courses, or to teach
any course at all in a modern spirit. Mcanwhile, high school programs are
rapidly improving, quantitatively and qualitatively; and the result is that
some freshmen arrive on campus already knowing a large portion of the
material that their college tcachers can teach them. For this reason, much
of our work will be wasted unless curricular development and teacher
training keep pace with each other.

The Problems

Problem material in a mathematics course takes a long time to read,
and an cven longer time to write. Mainly for this rcason, supcrficial cfforts
by both authors and reviewers usually put heavy emphasis on the text
material proper. We believe that this is the reverse of sound proccdure in
gach case: It is the problem material that the student lives with. Obviously
this is true in mere drill books, in which the text is all but vacuous. It
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remains true when the text is intellectually substantial. Psychologically

| speaking, mathematics is somcthing which people do; it is not something

" that they receive in a passive sense. We belicve that this principle holds
cven at very high maturity levels, where it may not scem to. To a mature
mathematician, no lcarning process is passive: he is aware of the possibility
of alternative treatments; he connects up the new material with things that
he already knows; he translates what hc hears into his private language;
and so on.

Mass education in mathematics now depends on textbooks. Probably this
will be true for a long time. If so, the problem material should be con-
sidcred at least as important as the text proper; and it should get at least
half of the time and attention of the authors. Even if textbooks become
less important, as thc qualifications of teachers rise, problem sequences will
continue to be crucial; and the job of composing them is so time-consuming
that classroom teachers cannot compose them, onc at a timc, as they go
along.

We therefore believe that the compositien—of problem sequences is one
of the largest and one of the most urgent tasks in curricular development.

Obviously problems should illustrate and reinforce the ideas in the cor-
responding portion of the text. They also should provide a continual review.
In the earlier grades of our program, morcover, they have a special and less
familiar purpose. It will be recalled that a basic strategy of our courses in
grades K through six is to produce arithmetical skill as a side effcct of the
study of mathcmatical ideas. The problems at this stage, thercfore, should
not merely furnish practice in computation, but should also furnish the
student with good reasons for wanting to know the answers to arithmetical
problems.

It is possible that extensive use may be made of ““discovery cxcrcises™ in
the sense of Beberman and of “discovery problems” in a still more ambitious
sense. In Beberman’s discovery excrcises, the student is provided with
opportunities to observe mathematical principles (e.g., the commutative
laws of addition and multiplication) in order to usc them as short-cuts in
dealing with problems which might otherwisc be solved by brute force. More
difficult discovery problems can be used to introduce mathcmatical ideas
which will soon thercafter be explicitly presented in the text. We have
hopes that a great deal can be accomplished by this device. The difficulty
of teaching heterogencous classes may be reduced if less able students do
routine problems on the basis of ideas and techniques that have been taught
to them, while the brilliant students discover (or at least seem to discover)
most of the mathematics for themselves. If this happens, then the brilliant
student will have a view of mathematics, as a ficld for creative activity,
which is now very rarc in the schools. Students in the middle range of
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ability, who solve some but not all of the discovery problems, would take
a different view of the eventual expositions and have a new sort of respect
for the ideas presented. Our hope would be to convey continually to the
student that every mathematical idea appeared first as the solution of some
problem by some person.

Testing, Testers, and Tests

It is an unfortunate fact that the difficulty of designing valid educational
tests rises sharply with the intellectual level of the material being tested.
Thus it is trivial to find out whether the student knows the date of the
Pilgrims’ landing on Plymouth Rock; but it'is far more difficult to find out
whether he understands what they did and why during the rest of the
scventeenth century. Similarly, in mathematics, it is very easy to find out
how fast and how accurately a student can multiply two three-digit numbers,
but it is much harder to mcasure the extent and the depth of his grasp of
mathematical ideas.

"This means that the problem of testing is going to be more difficult for
our program than for conventional ones, and that it may be hard to “prove”
by testing that the program has the merits claimed for it. At present, the
process of judging ncw programs by tests is a sort of a game: the new
programs give odds, as it were, by showing that they produce just as good
results on standard tests as the conventional programs that the tests were
designed to fit; and their proponents then argue that the new content must
be net profit. Ideally, we should do better than this by mcasuring the net
profit as accurately as possible, and finding out which students have gotten
how much of it.

For these reasons, we belicve that the problem of devising subtle and
valid tests is vcery hard and very urgent. Independent of the problem of
testing, however, is the problem presented by some of the testers themselves.
There is a school of thought which holds, in effect, that whatever tests have
been devised at a given moment are ipso facto valid. At least, this is what
people must be thinking when they say that educational objectives that can be
tested “scientifically” arc well-defined, and that the rest is mysticism. Op-
posing this view we insist that tcaching comes first, and that testing follows
it and mcasures it — or at least trics to. We arc shocked by the callow
empiricism which confers honorary validity on whatever mcasurement tech-
niques it has managed to devise, and confers honorary nonexistence on all
aspects of the human psyche that have not yet been explained to an IBM
punching machine.

Morcover, even valid tests can be partially invalidated, and may distort
the curriculum, if the schools attempt to coach students for them in a direct
way. The Scholastic Aptitude Test (SAT), for example, includes a long
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vocabulary test. In fact, a person’s vocabulary in his native language is a
very good measurc of his educational level, because it is normally a by-
product of reading about things other than words. At present, however,
the SAT is so important to students’ futures that in some schools English
vocabulary is abnormally the direct result of coaching in vocabulary itself,
done simply in an effort to raise SAT scores. Similarly, there are schools
which spend several months of the twelfth grade working through old
mathematics tests. 1t is easy to understand the pressures which create such
temptations. But the problems of test design become almost impossible when
teachers who ought to be teaching devote themselves instead to a massive
and systematic cffort to falsify the results of the tests.

We are especially worried about this sort of thing in our own program. If
the teachers turn their classes into cram sessions directed at the aspects of
the program which most lend themselves to objective testing, then the real
spirit of the program would be lost.

To sum up: we hope that in the future educational tests will deserve
more respect, but will actually get less respect and less attention than they
do now.
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CURRICULUM FOR
ELEMENTARY SCHOOL (K-6)

As we have indicated above, the objective for mathematics instruction in
the elementary grades is familiarity with the real number system and the main +
ideas of geometry. Familiarity requires in adMo111e
of the principal applications of real numbers and geometry. We outline here
in some detail several topics which may be suitable. We have divided the
elementary school roughly in two parts comprising grades K through 2 and
grades 3 through 6, but it must be understood that this is only to give an indi-
cation of the kind of performance we expect from very young children.

The brevity of the present discussion derives from a respect for the reader’s
time. The authors request that this brevity should not be mistaken either for
dogmatism or for oversimplification. The evolutionary future of mathe-
matics instruction in American schools is a complex matter indeed, which
involves many uncertainties, difficulties, compromises, and points of disagree-
ment. The present discussion is, we hope, a first approximation to an intelli-
gent plan for guiding this evolution in a generally wise direction.

In particular, nothing in this report is intended to exclude any better ideas
that may arise elsewhere. Where ideas are concerned, it seems clear that the
evolution of the curriculum should be inclusive and receptive, rather than
exclusive and dogmatic.

The topics below are organized along mathematical lines; it is not intended
that they should necessarily be taken up in the order indicated.

The Earliest Grades, K through 2

The Real Number System

The child usually learns quite early and casily how to count. As soon as
- he is able to count, he can begin to get experience with the number line. This
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line can be regarded from the first as a representation for all real numbers,
even though the child will not be immediately able to give sophisticated names
for most of these numbers. Nonetheless, he can speak of “a little more than
three’ and “a little fess than five,” and he can give a temporary nane, like e,
to any number.

Early experiences in studying numbers should be designed to give insight
into the mathematical properties of the real number system. They _probably
NS should not Jfocus on the learning of algorithms, which will come considerably

later in the curriculum.

Experiences with numbers using concrete objects which can be counted,
measured, and arranged in various ways should have a prominent place in
the first years of school.

These early experiences can be surprisingly creative, can involve the child
actively, and can deal with matters of honest mathematical merit. All of the
following appear to be possible very early in the child’s career:

(1) Experiences with “grouping” that will establish the idea of place-value

numerals to various bases, including base 10.

(2) Extensive use of zero as a number, not merely as a symbol.
X (3) The idea of incqualities, and the symbols < and >

(4) The idea of transitivity of <. (This can be built into game situations

where the child is asked to guess a “‘secret” number from a set of care-
fully devised clues, and so on.)

(5) The number line, including negatives from the beginning.

(6) Use of rulers with 0 at the center.

(7) Use of the number line in the “transitivity’ games mentioned above.

(8) Use of fractions with small denominators to name additional points on

the number line.

(9) Use of the idea of “the neighborhood of a point” on the number line;

relation to inequalities.

(10) Use of the number line to introduce decimals by change of scale.

T (11) The use of *‘crossed” number lines to form Cartesian coordinates;
various games of strategy using Cartesian coordinates.

(12) Use of an additive slide rule, including both positive and negative
numbers.

(13) Physical interpretations of addition and multiplication, including origi-
nal interpretations made up by the children themselves (such as 2 X 4
represented by 4 washers on each of 2 pegs, or 2 stacks of 4 washers each,
or a 2 X 4 rectangular array of washers f{or dots, or pebbles, etc.], of
2 washers of each of 4 different colors, 4 washers of each of 2 different
colors, and so on).
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(14) Questions that lead the children to “discover” the commutative nature
of addition and multiplication.
(15) Multiplication of a number ““a little bit more than three” by a number
“a little bit less than five.”
¥(16) Division with remainder using, for example, the pattern: “20 + 87
means
“If we have 20 dots, how many rows of 8 will there be?”

Answer: “2 whole rows and 4 left over.”
+(17) Division with fractional answers. 20 =~ 8 = 24
(18) Recognition of inverse operations.
(19) Use of 3 as a variable in simple algebraic problems.
¥(20) Experience with Cartesian coordinates, including both discrete and
continuous cases, graphs of linear functions, graphs of functions obtained
empirically, simple extrapolation (““When will the plant be seven inches
tall?”), and so on. Various games of strategy playcd on Cartesian co-
ordinates, etc. Graph of O + A = 10, in connection with learning
“addition facts,” etc.

Geometry

Geometry is to be studied together with arithmetic and algebra from kinder-
garten on. Some of the aims of this study are to develop the planar and spatial
intuition of the pupil, to afford a source of visualization for arithmetic and
algebra, and to serve as a model for that branch of natural science which
investigates physical space by mathematical methods. The gecometric portion
of the curriculum seems to be the most difficult to design. Therefore the
geometry discussed here for grades K, 1, and 2 represents a far more tentative
groping than was the case for the work in real numbers described earlier.

The earliest grades should include topics and experiences like these:

(1) Identifying and naming various geometric configurations. ’

(2) Visualization, such as cutting out cardboard to construct 3-dimensional
figures, where the child is shown the 3-dimensional figure and asked to
find his own way to cut the 2-dimensional paper or cardboard.

(3) The additive property of area, closely integrated with the operation of
multiplication.

¥ (4) Symmetry and other transformations leaving geometrical figures invari-
ant. The fact that a line or circle can be slid into itself. The symmetries
of squares and rectangles, circles, ellipses, ete., and solid figures like
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spheres, cubes, tetrahedra, etc. This study could be facilitated with mir-
rors, paper folding, etc.

% (5) Possibly the explicit recognition of the group property in the preceding.

$(6) Use of straightedge and compass to do the standard geometric construc-
tions such as comparing segments or angles, bisecting a segment or angle,
etc.

(7) Similar figures, both plane and solid, starting from small and enlarged

photographs, etc.

Logic and Set Theory; Function

The logic of everyday life is often appallingly sloppy. While nothing
approaching formal logic is presently recommended for the earliest grades,
it does seem likely that general use of good logic by teachers will pay dividends
in terms of the logic subsequently used by the children.

The ideas of ser and function should be introduced as soon as possible.
In the earliest grades:

(1) Number as a property of finite sets.

X (2) The comparison of cardinals of finite sets with emphasis on the fact that
the result is independent of which mapping function is used.

(3) Numerical functions determined by very simple formulas.

(4) The use of logical statements to determine certain sets. For example,
games like Twenty Questions in which the set of possibilities is successively
narrowed through the answers to yes-no questions.

(5) Familiarity with both true and false statements as a source of information.

Applications

The work with real numbers, described above, can be closely related to
work in “science” and “applications,” such as:

(1) Measurement and units, in cases of length, area, volume, weight, time,
money, temperature, etc.

(2) Use of various measuring instruments, such as rulers, calipers, scales, etc.

X (3) Physical interpretations of 4, §, 1, 3.

(4) Physical interpretations of negative numbers in relation to an arbitrary
reference point (as 0° Centigrade, or altitude at sea level, or the lobby
floor for an elevator, etc.).

(5) Physical embodiments of inequalities in length, weight, etc., again using
games where the child must use the transitive property, or the fact that
a>c implies a+ b > c+ b.

¥ (6) Estimating orders of magnitude, with applications related to physics,
econoniics, history, sociology, etc.
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(7) Visual display of data on Cartesian coordinates, such as recording growth
of seedlings by daily measurement of height, or graph of temperature vs.
time for hourly readings of a thermometer.

General Remarks

The concepts described above are uneven in difficulty. Some of them can
probably be introduced in nursery school, and no doubt should be. Others
may prove to be impossible by second grade, either because of their intrinsic
difficulty, or because of the large amount of material to be covered.

In nursery school, K-2, and, indeed, at all elementary school levels, the
present suggestions assume a general pattern of pre-mathematics to intro-
duce each new topic, to be followed later by as much formal study as may be
appropriate. The pre-mathematics at each level will serve to provide a back-
ground of experiences, and to help develop clear concepts for the work of the
following months or following years. Nearly all the preceding suggestions for
K-2 fall under the general heading of “pre-mathematics.” (Probably “pre-
mathematics” and “formal mathematical study” are not dichotomous cate-
gories, but extremes on a continuous interval, with increasingly detailed
“informal” study leading gradually into “formal” study.)

A comment might be made on the role of physical equipment in the earliest
grades. Whether one thinks in terms of the pre-mathematical experiences that
are embodied in the manipulation of physical materials, whether one regards
these physical objects as aids to effective communication between teacher and
child, or whether one regards them as attractive objects that increase motiva-
tion, the conclusion is inescapable that children can study mathematics more
satisfactorily when each child has abundant opportunity to manipulate suit-:
able physical objects. Possible candidates include blocks of appropriate sizes,
plastic washers and pegboards, rulers, compasses, French curves, circles
divided into equal sections, graph paper, paper ruled into columns to help
the child line up digits in column addition, geometric shapes cut out of wood
or heavy cardboard, pebbles for counting, numerals cut out of wood or card-
board, circular protractors, and so on.

One important general principle appears to be this: wherever possible, the
child should have some intrinsic criterion for deciding the correctness of
answers, without requiring recourse to authority. In the present work, this
bed-rock foundation is generally provided by the fundamental operation of
counting. The child’s slogan might well be: when in doubt, count!

In more advanced work in later grades, solving problems by several differ-
ent methods, recognition of patterns, and even the use of simple logic will play
the role of a foundation for deciding correctness without recourse to authority.
Physical interpretations also help fill this role.
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Clearly, counting and guessing both have important roles to play, and
should be neither excluded from the curriculum nor unduly restricted.
Rather, they should be put in their proper place. Counting, at this stage,
should probably have a fundamental place. The place for guessing is more
confined, but not nonexistent.

In the general area of problem solving, the primary emphasis should be on
understanding the problem, with secondary emphasis on carrying out the calcu-
lations to get the “answer.” For example, after the concept of multiplication
has been studied, it is appropriate to consider problems involving multiplica-
tion of large numbers, even though the actual computations appearing are
beyond the algorithmic skill of the pupil. (They would, presumably, be carried
out by the teacher or with the aid of a desk calculator.) When computing
machines of all sizes are widely available, surely it is more important to know
when to multiply than how to multiply.

Grades 3 through 6

In these four grades we should continue pursuit of the main objective,
familiarity with the real number system and geometry. At the same time we
must start pre-mathematical experiences aiming towards the more sophisti-
cated work in high school.

The Real Number System

(1) Commutative, associative, and distributive laws. The multiplicative
property of 1. The additive and multiplicative properties of Q.
7 (2) Arithmetic of signed numbers.
* (3) For comparison purposes
(a) Modular arithmetic, based on primes and on non-primes.
(b) Finite fields.

“{¢) Study of 2 X 2 matrices; comparison with real numbers; iso-
morphism of a subset of 2 X 2 matrices with real numbers; divisors
of zero; identities for matrices; simple matrix inverses (particularly
in relation to the idea of inverse operations and the nonexistence of a
multiplicative inverse for zero). Possible use of matrices to introduce
complex numbers.

(4) Prime numbers and factoring. Euclidean algorithm, greatest common
divisor.

(5) Elementary Diophantine problems.
¥ (6) Integral exponents, both positive and negative.
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(7) The arithmetic of inequalities.
(8) Absolute value.
(9) Explicit study of the decimal system of notation including comparison
with other bases and mixed bases (e.g. miles, yards, feet, inches).
¥ (10) Study of algorithms for adding, subtracting, multiplying, and dividing
both integers and rational numbers, including “original™ algorithms
made up by the children themselves.
(11) Methods for checking and verifying correctness of answers without
recourse to the teacher.
(12) Familiarity with certain “short cut” calculations that serve to illustrate
basic properties of numbers or of numerals.
(13) The use of desk calculators, slide rules, and tables.
(14) Interpolation.
(15) Considerable experience in approximations, cstimates, “‘scientific nota-
tion,” and orders of magnitude.
(16) Effect of “round-off” and significant figures.
¥ (17) Knowledge of the distinction between rational and irrational numbers.
(18) Study of decimals, for rational and irrational numbers.
* (19) Square roots, inequalities suchas 1.4] < /2 < 1.42.
*(20) The Archimedean property and the density of the rational numbers
including terminating decimals.
(21) Nested intervals.
(22) Computation with numbers given approximately. (e.g. find »% given =.)
(23) Simple algebraic equations and inequalities.

Perhaps no area of discussion brought out more viewpoints than the ques-
tion of how the multiplication of signed numbers should be introduced. The
simple route via the distributive law was considered, but a closely related
approach was more popular. One observes that the definition of multiplica-
tion is ours to make but only one definition will have desirable properties.
Others favored an experimental approach involving negative weights on
balance boards, etc. Still others favored the “negative debt” approach. Even
the immediate introduction of signed area was proposed. It seems quite
likely that all approaches should be tried, since there will probably be much
variation from student to student concerning what is convincing. The ques-
tion is evidently not mathematical; it is purely pedagogic. The problem is
to convey the “inner reasonableness” of (— 1) X (—=1) = +1.

Geometry

In the later grades of elementary school, relatively little pure geometry
would be introduced, but more experience with the topics from K-2 would be
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built up. The pictorial representation of sets with Venn diagrams and the
graphing of elementary functions using Cartesian coordinates would be
continued. In addition, there is much of value in the suggestions put forward
by educators in Holland, and described by Freudenthal in an article in the
Mathematics Student (1956, pp. 82-97), in which many geometrical questions
are motivated by problems concerning solid bodies and the ways they fit
together. New topics might include:
(1) Mensuration formulas for familiar figures.
(2) Approximate determination of = by measuring circles.
+ (3) Conic sections.
*’(4) Equation determining a straight line.
¥(5) Cartesian coordinates in 3 dimensions.
* (6) Polar coordinates.
(7) Latitude and longitude.
(8) Symmetry of more sophisticated figures (e.g. wallpaper).
(9) Similar figures interpreted as scale models and problems of indirect
measurement.
* (10) Vectors, possibly including some statics and linear kinematics.
(11) Symmetry argument for the congruence of the base angles of an isosceles
triangle.

Logic and Foundations

(1) The vocabulary of elementary logic: true, false, implication, double
implication, contradiction.

* (2) Truth tables for simplest connectives.
(3) The common schemes of inference:
P— Qand P P— Q and ~Q
Q ~P
(4) Simple uses of mathematical induction.

(5) Preliminary recognition of the roles of axioms and theorems in relation
to the real number system.

(6) Simple uses of logical implication or “derivations” in studying algo-
rithms, more complicated identities, etc.

(7) Elements of flow charting.

% (8) Simple uses of indirect proof, in studying inequalities, proving +/2

irrational, and so on.

(9) Study of sets, relations, and functions. Graphs of relations and func-
tions, both discrete and continuous. Graphs of empirically determined
functions.
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(10) Explicit study of the relation of open sentences and their truth sets.
- (11) The concepts of isomorphism and transformation.

The common practice of traditional 9th-grade algebra has been to ignore
truth values and questions of implication. True statements, false statements,
and statements of unknown truth value are jumibled together on pages of
writing, related by implication in an unspecified way. The authors apparently
hoped that sooner or later something good would happen. As algebraic no-
tions enter the elementary grades, truth values should be explicitly discussed.

As the child grows, he learns more and more fully what constitutes a mathe-

matical proof. Specious proofs presented to him early in his education may
- tend to block his progress toward understanding what a proof really is. This

must be avoided. If a discussion is not a proof, it should not masquerade

under false colors.

On the other hand, experience in making honest proofs can and probably
should begin in the elementary grades, especially in algebraic situations.
While extensive formal study of logic in the elementary grades is not favored
by most mathematicians, it is hardly possible to do anything in the direction
of mathematical proofs without the vocabulary of logic and explicit recogni-
tion of the inference schemes. The feasibility of such study has already been
demonstrated by classroom experimentation.

Work towards indirect proof will build on the experience with false state-
ments started in the early grades. The study of inequalities can be particularly
useful here. Exciting experience with implication, uniqueness, contradiction,
etc., can be built into games that can be played in the classroom. Children in
elementary school may be able to achieve some comprchension of mathe-
matical induction, especially in relatively simple forms, such as the calculation
of explicit terms of a sequence defined by recursion.

Theory of Real Functions

(1) Intuitive consideration of infinite sequences of real numbers.

(2) The logarithm function, built up by interpolation, from approximate
equalities like 2'* ~ 10% (see Appendix B).

# (3) Trigonometric functions.

(4) Partial and linear orderings, with applications.

(5) Linearity and convexity.

We have in mind an informal, experimental approach to the trigonometric
functions similar to the approach to logarithms. We imagine defining the
functions on the whole line using the intuitive concept of a point moving
uniformly on the unit circle. We could then study many of the qualitative
aspects of the functions, such as maxima, minima, and periods. We can relate
them to problems in harmonic motion and the oscillation of pendulums,
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possibly even to wave motion if suitable equipment is available. Approxi-
mate values of the functions for acute angles could be obtained by measuring
carefully-drawn right triangles. These tables could be extended by symmetry,
periodicity, and interpolation (either by linear calculation or by applying a
French curve to the graph). Applications to the usual problems in indirect
measurement are immediate. The appropriate depth of penetration and level
of sophistication for elementary school experiences with trigonometric func-
tions is probably a matter to be determined on the basis of actual teaching
experiences.

The treatment of trigonometric functions sketched here and the treatment
of logarithms outlined in more detail in Appendix B was motivated by several
considerations. Tables of these functions will be much more meaningful to a
student who has worked hard to build his own table, even if the latter goes
only to two decimals. The process of making the table will concentrate much
attention on the definition of the functions. Moreover, the student who
does the job conscientiously will acquire a good intuitive grip on their quali-
tative properties. In particular, the table of logarithms involves a good deal of
arithmetic; this will afford plenty of practice in a context which many stu-
dents will regard as worthwhile. Finally, experience at this level in calculating
tables can only heighten the student’s appreciation of the easier methods that
become available through Taylor’s series later. The same remarks apply to
the empirical determination of =.

Applications

Because a good deal of science can, and probably will, be introduced into
primary school, more applications of mathematics will be possible in the
upper grades.

Some of the most important applications involve probability and statistics,
which we conceive as purely empirical subjects at this level. The study should
begin with
(1) Empirical investigation of many-times-repeated random events.

(2) Arithmetic study of how the ultimate stabilization of observed relative
frequency occurs through “swamping.”

These investigations should be applied to the problems of measurement in
connection with all science experiments.

There will be many applications of geometry to problems of indirect
measurement and to areas and voiumes. The use of graphs, interpolation,
and extrapolation should lead to the idea of rate of change. Scientific nota-
tion becomes a great convenience when dealing with the very large and the
very small numbers which occur in astronomy or the atomic realm.

Even in these grades it seems desirable to emphasize the notion of a “model”
which captures only a part, even an approximate part, of the real situation.



CURRICULUM FOR ELEMENTARY SCHOOL 41

Longer Projects for Students

In addition to all the explicit topics mentioned above, it is important that
each child get some experience with the more extended aspects of discussion.
As the student progresses in mathematics, he will come increasingly to en-
counter long protracted discussions or solutions of problems. At some point
in the future he will meet problems that take hours, days, or weeks for com-
plete discussion, sometimes requiring a long sequence of lemmas or partial
solutions. It is not clear a priori how one can best prepare for this at the ele-
mentary school level, but whatever preparation can be made would be
worthwhile.

One possibility is that there be short topics to be studied entirely inde-
pendently. These should probably be organized at the appropriate level and
written up as pamphlets. In many respects, these pamphlets would be like
enrichment material for the particularly able student, but every student should
do some independent work requiring more extensive effort than the usual
assigned problems. If a variety of topics were available, then students could
have a choice of project; this in itself would probably increase the level
of interest.
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CURRICULUM FOR GRADES 7-12

General Remarks

The child emerging from the sixth-grade program proposed in this report
will have a thorough grounding in both arithmetic and intuitive geometry
and will now be ready to begin algebra and a more deductive geometry. Ina
pre-mathematical form, he has learned to graph linear functions and to
solve simple systems of linear equations. Experiments now being conducted
in the eleventh and twelfth grades indicate success in teaching such subjects
as calculus, linear algebra, and probability in high school. With the superior
training students will receive in the first six grades, it should be possible to
develop all three of these topics in addition to algebra and geometry.

It seems clear that the topics proposed for the high school have become
the foundations upon which applications to the sciences, engineering, and
mathematics itself are built. It was further felt that some of these topics
have become part of what every person should know in order to understand
the complex world in which he lives. In addition to the basic algebraic skills,
an educated person should know about such things as the likelihood of an
event, the reliability of statistical reports, rates of change and averages.
The problem of students dropping out enters our considerations now and
provisions are made to give those who do leave the mainstream the kind of
mathematics that will be useful to them and which will develop in them an
appreciation of the structure and the power of mathematics.

A modern development in mathematical science which is advancing rapidly
at present is the electronic computer. Its impact in science and technology is
already very great. Its continuing development may very well have implica-
tions for the high school mathematics curriculum which cannot be foreseen
at present. We have, therefore, placed emphasis on the central concepts of
iterative processes and flow diagramming,.

Moreover, the concrete treatment that we propose and the avoidance of a
loose use of symbolism ought to ease the transition to applied mathematics in

42
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general and to computing in particular. For example, loose calculus deals
with “‘variables” (in a Leibnizian sense) rather than functions, while both
, rigorous analysis and computing deal with functions rather than variables:
you cannot explain to transistors the meaning of the symbol dy/y. We believe
~ that this principle applies rather broadly; significant applications of mathe-
matics require, at least, that clear intuitive grasp of the concepts which is best
gained from precise formulations.

Two somewhat different approaches to a curriculum for grades seven
through twelve emerged from the deliberations of the two groups considering
the problem. In the pages which follow, topical outlines of each of the two
approaches will be presented. An attempt will then be made to point out
some of the common features of these two programs, after which specific
features of each will be discussed separately.

Topical Outline of the First Proposal for Grades 7-12

Grades 7 and 8. Algebra and Probability

Part I. Algebra
a. Review of properties of numbers.
*b. Ring of polynomials over a field, polynomial functions.
% c. Rational forms and functions.
d. Quadratic equations, iterative procedures, difference poly-
nomials.
e. Euclidean algorithm, Diophantine equations, modular arith-
metic,
* f Complex numbers as residue classes of polynomials mod x? + 1.
« o Derivative of a polynomial.

Part 1. Probability
a. Review of earlier experience with probability, basic definitions
in probability theory for finite sample spaces.
b. Sampling from a finite population, unordered sampling, ordered
sampling without and with replaccment.
Conditional probability, independence.
Random variables and their distributions.
Expectation and variance, Chebychev’s inequality.
Joint distribution of random variables and independent vari-
ables.
¥ g, Poisson distribution.
¥ h. Statistical estimation and hypothesis testing.

-0 00
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Grade 9.

c v

5 m@ome o

Grade 10.

Part I.
a.

Part 1I.

SECTION 6

Geometry

Intuitive and synthetic geometry to the Pythagorean theorem.
Cartesian plane and space, lines, planes, circles, and spheres.
Motions in Euclidean space, groups of motions, matrices and
linear transformations, vectors, linear independence.
Rotations in the plane and in space.

Complex numbers and rotations in the plane, trigonometry.
Vector space of » dimensions.

Conics and quadrics, projective geometry.

Transformation laws, tensors.

Geometry, Topology, and Algebra

Geometry and Topology of the Complex Plane

Geometry of complex numbers, linear fractional transforma-
tions, mappings by elementary functions, stereographic pro-
Jjection.

Neighborhoods, continuous functions.

Fundamental theorem of algebra, winding number, location
of roots.

Linear Algebra

Simultaneous linear equations, linear mappings, matrices.
Subspaces and factor spaces.

Equivalences of matrices, change of bases, and matrices of a
transformation.

Triangular form of matrices, invariant subspaces, diagonal form
of symmetric matrices and quadratic forms.

Determinants.

Cayley-Hamilton theorem.

Inner products and orthogonal transformations.

Grades 11 and 12.  Analysis

¢ 8o g

70 o

—

Real numbers.

Sequences and series.

Probability for countable sample spaces.

Limits of functions, continuous functions.

Derivatives, Mean Value theorem, antiderivatives, simple differ-
ential equations.

Exponential and logarithmic functions, trigonometric functions.
Linear differential equations with constant coeflicients.
Differential geometry of curves.

Definite and indefinite integrals, areas.
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J.  Taylor series, indeterminate forms.
k. Probability for continuous distributions.
I Calculus for functions of several variables.

Topical Outline of the Second Proposal for Grades 7-12

Grades 7 and 8. Algebra, Geometry, and Probability

Part I. Algebra and Geometry

a. Review of properties of numbers.

b. Logic of open statements and quantifiers, linear equations and
inecqualities, systems of # linear equations in m variables, flow
charts.

c. Logic of formal proofs discussed, axiomatic development of
Euclidean geometry of two and three dimensions.

d. Analytic geometry, lines, circles, parabolas, quadratic equations.

e. Functions — comiposite, inverse; functional equations.
Polynomial functions.

g. Geometry of circles and spheres, trigonometric functions.

h. Vectors in two and three dimensions.

i. Complex numbers, possible introduction to logarithms.

Part 1I.  Probability

a. Binomial theorem, combinatorial problems.

b. Review of earlier experience with probability, basic definitions
in probability theory for finite sample spaces.

c. Sampling from a finite population, unordered sampling, ordered
sampling with and without replacement.

d. Conditional probability, independence.
e. Random variables and their distributions.
f. Expectation and variance, Chebychev’s inequality.

({Q

Joint distribution of random variables and independent vari-
ables.

h. Poisson distribution.

1. Statistical estimation and hypothesis testing.

Grade 9. Algebra, Geometry, and Calculus

Part I. Introductory Calculus

a. Limits of functions and continuity (lightly).
b. Derivative, slope of tangent line, velocity.
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Grade 10.

a.

SECTION 6

Derivatives of polynomials, sines and cosines, sums and
products.

Applications, curve tracing, maxima and minima, rate problems,
Newton’s method for finding roots of polynomials.
Antiderivatives, definite integral and area.

The Mean Value theorem, Fundamental Theorem of Calculus,
applications.

Algebra and Geometry

Volumes of figures (prisms, pyramids, cylinders, cones, spheres).
Linear equations and planes.

Rigid motions of space, linear and affine transformations,
matrices, determinants, solutions of linear systems.

Quadratic forms, diagonalization, conics, and quadrics.
Numerical methods.

Analysis, Probability, and Algebra

Infinite sequences and series of real and complex numbers,
absolute and unconditional convergence, power series.
Probability for countable sample spaces.

Linear algebra, subspaces, bases, dimension, coordinates, linear
transformations and matrices, systems of equations, determi-
nants, quadratic forms, diagonalization.

Grades 11 and 12.  Analysis

oo op

—_— R

m.

Limits of functions, continuity.

Rules for differentiation.

Mean Value theorem and its consequences.

Definite integral, its existence for continuous functions.
Logarithmic and exponential functions, trigonometric functions,
hyperbolic functions, applications.

Techniques of integration.

Taylor series, indeterminate forms, interpolation, difference
methods.

Differential equations.

Probability for continuous distributions.

Differential geometry of curves in space.

Multidimensional differential and integral calculus.

Boundary value problems, Fourier series.

Integral equations, Green’s functions, variational and iterational
methods.
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Common Features of the Two Programs

Geometry

It was recognized that there are many different routes to follow in teaching
geometry and that each has its advantages. One possibility that was often
mentioned and which received considerable support was via a pseudosynthetic
approach until the Pythagorean theorem and similarity are reached. The term
“pseudosynthetic” refers to an axiom system which includes an axiom endow-
ing lines with a coordinate system and angles with mcasure. 1t thus pre-
supposes the properties of the real numbers, with which the student became
familiar in his first six years. The student’s knowledge of the Pythagorean
theorem and similarity lays the foundation on which to introduce coordinate
systems in the plane and in space, allowing one to use the methods of analytic
~ geometry both in developing algebra and analysis, and in the further study of
geometry itself. In view of the fact that the student will have been studying
facts about geometrical figures and constructions parallel to his study of
arithmetic in grades one to six, it should be possible to reach a readiness for
analytic geometry in about one quarter of a school year.

In the further development of geometry, the motions of Euclidean space
are to be treated, leading to the introduction of linear transformations and
matrices and the eventual study of linear algebra. This led to the suggestion
that the study of geometry could be based on transformations of the plane or
of space. It was felt that this suggestion warranted further study to see if an
approach could be written up and whether it was appropriate at this level.

The student entering the seventh grade has been exposed to very few formal
proofs in his first six years. He has probably seen arguments to convince
him that there is no largest integer, no largest prime, that /2 is irrational, etc.
From the seventh grade on, increasingly more proofs will be encountered and
parts of the curriculum, such as the geometry, will be developed deductively
from some axiom system. Where will he learn how to construct a logical
proof? Several views were expressed but all felt that some attention should
be given to guiding the student towards an understanding of what constitutes
a proof and the usual rules of logical reasoning used in mathematics.

It will have been observed in Section 5, under Logic and Foundations, that
the treatment of formal logic is very meagre. We do not know how thorough
the treatment of logic should be. Since we do not propose to teach logic as a
subject in its own right, the problem involved is pedagogic and hence prag-
matic. Prolonged experimentation might lead to any of the following con-
clusions: (1) From the beginning, in the first grade, quantifications would be
made explicit, first in colloquial English and later in the famuliar shorthand.
This may lead the student to such a good grasp of logic, on an informal basis,
that a formal treatment would never be necessary. (2) It is possible, on the
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other hand, that once the students became aware of logical processes, they
would insist on the sort of clarification that only a formal treatment can
furnish. (3) It is also possible that refined logic can be conveyed inductively,
by example, in the treatment of the substance of algebra and geometry.

The resolution of these questions depends, we believe, on student reactions;
and our reservations of judgment spring from our inability to predict these.
If our program in the first six grades achieves its objectives, then in the seventh
and eighth grades we shall be dealing with a student mentality which is at
present very rare indeed.

Algebra

The study of algebra in the seventh grade could begin with a review of the
rules (axioms) governing the real numbers. These would naturally include
the commutative, associative, distributive, and cancellation laws, the proper-
ties of 0 and 1, and the Archimedean property. The student should be aware
that his “familiar numbers” do satisfy these axioms. The members of the
conference were divided in their views about how algebra should be developed
from this point. The contention centered around the question of whether to
introduce general algebraic structures from which the special results can be
drawn. This led to the construction of two curricula based upon different
philosophies. The curriculum which is presented first was formulated by a
committee assigned to this task. When their report was presented to the group
as a whole, there was widespread disagreement and the curriculum which is
presented second was drawn up by another committee to bring out some of
the areas of disagreement.

The first program begins with the study of polynomial forms over a field.
After the algebraic properties of this ring of polynomials is studied, applica-
tions are made to the study of polynomial functions, difference operators, and
complex numbers. To anticipate the calculus, the idea of tangent of a poly-
nomial graph is introduced as the line with second degree contact.

The members of the group framing the second plan differed from the first
group on their approach to the study of polynomials. The emphasis in their
study was placed on polynomial functions instead of the algebra of rings of
polynomial forms. The trigonometric functions are studied earlier and the
complex numbers are introduced as ordered pairs of real numbers instead of
as residue classes in the ring of polynomials mod x* + 1.

Probability

Both programs include several rounds of probability. It is presupposed
that the student will have as a first round an intuitive concept of the probabil-
ity of an event from the pre-mathematical material in the lower grades.
Based upon this, the second round studies finite event sets using the tech-
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niques of algebra. The third round is tied in with the study of infinite se-
quences and deals with countable event sets, while the fourth round treats
the continuous case using calculus.

The Calculus

The approach to the calculus differs somewhat in the two programs. The
first waits until the last two years to present a logically complete course,
based on a thorough understanding of the limit concept. The second pro-
posal gives a heuristic and brief introduction to the calculus in the 9th grade,
and returns to a more complete study of the calculus in the last two years.
The justification presented for each approach can be summarized as follows:

The student, who has already developed some taste for mathematical rigor,
will be dissatisfied with only half the story in calculus when the fundamental
concepts are not carefully defined and precisely used. Because he cannot
carry his arguments back to well-defined concepts, he will not fully under-
stand what calculus is about. Finally, one often forms wrong impressions in
an intuitive approach which are hard to “unlearn™ later, and the lustre is
worn off the subject when one has to return to it later to tie together loose
ends.

On the other side, it was felt that such concepts as rate of change and
average of a function should reach a larger number of people than those who
complete all twelve years of mathematics. From the point of view of general
- culture, the calculus was one of the greatest achievements of human endeavor,
and an appreciation of the power of the calculus can be gained from a heuris-
tic introduction. This experience should be made as widespread as possible
by an early introductory course. Calculus has traditionally been taught
successfully first on a heuristic level where an appreciation of the scope of the
subject is developed. Efforts to base such a development on a thorough under-
standing of limits for all students may be too confining. [t may confuse the
student if he must immediately apply the newly learned concept of limit to
the other topics in the calculus. A second round on limits and the ultimate
union of the two subjects in the third round may be more satisfactory. Finally,
it may well be that the student will be less inhibited in his use of the calculus
(and, perhaps, mathematics as a whole) if he does not see everything presented
in its ultimate refinement but also makes some bold leaps aheuad without
worrying about details and then later looks back to polish his efTorts.

Linear Algebra

Linear spaces are studied in both programs, and in both, they are en-
countered in two rounds. The first encounter is in connection with motions
of Euclidean space and the presentation is restricted to finite dimensional
linear spaces composed of pairs, triples, or perhaps n-tuples of real numbers.
The second round takes up the general study of linear spaces.
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In both programs, no presumption is made concerning the amount of time
necessary for each unit in the curriculum. This can only be determined
after some experimentation is carried out. Perhaps it will later be determined
that certain topics should be reordered to adjust to pedagogical problems this
conference did not consider. The programs presented here are two samples
containing the kind of mathematics which the conference believed suitable as
a goal toward which our present school curriculum should aim.

Some Specific Features of the Two Programs

First Proposal for Grades 7 and 8

Part I. Polynomial algebra

1. A formal statement of the C-A-D (commutative, associative, and dis-
tributive) laws and the recognition that the numbers so far encountered
satisfy them.

2. The use of C-A-D justifies formulas such as (x 4+ p)(x — y) = x* — 2 if
x and y are numbers. Emphasize that these formulas are valid for any objects
which satisfy the C-A-D laws. For example, (x 4+ y}z + w) = xz 4 yz +
xw 4 ywis valid if x, y, z, and w are sets and 4 denotes union and multipli-
cation denotes intersection.

3. The four fundamental operations on specific polynomials (the term “poly-
nomial” not completely defined at present) with rational coefficients as if the
symbols represent numbers. Manipulation of parentheses. Introduction of
rational functions. Fundamental algorithms for fractions.

4, Discussion of the fact that the algorithms for polynomials in one letter
may be carried out by using the coeflicients only and omitting the letter.
Treatment of synthetic division for a linear factor. Comparison with numeri-
cal algorithims where carrying is unnecessary.

5. It is sometimes convenient to consider a polynomial such as 1 4 5x — 3x?
as the polynomial 1 4+ 5x — 3x? 4- Ox® 4 Ox*.... Because of statement 4,
all manipuiations on polynomials are equivalent to manipulations on infinite
sequences suchas (1,5, —3,0,0,...).

6. To understand polynomials better, the numbers must be understood.
Point out that the integers form a ring (define and discuss). This particular
ring has no zero divisors and is an infegral domain (define). The integral
domain can be extended to the set of rationals. This set forms a field (define
and discuss). The real numbers form a field larger than the rationals because
/2 isirrational (prove). The numbers of the form a 4 b~/2, aand b rational,
form a field between the rationals and the reals, and this field has the auto-
morphism /2 — —~/2. Point out that a number in this field is rational if,
and only if, it is a fixed point of the automorphism; consequently,
(a + b7/2)a — b~/2) must be rational (no calculation necessary) and this
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is the basis for the method of rationalizing the denominator. Discuss the
smallest field containing @ + b+/2 + ¢+/3, a, b, ¢, rational, and find the
automorphisms. Show that the automorphisms form a group (discuss very
lightly). Characterize fixed points and use to rationalize (¢ + b~+/2 + ¢+/3)L

7. Define a polynomial as an infinite sequence of elements from an integral
domain with only a finite number of them being different from zero (there is a
possibility of including formal power series). Define addition of two poly-
nomials as addition of corresponding elements in the sequences, multiplica-
tion by an element of the integral domain as multiplication of every element
in the sequence by that element. For convenience, the sequence (1,0,0,...)
is identified with the number one, and the sequence (0, 1, 0,0, . . .) is denoted
by x. Point out that the original integral domain is embedded in the set of
constant polynomials. Define multiplication of polynomials. Therefore, a
polynomial may be written as ag + aix + aox?. ... The set of polynomials
forms a ring. (The proofs of commutativity and associativity require the use
of the Z-notation. There is some feeling that this should be avoided; in which
case, prove the properties for the first few powers of x, enough to make the
theorem plausible, and warn the students that a proof is lacking.) Introduce
the degree of the polynomial and prove the theorems about the degree of the
sum and the degree of the product. Prove that the polynomial ring has no
zero divisors.

8. To every polynomial Zax* and to every domain of numbers (this domain
may be larger than the integral domain of coefficients) is associated a function
fas follows: if r is in the domain, then f(r) = Zawr*. Graph the functions x*,
(n=0,1,2,3,4,5) defined for all real numbers. Discuss the order of magni-
tude of a function and show that if n > m, x* = o(x™) at x = 0, but x™ = o(x")
for very large values of x. Graph the function ax" for a > 0 and a < 0, the
function ax + 6 and the function ax? + bx + ¢. Locate maxima or minima
by completing the square and discuss applications.

9. Because the polynomial ring has no zero divisors, it can be extended to the
ring of rational forms p(x)/g(x) where p(x) and g(x) are polynomials. A rational
form defines a rational function over the domain of the real numbers excluding
the zeros of the polynomial function ¢(x). Graph the functions ax—, (x — a)™2,
x(x — a) ™, (ax + b)cx + d)~* for different rational values of o, b, ¢, d.

10. The problem of finding the zeros of a polynomial function in a given do-
main is discussed. Solve ax + b = ¢x 4+ d and two and three simultaneous
linear equations. Word problems.

- ¥11. Solve ax® + bx + ¢ = 0 by factoring. Discuss factoring over different

rings. Factor polynomials of higher degree by synthetic division, using
the fact that a root must divide the constant term. Solve ax? + bx + ¢ = 0
by completing the square — no formula. Point out that if the discriminant is
negative, the equation has no real root.
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12. The need for a square-root algorithm leads to a discussion of iterative
processes. The solution of ux + b = cx + d can be found graphically by
determining the intersection of the graphs of the functions ax 4 b and
cx +d. An iterative process (not really necessary, but very instruc-
tive) may be set up by writing x,.; = «'((cx., + d) — b) or by using
Xopy1 = ¢ '((ax, + b) — d). A graphical discussion indicates convergence of
one or the other according as ¢~'c or ¢~'a is less than one. Try iteration on
quadratics; e.g., X, = —b W (ax, 4+ ¢) or x, = —a'(b + cx,7Y), etc.
Discuss the convergence graphically. Introduce the square root algorithm
Xop1 = (X, + ax,,7")/2 and discuss graphically. Use inequalities and bounds
to estimate errors and give a plausible proof of convergence. Discuss infinite
decimals and nested intervals determining real numbers. Give sum of geo-
metric series and show that periodic decimals define rational numbers. Dis-
cuss the effect of round-off procedures on iterative methods.

13. Iterative mcthods suggest the study of sequences w, given a priori or
defined by recurrence relations. Introduce the operator E such that
Eu, = u,,, and A such that Aw,, = w,,, — w,. Show that if u, is a polynomial
function of degree k over the integers, then Auw, is a polynomial function of
degree & — 1. Introduce polynomials in A and E. Since E = [ + 4,
obtain EF = (I + A)*. Use this to find Zn, Zn?, Zn®, Zn(n — 1), etc. Sug-
gest use in interpolation. Consider A" = (E — 1)”. Show that E — r annihilates
the function . Solve au, o + bty + cu. = 0, ie., (aE* 4+ bE 4 c)u, = 0,
by factoring «E?* + bE + c.

14. Review the Euclidean algorithm for integers and its connection with
the g.c. d. (greatest common divisor). Show how this implies a solution for
the Diophantine equation ax + by = ¢. This leads to considerations of
residue classes mod « or mod b. Show that the residue classes mod p, p prime, -
form a field, but mod n, n composite, form a ring with zero divisors. Show
that the polynomial x» — x over a p-field corresponds to the zero function;
consequently the same function may have distinct polynomial representations.
Discuss the invertible elements in the ring of integers mod n, and the Euler
¢o-function.

15. Discuss the Euclidean algorithm for polynomials over a field. Obtain
the remainder theorem and use it to factor polynomials. Consider congru-
ences mod (x? — 2) and show that over the rationals, a {ield isomorphic to the
previous field @ + b+/2 is obtained. Use this idea to solve x2 + | = 0 by
considering congruences mod (x2 4 1). Show that a field is obtained with
the automorphisim i — —i. Do the algorithms for complex numbers. Prove
that a polynomial over the reals must have complex-conjugate roots. State
the fundamental theorem of algebra. Prove that a polynomial function has at
most n zeros and that there is a one-to-one correspondence between poly-
nomials and polynomial functions. Prove the unique factorization theorem.
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Discuss the partial fraction expansion for the case of real factors (linear and
quadratic).

16. Consider the order of contact of a polynomial p(x) = Za;x* and a linear
function ax + b. If they intersect at x = «, then p(a) = va + b and
p(x) — (ax 4+ b) = (x — «)g(x) where ¢(x) is a polynomial. Determine the
value of u for second-order contact, i.e., such that p(x) — (ax + b) =
(x — a)*(x) where r(x) is a polynomial. Define p’(x) = a. The graph of the
linear function ax + b is tangent to the polynomial function p(x). Obtain a
standard formula for the derivative of a polynomial. Show that at a local
minimum or maximum of the function p(x), the derivative is equal to zero.

Part II. Probability

1. Review briefly the experience of the student with random sampling in the
first six years. State the formal definition of a finite probability model. ltisa
finite nonempty set £ (the event set or sample space) to each element ¢
(sample event) of which is assigned a non-negative number p(¢) (the proba-
bility of ¢) with Zp(e) = 1. The model represents a random experiment:
each simple event ¢ representing one of the simple results of the experiment
and p(e) representing the long-run frequency of occurrence of that result
when the experiment is repeated under controlled conditions. Subsets E of &

are called events and we define the probability P(E) = & p(e).

2. The notions of sampling from a finite population provide good illustra-
tions that are conceptually simple, applicationally important, and subject
to classroom experiments.

(i) Unordered sampling: from a well-mixed box of N similar marbles,
labelled in some way, s are drawn at a grab. The possible results are the

different samples, the number of which is denoted by (/:]> each repre-
sented by one point in £. Symmetry suggests that we assign to cach sample
the same probability 1 / (7) The student should construct a table for (/:’)

by Pascal’s triangle. Sampling experiments with small N’s should be con-
ducted to check the approximate equality of frequencies.

(if) Ordered sampling without replacement: now the s marbles are drawn
out one at a time and the identity of the marble obtained on each draw is
noted. Symmetry again attributes to each of the N® samples the same
probability. If order is ignored, we obtain a sample of type (i), again with
equal probabilities. Each unordered sample may be placed in s! orders, and

hence N = s! (/;]> =NN-1...(N—-s+ 1.

The basic theorem is the equivalence law: if | </ < ... < i, <5, the
marbles in orders iy, . . ., i, behave like an ordered sample of size k. The
special case s = N gives interesting material (matching, cte.).
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(iii) Ordered sampling with replacement: s marbles are again drawn one
at a time, but after each draw the marble is replaced and the box remixed
before the next draw. N¢ results are distinguishable, with equal probabili-
ties again assigned. This is perhaps the simplest context in which to dis-
cuss independence and product models, and experimental verification for
at least s = 2 is essential here. The identity of this model when ¥ = 2 and
N = 6 with that discussed for fair coins and dice is noted. N = 10 leads
to a discussion of random digits, a table of which should be constructed
by the class and used in drawing random samples.
(iv) Observe the similarity of (i1) and (iii) for small samples and a large
population.
3. Conditional models are introduced by considering experiments whose
results are partially revealed. Formally, with each subset £ of £ having
positive probability is associated a model (€, ¢) defined by g(¢) = 0 if e § E
and g(e) is proportional to p(e) if ¢ & E. This is a convenient place to discuss
the multiplication law and the formal notion of independence.
4. Often we are interested in the value of some quantity determined by the
result of a random experiment. This leads to the definition of a random
variable as a real-valued function whose domain is £ . The distribution of the
random variable Z consists of its value-set 7 » each number z in which has
associated with it the probability g(z) = Ple: Z(e) = z] or P(Z = z) for
short; formally (2, ¢) is another probability model. Interesting examples of
random variables and their distributions are provided by having marbles of
two colors, say r red ones, and considering the number of red marbles in the
sample. This gives the hypergeometric random variable D in (i) and (ii)
(these are both important) and the binomial random variable B (with rational

(:)

and P(B = b) = (Z) p¥(1 — p)? are derived. The notion of histogram is

introduced and several of these distributions are graphed. Other important
random variables are indicators /, where )} = [0, 1] and constants, where
Z(e) = cfor all e. Study distributions of simple functions of random variables.

success probability p = r/N)in (iii). The formulas p(D = d) =

5. Expectation is motivated by long-run average value, analogous to proba-
bility as long-run frequency. Formally E(Z) = 23 Z(e)p{e). Prove that
eels

E(Z) = ZzP(Z = z). The algebra of expectation is developed. The expec-
tation of D and of B are derived. The relation to center of gravity is used to
help motivate the concept of E(Z) as a center of the distribution of Z.

6. Joint distribution of random variables and the notion of independent
variables may now come in. Theorem: If Z and W are defined on the factors
of a product model, then Z and W are independent.
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7. Variance is introduced as a measure of the spread of a distribution about
its expectation, and its laws developed, i.e., Var(Z) = E(Z — E(Z)]*). This
leads to Var(B) = sp(l — p). (Covariance and its laws, leading to

N —
Var(D) = Ss;(l — p) is optional.) Derive Chebychev’s inequality and
N T

interpret it as a weak law of large numbers.

8. The Poisson distribution can be introduced as an approximation to the
binomial when p is small, rather than as a distribution in its own right (which
involves the discretely infinite case). The student can compute Poisson tables
by taking P(0) as unknown, using the ratio of successive terms and finding
P(0) from the requirement of total probability 1. Relate the Poisson distribu-
tion to the matching problem. The normal approximation is presented with-
out proof as a computing device; all probabilities obtained approximately
with its aid could in principle be obtained exactly with the formula given.

9. Statistical ideas may be simply introduced in the context of point estima-
tion. In model (ii) for sampling, assign to each marble a real value: vy, vy, . . .,
Vo. Then if Yy, Yo, ..., Y, are the values on the s marbles drawn,
E(Y)) = ... E(Y,) =7 and y is a reasonable estimate for 3. Notion of an
unbiased estimate. B/sisan unbiased estimate for p. Var(B/s) = p(1 — p)/s.
Discuss the relation with the original concept of probability as long-run
frequency. (Variance of ¥ and D depend upon the covariance option.)
Stratified sampling provides important and interesting material at this point,
leading to notions of experimental design, optimum design, etc. Hypothesis
testing may be presented, not only using the binomial and hypergeometric
examples, but also notions of comparative experiments and the sign and
Wilcoxon tests. Matched pairs and other instances of blocking are tied in
naturally with stratified sampling.

First Proposal for Grade 9. Geometry

I. Intuitive geometry and synthetic geometry leading up to the Pythagorean
theorem. Elementary facts about triangles, circles, and planes. Theorems in
congruence and similarity. Euclidean space is described as a set of points
with a notion of distance. Facts about congruence are interpreted as homo-
geneity and isotropy of space.

2. Cartesian coordinates are introduced as mappings from points in space
to number pairs (x;, X») or number triples (x;, X2, x3). Distance is expressed
by means of the Pythagorean theorem. Theorems about straight lines, planes,
circles, and spheres are proved by analytic methods.

3. Motions in Euclidean space are interpreted as linear nonhomogeneous
transformations of the coordinates. Treat the two- and three-dimensional
case in detail and point out the formal extension to higher dimensions. Sym-
metric treatment of motions in space relative to fixed coordinate axes and
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change of coordinates due to motions of the reference system. Introduce
matrices to describe homogeneous linear transformations.

4. The motions are shown to form a group which is generated by special
motions: rotations, translations, and reflections. Translations are shown to
satisfy the axioms of a linear space. Translations are related to free vectors in
Euclidean space. Given one fixed point, the attached vector space is identi-
fied with Euclidean space. Position vectors are fixed vectors attached to the
origin;: free vectors are generated by translations. Solve geometric problems
(like centroids in triangles and tetrahedra) by direct vector methods. Concept
of lincar independence. Equations of lines and planes in vector form.

5. Describe rotations in the plane as a one-parameter group and exhibit the
form of the rotation matrix

r V] —r?
- V1= r

Rotations in space form a three-parameter group. Eulerian angles and reduc-
tion of general solution to two plane rotations. Prove the s.s.s. congruence
theorem again analytically by rigid motions.

6. Show one-to-one correspondence between complex numbers and number
pairs. Give the geometric interpretation as points in the plane and of multi-
plication of complex numbers as a linear transformation. Isomorphism be-
tween rotations and multiplication by complex numbers of absolute value one.
Complex numbers and matrices. Study of the trigonometric functions and
addition theorems by use of ¢ and its geometry. Roots of unity. Powers of
roots of unity and the connection with congruences modulo . Orthogonality

"

. >k . ’ - .
relations — 2 {7, = 8, where {,, ..., ¢, are the nth roots of unity.
Mnok=1

Trigonometric interpolation.

7. Study vector spaces in n dimensions. Prove invariance of dimension under
linear transformation and change of basis. Discuss the form of affine trans-
formations and properties invariant under them, like concurrence, etc. Point
out that affine geometry can be carried out without a distance concept. Intro-
duce a norm in the vector space by a definite quadratic form and the scalar
product of two vectors by the corresponding polar form. Use the Gram-
Schmidt process to find orthonormal basis vectors. Now scalar products,
lengths, angles, and orthogonality can be expressed in usual form and the
connection with the Pythagorean theorem is made. Discuss the scalar prod-
uct also in oblique coordinate systems. Define orthogonal transformations
as the subgroup of the affine transformations which leaves the metric form
unchanged.

8. Discuss the conics and quadrics by means of principal axes. Maximum-
minimum properties of various axes. Reflection properties of conics and

oy

e
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significance of foci. Tangent lines and tangent planes. Homogeneous coordi-
nates and some basic projective geometry. Concept of duality. Polarity and
dual interpretation of geometric laws.

9. Transformations of dual vectors and quadratic forms which describe fixed
quadrics under change of coordinates. Covariance and contravariance, in-
variants, and tensors. Covariant and contravariant coordinates for oblique
axes.

First Proposal for Grade 10

Part 1. The Geometry and Topology of the Complex Plane
1. The geometric interpretation of the algebraic manipulations with complex
numbers and some geometry of the plane.

(i) Geometric interpretation of various elementary functions such as

n’

1
f(z) = z#, f(z) = —, etc. The complex conjugate.
z

(i1) Linear fractional transformations.
(ii) Stereographic projection, projectivities, and possible connections with
projective geometry.

2. Topology of the plane.
(1) Nearness, neighborhoods, and the dehnition of continuous function
using inverse images of neighborhoods rather than e, § definition. Examples
of continuous functions such as addition, multiplication, absolute value,
and complex conjugate.
(i1) Heuristic argument to show that a continuous function on a compact
set into the real numbers has a minimum.

3. A combination of some topological notions and algebra.
(1) The “fundamental” theorem of algecbra: using the fact that a poly-
nomial function p(x) is a continuous function, that | p(x)' takes on a mini-
mum value, and certain algebraic manipulations with polynomials to show
that if | p(zo)l 5 0, then | p(2)] < |p(ze)! for some z near z,.
(i) Winding number.
(1i1) Location of roots of a polynomial.

Part I1. Lincar Algebra

1. Simultancous linear equations as motivation for discussing linear mappings
from one space to another, kerncls. subspaces, matrices, rank of linear map-
pings and matrices, etc.

2. Factor spaces. The difference between the concepts of complementary
subspace and factor space.

3. Discussion of various equivalences on matrices such as PAQ, PAP!, etc.,
in terms of the connections between choosing a basis for the vector space and
the matrices of transformations.
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4. The triangular form of matrices by elementary transformations.

5. Subspaces invariant under a transformation.

6. Reduction to diagonal form of symmetric matrices (associated with quad-
ratic forms). This can be demonstrated for instance by using a sequence of
two-dimensional rotations (a la Jacobi).

7. Determinants (either axiomatically or with exterior al%brd)

8. Characteristic equations and the Cayley-Hamilton theorem.

9. Inner products and the Gram-Schmidt orthogonalization process,
orthogonal transformations.

First Proposal for Grades 11 and 12. . Analysis

1. Describe the set of real numbers as an ordered field which has the property
that every bounded monotone sequence has a limit. Prove that the real
numbers are Archimedean.

2. Introduce the notion of a sequence having a property ultimately, e.g.,
a sequence is ultimately bounded by M if all the terms of the sequence except
for a finite number are less than or equal to M. A sequence converges to a
limit L if ultimately the sequence is contained in any neighborhood of L.
Point out that the space of convergent sequences iIs a vector space over the
reals and that the limit of the sequence is a lincar functional on the space.
Consider series of positive terms and standard tests for convergence such as
comparison, rates, grouping. Discuss series Zn—? for p > 0. Emphasize
order of magnitude ideas in the use of comparison tests. Discuss alternating
series and show that partial sums give estimates of error. Introduce absolute
convergence and show that an absolutely convergent series is convergent.
Consider convergence of sequences and series of complex numbers, Empha-
size that the notion of convergence depends on the topology only and not on
the metric. Discuss the convergence of power series both in the real and the
complex case. Point out that the power series absolutely convergent in a
fixed circle form a ring.

3. As an application of sequences and series, study probubility for countably
infinite event sets. Discuss countably additive measures and check the validity
of theorems proved in the previous round for finite event sets. Show, by
considering the uniform distribution of the first # points, that a scquence of
distributions can converge pointwise but still not converge to a distribution.

. ln by,
Nevertheless, show that if —— « and — — g, then P(a, < x < b)) — B — a.
n n

Discuss the Petersburg paradox. Define the expectation of a random vari-
able Z to exist if the series ¥ Z(e,)p(e,) converges absolutely, and similarly
y=1

define the variance. Give examples where the expectation exists but the vari-
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ance does not. Waiting-time problems lead to the negative binomial distribu-
tion; e.g., how many times must one toss a coin until the second head comes
up. Markov chain processes (as time permits) including use of matrices, and
possibly proving some fixed-point and limit theorems.

4, Define the limit of f{x) as x approaches a by using deleted neighborhoods.
Prove the theorems about limits of sums, products, and quotients. Define a
continuous function of both real and complex variables. Emphasize that this
concept is topological and not metrical by considering mappings from one
neighborhood space to another. Illustrate by mappings from the plane and
space into R and into vector spaces of 2 and 3 dimensions. Use bisection of
intervals and the nested-interval theorem to prove that a continuous function
has the intermediate-value property and a maximum in a closed interval.
Also a continuous function maps a bounded closed interval onto a bounded
closed interval. Prove the usual facts about sums, products, quotients, and
compositions of continuous functions.

5. Review the derivatives of polynomials as obtained in carlier grades.
Indicate that rhis derivative can be obtained by the limit of difference quo-
tients and can be interpreted as the slope of the tangent to the graph of the
function. Define the derivative of a function at a point. Obtain the algebraic
properties of the derivation operator and the chain rule. Discuss derivatives
of rationat functions. Do the usual problems on tangents, velocity, and
acceleration. Prove Rolle's theorem and the mean value theorem. Show that
the derivative is zero at interior local extreme points and apply to maximum-
minimum problems for rational functions. Define the antiderivative of a
function and show that it is unique up to an additive constant. Use this to
find distance as a function of time if velocity or acceleration is given. Prove
the inverse function theorem for C! function f at points x such that f(x) # 0.
Use this to difTferentiate algebraie functions. Discuss the dilferential cquations
y' = px~'y for rational p and y’ = y» for rational p == 1.

6. Consider y’ == y to obtain the exponential function. Show that the differ-
ential equation f’ = [ with the side condition f(0) = 1 determines a unique
function f(x). Show that if g satisfies only g’ = g. then g(x) = g(0)f(x).
Since g(x) = f(x + «) satisfies g = g, one has f(x + o) = f(a)f(x). Conclude
also that if such an [ exists, it cannot vanish for any x. Use this method of
successive approximations to construct a solution of f" = f, fl0) = I, by
introducing the recurrence relation f,,/(x) = f,—1(x), f.(0) = 1, starting with

L
the initial function fy(x) = 1. This leads to f,(x) = Z Z—' and to the study of

© k=0

. x* o :
the series f(x) = E R Study the convergence of this series by the ratio test
=0

and verify that flx)f(a) = filx + a). Verify that for this series f'(x) = f(x),
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proving the existence of the solution to f* = fwith f(0) = 1. Invert to get the
legarithmic function. Show that the functional equation for these functions
indicates an isomorphism between the multiplicative group of positive real
numbers and the additive group of real numbers. Obtain the antiderivative
of x~\.

7. The series for e? obtained in (6) converges for complex values of the

eiz + e—iz ef,z — e~iz
argument z and enables us to define cos z = -——2—— andsinz = ~—£———
i
i eiﬁ + e—iﬁ . eiﬁ _ e——iﬁ
Then for the real variable 8, cos 8 = 5 and sin 8 = " and the
i

usual differentiation formulas are easily established. Properties of e establish
the basic trigonometric identities and addition formulas. Define = formally
so that 0 — (cos 0, sin 0) is a continuous [-I mapping of 0 < § < 2= onto
the unit circle.

8. Show that the trigonometric functions satisfy yp’ + y = 0. Introduce the
shift operator: for a polynomial p(D) in the differential operator D and « a
real number, p(D)e*"y = e*"p(D + a)y. Use the shift operator to solve linear
differential equations with constant coefficients, and some linear first-order
and second-order systems with constant coefficients by using matrices.

9. Discuss the parametric equations of the motions of a particle in both two
and three dimensions. The support of a motion is the point set through which
the motion is made. A curve is an equivalence class under diffeomorphism
of all motions having the same support. Discuss the tangent space and the
differentials as elements of the dual space. Study the principal normal, the
binormal, curvature, and torsion of a space curve and obtain the Frenct for-
mulas. Investigate vector velocity and acceleration and normal and tangential
acceleration, Prove that a planar curve with constant curvature is a circle
and a space curve with zero torsion is planar.

10. Motivated by the area under a curve, prove that for a continuous function,
the upper and lower sums converge to the integral. Show that the derivative
of the indefinite integral is the integrand. Discuss additive set functions
and their connections with integrals. Show heuristically that area and
volume are additive set functions and use integrals to evaluate them. Do
enough techniques of integration for definite and indefinite integrals to enable
the student to use a table of integrals; e.g., substitution, partial fractions, inte-
gration by parts, etc. Obtain the mean value theorem for integrals. Define
arc length and show that the circumference of a circle is = timmes the diameter.
Define the area of a circle as its content and show that the circumference
divided by the diameter is cqual to the area divided by the square of the
radius. Prove the integral test for convergence of series.

11. The fourth round of probability provides a nice application of the inte-
gral calculus. Define the distribution function of a random variable and
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derive its basic properties. Review discrete distributions; e.g., binomial and
Poisson distributions. Introduce moment-generating functions. Define
density functions of continuous distributions. Give as examples the uniform,
the Cuauchy, the exponential, and the normal distributions. Distributions of
two-dimensional random variables. Distributions of functions of random
variables. Expectation and variance of a random variable. Covariance.
The strong law of large numbers. Standardized random variables and a dis-
cussion of the central limit theorem. (It would be a great service to future
generations if a simple proof of the central limit theorem, at least for some
special distributions such as the binomial, were found that could be in-
cluded at this level.) ;

. 12. Give Taylor’s theorem with integral and derivative forms of the re-
mainder. Consider Taylor’s series and obtain the series for the standard
functions such as log (1 + x) and (1 + x)*. Apply to the study of maxima
and minima and evaluation of indeterminate forms.

13. Consider directional derivatives of functions of several variables. Show
that the directional derivative is the scalar product of the gradient and the
unit direction vector. Partial derivatives and their use to solve maximum
and minimum problems. Consider constrained maxima and minima and the
use of Lagrange multipliers. Prove the implicit function theorem. Show that
the only solution of the wave equation w,, = 1,y is u = flx + p) + glx — »).
Show that this solution represents a wave nioving left and a wave moving
right.

Second Proposal for Grades 7 and 8

1. Review the rules governing arithmetic, stressing again the C-A-D laws,
the roles of 0 and 1, the absence of zero divisors, and the Archimedean prop-
erty. State the axioms for an ordered ficld, and show that the “familiar”
‘numbers satisfy these axioms.

2. Discuss open statements and solution sets. Clarify the use of the quanti-
fiers “for all” and “for some” and their negation (some panelists felt that
the quantifier “for all” and the question “for which?” were adequate for
algebra). Solution of linear equations and inequalities using graphs as a
visual aid (not in the spirit of analytic geometry yet). Solutions of systems of
two linear equations in two unknowns, with graphical interpretation. Solution
of systems of n equations in m unknowns (i and n specify small integers) by
the Gaussian elimination method. This is perhaps a good place to bring in
flow charts as a method for organizing material for computation. A discus-
sion of the capabilities of a digital computer could give the student the
justification for breaking a large computation into small components. In
the remaining years of the curriculum, the idea of flow charts can be used
whenever it i1s deemed helpful in organizing material for calculations.
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3. As preparation for the axiomatic geometry that is to follow, the logic of
formal proofs should be discussed. Some of the laws of inference should be
set forth and illustrated either with the theorems of geometry as they come up
in the subsequent development or by studying logic per se. Both points of
view received support, and experimentation will determine what balance of
the two is most satisfactory. It was felt that the amount of time devoted to
the study of the logic per se should be limited to at most two or three weeks.
The student should also be made aware of the different levels of formality on
which proofs are presented.

4. An axiomatic development of Euclidean geometry of two and three dimen-
sions. To save time in achieving the goal of laying a solid foundation for
analytic geometry, one can here appeal to the student’s familiarity with the
real number line to introduce as an axiom that every line has a coordinate
system. Include such topics as: lines, planes, separation, betweenness,
angles, triangles, congruence, perpendicularity, parallelism, areas of polygo-
nal regions, the Pythagorean theorem, similarity.

5. Elements of analytic geometry. Equations of lines, circles, and parabolas
with horizontal and vertical axes. Properties of the parabola. Solution of
quadratic equations by factoring and completion of square (no complex
roots yet). Intersections of lines and parabolas. Cubics.

6. Define function from one set to another in various ways and illustrate
(correspondence between sets, subset of Cartesian product, graph, table,
formula, etc.). Domain and range of a function. The constant function,
characteristic function, [x], |x|, etc. Composition of functions, implicitly
defined functions, inverse functions.

7. Polynomial functions. Degree of a polynomial. Behavior of a polynomial
function for large values of x. Addition and multiplication of polynomials.
The division algorithm and the remainder theorem. Factoring, making it clear
by example that one must specify the set in which the coefficients may lie.
Synthetic division both for dividing by a linear factor and for evaluating a
polynomial. Some methods of location of roots, such as bisection method.
Prove that a polynomial of degree »n has at most » roots. Rational functions
and the division of polynomials.

8. Geometry of the circle and sphere. Tangent line to circle and tangent plane
to sphere, using both synthetic and analytic methods. Area and circum-
ference of a circle. Lengths of arc on the circle.

9. Study of the trigonometric functions. Define radian measure. Define
the trigonometric functions as functions of the real variable giving the length
of arc on a unit circle. Make clear the distinction between the three different
sine functions: (a) sin x where x is in radians, (b) sin x where x is in degrees,
and (¢) sin x where x is a geometric angle (two rays with same endpoint).
Stress that we shall study the function in (a). Obtain the trigonometric identi-
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ties, using analytic geometry to prove the addition formulas. Prove that the
trigonometric functions are not polynomials or rational functions by studying
the zeros and growth. Discuss the solutions of trigonometric equations.
Graphs of the trigonometric functions.

10. Vectors in the plane and in space as directed segments. Addition and
multiplication by scalars. Inner product and angle between vectors. Projec-
tions and components. Use of coordinates.

11. Introduction of complex numbers as ordered pairs of real numbers and
connection with vector arithmetic. Identification of (a, 0) with the real
number a. Observation that multiplication by (—1, 0) rotates through an

angle of 7. Define multiplication by (0, 1) as a rotation through an angle of%

about the origin. Write (a, b) = (1, 0) + 5(0, 1) and extend multiplication
to any pair of complex numbers. Show that the field axioms stated for real
numbers are satisfied, but that we do not have an ordered field. Introduce
absolute value and complex conjugate. Polar form and deMoivre’s rule.
Discuss factoring polynomials over the complex field.

12. Binomial theorem and binomial coeflicients. Combinatorial problems.
The study of probability for finite event sets as outlined in the second part of
the 7-8 grades in the first proposal.

13. Some work with logarithms. If they were not developed arithmetically
in the lower grades, one could now seek an isomorphism between the multipli-
cation group of positive numbers and the addition group of reals:
L(xy) = L(x) + L(y). (See Appendix B.) The calculation can be done for
different bases and the relations with exponents observed. To gain accuracy,
one is led to consider powers of (1 4 ¢) for small 7. This motivates the study

. 1" . . . . .
of the limit <I + —> ;and using the binomial theorem one obtains a series
n

for e. This is good pre-mathematical material to anticipate some of the later
work on limits.

Second Proposal for Grade 9

1. This is to be a brief introduction to the calculus. Begin with a discussion
of limits to give the student an intuitive feeling for the subject. The definitions
of limit of a function and continuity can be formulated using boxes. The
derivative as the limit of a difference quotient is immediately interpreted as a
rate of change (velocity) and as the slope of a tangent line. This round of
calculus will be limited to the study of the polynomials and the sine and cosine
functions. (This leads to a convenient ring of functions closed under differen-
tiation and integration.) Differentiation of sums and products (quotients,
composite functions, and implicit functions need not be included at this stage
to handle the functions designated above.) Applications to curve tracing,



64 SECTION 6

maximum and minimum problems, rate problems. Newton’s method for
finding roots of polynomials. Point out that the value of a polynomial and its
derivative can easily be found by synthetic division. Determination of dis-
tance from velocity, antiderivatives. The definition of area by rectangular
approximations. The mean value theorem, pointing out what is being
assumed in the proof. The fundamental theorem of calculus and its applica-
tions. Applications to finding areas and averages.

2. Further topics in plane and solid geometry, using analytic and synthetic
methods. Volumes of figures, such as prisms, pyramids, cones, and spheres
(use calculus here where possible). Linear equations and planes. Rigid
motions of space. Linear and affine.transformations. Matrix of a linear
transformation using a given coordinate system. Algebra of matrices. Solu-
tions of systems of 3 linear equations in 3 unknowns, using matrix inversion.
Determinants. Quadratic forms in two or three variables. Reduction of a
symmetric 2 X 2 or 3 X 3 matrix to diagonal form using orthogonal trans-
formations and the geometrical interpretation. Study of conics and quad-
ratic surfaces. Numerical methods for inversion and diagonalization of
2 X 2 and 3 X 3 matrices.

Second Proposal for Grade 10

1. Infinite sequences and series. Give definition of limit and prove basic
theorems for sequences and series of complex numbers. It was generally
agreed that the most suitable completeness axiom for the real numbers uses
nested intervals. Study the convergence of serics with positive terms, obtain-
ing the usual tests for convergence. Alternating series. Absolute and con-
ditional convergence. Power secries in the complex plane, showing circle of
convergence. Study geometric series; series for sin x, cos x can be found by
integration by parts and showing that the remainder tends to zero. Introduce
the series for e and show from the series that e« has the properties e7e? = etv

d .
and e e* = ¢*.  Obtain Euler’s formula. Perhaps one could study the
[x

properties of e* and log x more thoroughly at this point, taking up exponential
growth problems.

2. As an application of infinite sequences and series, one should present the
next round of probability theory, this time for countably infinite event sets.
For a description of this material, see item 3 of the First Proposal for Grades
11 and 12 (p. 58).

3. The rest of this year is to be spent on the study of linear algebra. Based
on the students’ experience with 2- and 3-dimensional linear algebra in con-
nection with solving linear equations and simplifying quadratic forms in the
9th grade, we proceed to consider the axioms for a vector space. As examples,
consider 2- and 3-dimensional vector spaces, the spaces of n-tuples, of poly-
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nomials, of trigonometric polynomials, of sequences, of bounded sequences,
‘of convergent sequences, ete. Study subspaces, bases, and dimension. Re-
strict most of the remaining discussion (o finite dimensional vector spaces.
Coordinates.  Linear transformations and their matrix representations.
Algebra of matrices. Solutions of systems of linear cquations. Determinants.
Quadratic forms. Rank of a matrix. Invariant subspaces of a transforma-
tion. Orthogonal and unitary transformations (matrices). Diagonalization
of symmetric or Hermitian matrices, associated with quadratic forms. Stress
numerical methods for solving systems of cquations and diagonalizing
matrices.

Second Proposal for Grades 11 and 12

These two years arc to be spent developing further the material in caleulus,
probability, and differential equations. This brief listing of the kind of topics
that could be included indicates the scope of the course that is proposed.
Recall that the student has already had approximately one semester of intro-
ductory calculus and about a half semester of infinite sequences, series, and
their application to probability.

I. Limits of functions. If the notion of limit introduced in the 10th grade
was presented properly (say, as suggested by McShane in his article “A
Theory of Limits” in the MAA Studies in Analysis), one would not have to
re-prove the limit theorems. Continuous functions and their basic properties.
Recall that the completeness axiom for the real numbers was stated 1n terms
of nested intervals. Prove that on closed bounded intervals, continuous func-
tions assume a maximum and are uniformly continuous. Prove the inter-
mediate value property.

2. Recall the definition of derivative. Rules of differentiating composite
functions, implicit functions, inverse functions. Expand the class of functions
which can be handled to include rational, algebraic, exponential, trigonometric
functions and their inverses.

3. Mean Value Theorem and its consequences. Antiderivatives. Diflerentials.
Solution of simple differential equations. Review application to extremal
problems, curve tracing, and rate problems.

4. Define the definite integral as a limit of a sum. Obtain the properties of the
definite integral. Prove the existence of the integral for monotonic functions
and for continuous functions. Review the fundamental theorem of the
calculus.

S. Study the logarithmic and exponential functions. starting from the defini-
tion of log x as an integral. Show the identity of log ' with the function exp
previously defined by the series. Hyperbolic functions. As an application of hy-
perbolic functions, one can study rotations in a space with an indefinite metric
dx* — dr? (Loventz transformations with one spatial and one time dimension).
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Mention the connection with special relativity theory. Solve diflerential
equations related to exponential growth.

6. Techniques of integration including substitution, integration by parts,
partial fractions, and use of integral tables. Solve problems involving areas,
arc lengths, simple volumes, and surface areas. Improper integrals.

7. Study the Taylor series of a function with remainder in derivative and
integral forms. Indeterminate forms. Interpolation and difference methods,
including Lagrange interpolation formula and Newton’s formulas.

8. Linear differential equations of the first order. Some other special classes
of first-order equations. Linear differential equations with constant co-
eflicients can be studied by operator methods or by reducing to a system of
first-order equations and then using matrix methods. Discuss the hinear space
of solutions using the methods developed in the linear algebra. Discuss
general equations y’ = f(x, y) the iteration process, first for “solving™ it
numerically, and then to prove the existence and uniqueness of a solution.
Discuss other numerical methods for solving differential equations and for
evaluating integrals.

9. The fourth round of probability comes next. This is the same as the ma-
terial in item 11 of grades 11 and 12 of the first proposal (pp. €0, 61).

10. Differential geometry of curves in 3-space. Tangent, principal normal,
binomial vectors, curvature, torsion. Frenet-Serret formulas. Applications to
problems in mechanics.

I1. Directional derivatives, gradient vector, partial derivatives. Extremal
problems without and with constraints. Lagrange multipliers, Jacobians,
inverse and implicit functions. Elementary vector analysis.

12. Multiple integrals and iterated integrals. Areas and volumes. Multi-
variate analysis in probability as an example of the use of multiple integrals
and moments.

13. Boundary value problems and orthogonal functions. Preliminary work
with Fourier series. Partial differential equations solved by separation of
variables. Use linear space interpretation of space of solutions. Physical
applications.

I4. Transform differential equations to integral equations. Green’s function.
Use of variational and iterational approximations.
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Conclusion

A proper development of the school mathematics curriculum requires a
constant dialogue in the whole mathematical community, with essential
contributions from both research scholars and classroom teachers. Until
recently, research scholars tended to neglect their part of this task. This is
especially unfortunate because their natural province includes, at least in
outline, the settings of goals in a philosophical sense and also includes various
exploratory work which requires a research scholar’s grasp of subject matter.
It is true, of course, that any conception of goals needs to be adjusted to what
turns out to be the limits of the possible, and that some exploratory ideas
simply fail to work in the forms in which they are proposed. Nevertheless,
the check of practicality should come second; and we believe that resecarch
mathematicians should continue the sort of work represented by this report.

The passage of time will, we hope, make this tentative statement of goals
obsolete. We look forward to the continued work of our successors.



APPENDICES

The following appendices are a somewhat edited sample of the
working papers that were produced at the conference. It is hoped
that more of these will ultimately be made available to those
interested.



Appendix A
PROBABILITY AND STATISTICS

Probability theory can be regarded simply as a branch of pure mathe-
matics, consisting mainly of mecasure theory. In fact it is so regarded by
many probabilists. But in the coursc recommended here it would be treated
in a quitc different spirit, as a branch of applicd mathematics, or perhaps
as an essentially extra-mathematical study, comparable to physics. It would
be presented as an analysis of experience by mathematical methods, and the
student would be encouraged to infer that events with very small proba-
bilities are very unlikely to happen, and that hypotheses with very small
probabilities are very likely to be false. In short, we propose that the subject
be aimed toward the areas of statistical inference and decision.

By this we do not mean that fundamental concepts should be formulated
in empirical terms. We mean merely that sample spaces should be regarded
as descriptions of a reality external to pure mathcmatics.

We believe that probability theory, presented in this spirit, has a large
contribution to make to liberal education. In the first place, it can raise
the level of sophistication at which a person interprets what he sees in
ordinary life, in which thecorems are scarce and uncertainty is everywhere.
In the second place, the fact that the problem of mcasuring degrees of
certainty lends itself to mathematical analysis is in itself a matter of great
philosophical import; and the moral is reinforced by the discovery that
quite simple-looking problems have answers that startle common sense.

To achieve thesc objectives, a course in the junior high school need not
use the more diflicult mathematical techniques; finite sample spaces cover a
lot of ground and permit the introduction of most of the fundamental ideas.
We believe that this is the best introduction to the theory, even for a student
who intends eventually to study the continuous case after calculus. The
rcason is that purely probabilistic concepts are decp and subtle in them-
selves, cven when they are scparated from the analytic techniques which
will later be used in dealing with them. In a program of mass education,
however, there is a different and even more compelling reason for intro-
ducing probability theory early. In every grade after elementary school a
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certain number of students are going to stop studying mathematics. For
this reason, other things being equal, topics which have high value in
liberal education deserve priority. In this case, other things are approxi-
mately equal: probability theory is not falsified by exposition in clementary
terms; and its insertion does not disrupt the order of the curriculum, because
it uses enough of the methods of the preccding courses to keep alive the
skills that the student has already acquired.

We suggest that probability be taught in four doses .through the
curriculum:

1. In the elementary school, empirical study of the statistics of repeated
chance events, coupled with some arithmetic study of the workings of the
law of large numbers.

2. In junior high school, probability as an additive set function on finite
sets. Conditional probability, independence, binomial distribution, cxpec-
tation, variance, and some simple statistical tests.

3. In senior high school, after the first work on limits and serics, proba-
bility as an additive sct function on countable sets. Poisson distribution,
law of large numbers, etc.

4. In senior high school, after integral calculus, probability as an additive
set function of intervals on the line. Continuous distributions on the line
and in several dimensions, normal distribution, limit theorems, etc.

The pre-mathematical experience in primary school is of fundamental
importance. We imaginc it might take shapc along these lincs:

1. A central position would be assigned to large-scale cooperative experi-
ments by the entire class, as in recording 2,000 or more tosses of a thumb-
tack, irregular or several-sided solid (such as a short scction not-too-
carefully cut from a triangular ruler). We propose to begin with an asym-
metric situation in which no “obvious” theory exists in hopes of avoiding a
large inheritance of widcely-belicved fallacics and misconceptions. Later one
might do cxperiments with the classical symmetrical situations: dice, coins,
cards, etc.

2. By entirely empirical means, the class would observe that a single
toss of a thumbtack is quite unpredictable; in a few tosses both thc total
number and the fractional proportion of “successes” are largely unpredict-
able; as we move to much larger sample sizes. the total number of successes
becomes cven more unstable, but the fractional proportion of succcsses
gradually (indecd very gradually) assumes considerable stability. Why does
this occur? Is it because of the popularly-assumed law of “compensation,”
or is it (as Feller has put it) because of the “swamping” cffeet of very large
averages? What bases can we find, logically or empirically, for choosing
between thesc alternative explanations?
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3. At this level only rather simple measures of variability would be
used, like range, interquartile range, average absolute deviation from the
mean.

4. Application would be made immediately to the variability of the
results of measurement. This would deepen the students’ understanding of
the nature of measurement. Moreover, it might serve as an antidote to the
erroneous idea that “in mathematics there is always one exactly right
answer.”

5. Work on the statistical aspects of round-off error might be included
or written up as a separate pamphlet for study by brighter students.



Appendix B

LOGARITHMS IN
ELEMENTARY SCHOOL

We shall show how easy it is, using only techniques available in the ele-
mentary school, to construct a table of common logarithms accurate to 3D
(i.e., 3 decimal places), indeed almost to 4D. Such a construction has several
points to recommend it. The operations give an insight and sense of realism
hard to obtain in other ways. The process provides useful experience in
graphing, table construction and checking, and arithmetical practice in a
simple context.

The motivation for seeking a logarithm function can be introduced through
the study of exponents. Integral exponents show how to convert certain
multiplication problems into addition. We can plausibly interpolate the
function 2¢ using linear or French curve interpolation and verify that the
resulting inverse function does nearly satisfy

(D L(xy) = L(x) + L(y)

We can also consider only the integral powers of 1.001 or of -\% which are
easily seen to be rather densely distributed along the interval [1, 10]. Such
considerations make it entirely reasonable that there is an increasing function
satisfying (1). We can readily see the advantage of such a function, so we set
about calculating one.

There is, of course, a normalization factor to be chosen. We can proceed
with base-2 logarithms, L(2) = I, or go to common logarithms, L(10) = 1.
There are advantages to either choice. Ultimately common logarithms are
more useful, but the base 2 probably obviates the temptation to cheat by
looking up the answers. In what follows we seek common logarithms, but
there is no essential difference with another base.

Our immediate objective is to find the values of L for the integers from
1 to 20. It will be enough to discover the values for the prime integers: if we
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have L(2) and L(3), we can at once get L(6) = L(2) + L(3), etc. Thus the
problem is reduced to finding L(2), L(3), L(5), L(7), L(11), L(13), L(17), and
L(19). Indeed, since 2 X 5 = 10 and hence L(5) = | — L(2), one of these
drops out. Seven remain.

We know L for powers of 10. If we could find a power of 2, 3, . .. which
was equal to a power of 10, we could {ind L for that prime. Is this possible?
Even if the equality were only approximate, an approximate value would
result. Thus 32 = 9 is close to 10. If 3* were 10, we should have L(3%) = 2L(3)
equal to L(10) = 1, or L(3) = .5. Since 9 is near 10, we may reasonably hope
that L(3) ~ .5. Putting it another way, 3> = 10 X .9 or L(3) = .5 + 4L(.9).
Since L(1) = Oand .9 is near 1, L(.9) should be near 0 and $L.(.9) even nearer.

Can better combinations be found? The class should construct a table of
low powers of small primes, and discover, for example, 2" = 1024, and
76 = 117,649. Of these, the first is by far the better, not only because 1.024 is
closer to 1 than 1.176 is but because we divide the error by 10 in the {irst case
and by 6 in the second. We settle on  ; "jorr -

10L(2) = 3 + L(1.024)

as our starting point and get as first approximation L(2) = .300. This at
once gives L(4) = .600, L(5) = .700, L(8) = .900, L(16) = 1.200, and
L(20) = 1.300.

Once L(2) is available, we are in a much stronger position. Can we find a
power of (say) 3 which is nearly equal to a product of powers of 2 and 107
Inspection of the prime-power table at once gives 3¢ = 81 ~ 23 X 10 so that
41(3) = 1 4+ 3L(2) + L(1.0125). Ignoring 1L(1.0125) gives L(3) = .473.
We now pick up L(6), L(9), L(12), L(15), and L(18).

When seeking L(7), we can use all values previously obtained. The xeldtlon

= 2401 = 2 X 12 X 100 X 1.0004 is excellent. Continuing, we may use
ll2 = 12 % 10 X 1.0083; 13% =2 x 11 X 10® X .9986; 172 =2 X 12® X
1.0035; 192 = 6% X 10 X 1.0028. Thus we get the entries under “Preliminary
L(x)” in the table on page 75.

These values should now be graphed, partly as a check, partly to see how L
looks, and partly to stimulate improvements in the table. The table was
derived under the assumption that when x is small, L(1 4 x) is near 0. Does
that assumption appear to be justified? Since 11 = 1.1 X 10, L(1.1) = .038.
Similarly L(.9) = —.050, L(.8) = —.100, L(1.2) = .075. Furthermore, since
95 =19 X 5, L(.95) = —.025, and similarly, L(.85) = —.075, L(1.05) = .019.
Inspection of the graph suggests that our assumption is reasonable. Further,
it suggests that when x is small, L(1 + x) ~ .44x. This relation now easily
permits us to improve the table! Our first relation was

L(2) = .3 + 25L(1.024).
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Error Error

Preliminary Corrected in 4th Preliminary Corrected in 4th

X L(x) L(x) place  x L{x) L{x) place
| .000 .0000 0 11 1.038 1.0416 2
2 300 3011 1 12 [.075 1.0794 2
3 475 4772 1 13 [.113 1.1140 |
4 .600 .6022 | 14 1.144 1.1463 2
5 .700 .6989 —1 [5 [.175 [.1761 0
6 75 7783 I 16 1.200 1.2044 3
7 .844 .8452 1 17 1.225 1.2307 3
8 .900 9033 2 18 1.250 1.2555 2
9 950 9544 2 19 1.275 1.2789 |
10 1.000 1.0000 0 20 1.300 1.3011 |

With L(1.024) ~ .44 x .024 = 011, we have L(2) = .3011. Similarly,
4L(33) = | 4+ 3L2) + L(1.0125) or L(3) = .4772, etc. These corrected values
are shown in the above table. Using these, we find

L( .96) = —.0173
L( .98) = —.0085
L(1.00) = 0

L(1.02) = .0090
L(1.04) = .0173.

These values suggest that L(I + x) = .435x for |x| small. If this is used
instead of .44x, the small errors in the fourth place may be reduced.

The procedure beyond L(20) is clear. Linear interpolation between L(18)
and L(20) for L(19) is in error by .0006; very soon we may obtain the new
prime logarithms by interpolation. The table should be carried to L(100),
checked by differencing, and rounded to 3D.

Several variants on the above approach may be exploited:

(1) It is fun to look for two linear relations between L(2) and L(3) to start

the process. For example:

6° = 10,077,696 ~ 107

38 = 1,594,323 ~ 24 X 10°
yield L(2) = .30066, L(3) = .47712.

(2) Starting with L(10) = 1 and iaking successive squarc roots (e.g., from a
table) yields logarithms of the form (3)*. When these are dense enough,
inverse interpolation gives the L function.

(3) Begin with L(1.01) = .0l and, by taking powers of .01, develop a table
of natural logarithms. Show that both systems yield the same multipli-
cative results.



76 APPENDIX B

(4) It is possible to generate relations involving several primes and to solve
the resulting sets of linear equations for the logarithms. A good way to
search is to look for three consecutive integers which have the desired
prinm factors. For instance, if we wish to try for 2, 3, and 7, to the base 10
(so that 5 is automatic), we obscrve 8, 9, 10; 14, 15, 16; and 48, 49, 50 as
possible tripies. Then the distributive property applied in the form
(n— D+ 1)=n —1 gives

92 ~ (10)(8) = 80
152 ~ (14)(16) = 224
492 ~ (48)(50) = 2400

The resulting three equations in log 2, log 3, log 7 yield log 2 = .301,
log 3 = .476, log 7 = .845 to three decimal places. If more accuracy is
desired, one should drop 80 = 81 and look for something more precise.
For instance, if we observe 125, 126, 128 as having the desired factors
(although not consccutive), we can then say (126)* ~ (125)*(128), and
proceed from there.

(5) In a somewhat more sophisticated approach, the approximate equations
used above are carried as inequalitics; e.g., 4 log 3 > 3 log 2 4+ 1. This
leads to definite inequalities for the logarithms, which become sharper
and sharper as we go along.

(6) There are any number of variations of this problem, some of which may
occur to the brighter students. For example, one might take advantage
of convexity (which could be taken as an additional assumiption, or possi-
bly even proved) in interpolation to get inequalities.

After students have made their own partial tables for (say) two significant
figures, they can explore the use of tables given in books. One can avoid the
notion of characteristics and mantissas by using the table exactly as printed
(as is commonly done with tables of natural logarithms). Later, when the
table has been extended to larger and larger numbers, the students will
probably discover for themselves the utility of keeping only the table of
mantissas.

o oA it
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THE INTRODUCTION TO
FORMAL GEOMETRY

This is an essay in support of one of the two main viewpoints on
geometry that appeared at the conference. An exposition of the
other is found in Section 6, first proposal (pp. 55-57).

Our proposed program for the first six grades consists of arithmetic to-
gether with a variety of intuitive “pre-mathematics.” We propose that this
be followed by a more formal introduction to algebra. This would not be a
fully postulational treatment; it would be deductive piecemeal, in the small
but not in the large. It would, however, undertake to organize and solidify
the student’s knowledge of the number system and of the use of variables in
algebra.

The scheme of the geometry course would be somewhat different: it would
be the student’s first experience with a formal mathematical structure. For
several reasons, we believe that geometry is a good choice for this purpose.

The reality of the subject is palpable. In algebra there is a serious danger
that the student will confuse names with things and think that algebra deals
with the former rather than the latter. Geometry, on the other hand, appears
at this maturity level to be the study of physical space. (For this reason,
nothing analogous to the number-numeral distinction has been used, or
needed, in geometry courses.) Postulational geometry 1s thus not only the
prototype of the postulational method in the rest of mathematics but also
the prototype of the use of mathematical models in natural science: thus
Euclid was the precursor not only of Bourbaki but also of Newton. In geome-
try, as almost nowhere else in mathematics, the student is continually con-
fronted with concepts whose intuitive meaning is clear; he is then given
descriptions of these concepts, sometimes in postulates but more often in
definitions; he is invited to compare the former with the latter, to see whether
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the descriptions really fit the things that they are supposed to describe; he
then investigates things at great length, using the descriptions as tools in the
investigation. This kind of study represents an important opportunity. For
this recason we believe that geometry has an educational significance above and
beyond the importance of its substantive content. )

There are, however, a number of ways in which this opportunity can be
missed or thrown away.

1. By excessive looseness and inaccuracy. 1t is possible to write postulates
and definitions so vaguely and inaccurately that in fact and practice they are
unused and unusable. The reader and the student infer ideas intuitively
from the context, regarding the supposed formal structure merely as a gesture.
Even if the objective were merely to learn the facts of geometry, we believe
that such treatments should be regarded as inferior; they obscure the co-
herence of the subject and prolong unduly the student’s reliance on authority.
And if the objective includes the learning of mathematical and scientific
method, such treatments are very inferior indeed.

2. By fragmentation. The meaning of geometry as a deductive subject
depends (like the artistic effect of colossal statuary) partly on its sheer size;
it depends on the fact that a large and complicated mathematical object,
intrinsically worthy of interest and respect, is investigated at length and in
depth by the application of the deductive method to a mathematical descrip-
tion of it. If geometry is taught only intermittently, in various “integrated”
courses, without ever having a course to itself, the meaning of this picture as
a whole is likely to be lost. (Here we are not objecting to a possible scheme
under which a student might study a two-hour algebra course and a three-hour
geometry course, or vice versy, out of two different books concurrently. Our
idea is merely that the geometry should form a readily recognizable unit.)

3. By excessive delicucy and austerity. 1f the postulates are so weak that
the transition to significant statements is a lengthy chore, and the logic 1s so
formalized that only the most trivial proofs can be written in a small finite
number of words, then the deductive method is not likely to look either
attractive or powerful, and much of the mathematical substance is likely to
be crowded out. The choice of a logical level somewhere between raw intui-
tion and total formalism does not {ook easy; probably it should depend on
long experimentation. 1t seems obvious, however, that the prevailing level can
be raised without loss of time or of teachability. For example, Euclid and
later writers have used a very vague omnibus postulate which says that “the
whole is equal to the sum of its parts.” The meaning of this in Euclid is too
complicated to discuss here. In contemporary textbooks it is interpreted, in
three different contexts, to mean that, under certain conditions, length, area,
and angular measure are additive. It is surely no burden on the student to
say straightforwardly the three things that we really mean. In this case, the
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price of precision 1s zero. In many other cases, we believe that its price
is small.

4. By the use of “parachute postulates.” One of the most striking devices
of modern mathematics is the use of flank-attacks on conceptual and techni-
cal problems. A familiar example of this is the use of the definition

T dt
1 !

Inx =

as a point of entry to the study of exponentials and logarithms. -Using this
definition, we attack all difficulties from the rear, as it were, and get easy
proofs of theorems which would otherwise be very hard. (Indeed. in other
treatments the proofs are so tedious that some of them are usually omitted
not merely by college freshmen, but by everybody elsc.} The flank-attack,
however, is extremely artificial to a person who does not alrcady under-
stand the subject in outline. For example, the definitions exp = In~' and
a® =exp (b In a) give us an almost bewildering reason for belicving that
abac = a**e. We also have a simple but sophisticated theorem which asserts
that for x > 0, our new definition of x™ agrees with the old one.

Devices of this kind should by all means be taught. We do not believe,
however, that they should be used in the student’s first introduction to the
postulational and deductive method. When the student is trying for the first
time to learn and use mathematical descriptions of an external reality, the
descriptions that are offered to him cannot be justified merely by the fact
that after a lengthy development they turn out to be appropriate, adequate,
and accurate. Their nataralness should be plain at the outset; the student
should. feel that he is engaged in a careful analysis of things that he sees. For
this reason, we believe that the logical simplicity of a vectorial approach to the
geometry of space does not justify its use in a first treatment.

What postulates should be used i1s another question. Suitable modifica-
tions of the postulates of Euclid, Hilbert, or Birkhofl are surely workable.
Recently, in England and Germany, experimental courses have been devel-
oped in which the reflections have been used as the basic apparatus. All of
these ideas are worthy of investigation. We propose, however, as a funda-
mental criterion, that in the first course, geometry be formulated so that the
student will fecl that he 1s using natural descriptions of objects of experience.



Appendix D
EXPLORATION

It is proposed that every opportunity be taken to let the students explore
mathematical situations on their own. This can be done in every phase of
the education, from the homework exercises all the way to the development
of major mathematical concepts and theorems. The advantages of such an
approach might include:

1. There is a real worry that carly mathematical sophistication will con-
dition the students against intuitive arguments. The exploring of mathe-
matical situations by the students as an essential part of the algebraic develop-
ment will help them develop their intuition alongside their sophistication.

2. There is a real worry that the willingness to do pre-mathematics for the
future will cease when doing actual mathematics for the present. Doing pre-
mathematical exploration at all times will help to overcome this tendency.

3. Both the practitioner of applied mathematics and the creator of pure
mathematics spend much of their time and effort on “here’s a situation,
explore it,”’ not only on “here’s a problem, solve it” or “here’s a theorem,
prove it.” [t is good to admit this to the students, and to let them work on
mathematics in this manner themselves.

4. Itis important for the student to get the feeling that definitions and lines
of attack are matters of choice. You first explore the situation, and then pick
a particular point of view for its convenience and for its power.

We now give a collection of examples of opportunities for such exploration:

I. Explore the different ways in which infinite sequences of numbers can
behave — the different patterns of convergence and divergence. A good place
to conjecture results,

2. Observethe Pythagoreantriples(3, 4, 5),(5, 12, 13),(8, 15, 17),(7, 24, 25),
which are the only ones usually seen in school. Are there more? How would

you generate them? How is this problem related to algebraic identities? How
is it related to circles in the plane?
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3. Make a table of logarithms to the base 10 by using the facts that
125 ~ 128, 80 ~ 81, 7¢ = 2401 ~ 2400, etc. Two-place accuracy is easy.
How do errors accumulate? How would you improve the accuracy?

4. You know what you mean by the area of a rectangle. What might you
like to mean by area of other figures?

5. Do you want to define 1 to be a prime number? (You do have a choice.)
Is a notion of “proper factor” useful?

6. What is unusual about quadrilaterals inscribed in a circle as opposed to
arbitrary quadrilaterals?

7. Given the system

x+y+z=a

X4 yP4-22=0

1 1 1

S T
))

What can you find easily?
8. How would it be convenient to define inverse trigonometric functions?
square roots? fractional exponents?

9. The ladders in the alley problem:

B F
D

What relations are there among AB, CD, EF, AF, BE, BF, BD, DF?

What determines what?

10. How can you characterize a finite set without specifying the number
of members?
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ELEMENTARY MODERN
MATHEMATICS FROM THE
ADVANCED STANDPOINT

In order that any syllabus devised for the high school should be teach-
able, there must be those able and available to tecach it. Thus we recommend
that the syllabus should form the first five semesters of a 6-semester college
mathematics course to be taken by potential high school teachers among
others. Of course, its content should be familiar to all who have been through
a college mathematics course. The 6th semester would be taken up with more
advanced material and material omitted from the course as proposed on
the grounds of shortage of time (c.g., multiple integrals, Stokes’s thcorem,
clementary group theory, linear programming).

We have aimed at achicving the right level for high school mathematics;
the material itself should be suitable for those with the interests and aptitudes
of high school students, and it is of supreme importance that the attitude
inculcated should be right. Indeed, we place less emphasis on actual content
than on level and point of view. Nor do we insist in all cases on the precise
order of presentation laid down in our draft although there are certain
principles (algebra before analysis as preparation for the calculus, for cx-
ample) which we would not sacrifice. But we believe this curriculum may
be regarded as a l.u.b. in {uturc discussions. We can make no valid prediction
about the time required in the high school for the topics discussed in the
syllabus; but we arc quite confident that they can be taught and absorbed
in 5 semesters of college. (We would cnunciate one principle to guide the
choice of omissions from the syllabus: we should not sacrifice practice to
conserve thcory, since it is no use understanding what you would be
talking about but having nothing to say.)
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Our advocacy of the suitability in college teaching of the proposed curric-
ulum should not be interpreted as a retreat from our claim that the level,
point of view, and nature of the material are, in fact, appropriate to a high
school syllabus. But the realities of the educational situation require that
in the first instance we must train the teachers to teach it — and that we
have in any case to wait many years before students will reach the 7th
grade equipped, as we would wish them to be equipped, for launching on
the course. However, we would immodestly claim that in fact the course is
superior in many ways to that currently given in many colleges. We point
out that the part of the algebra course which would be completed in the
first semester by presenting the formal differentiation of polynomials, be-
havior at infinity, orders of magnitude, etc. would provide a good prepara-
tion for elementary physics.

The course would almost certainly require the writing of special text-
books. However, rather than wait for the production of such textbooks —
and in the meanwhile introduce no reform into college courses — it would
clearly be preferable to introduce certain reforms immediately and utilize
such high-quality texts as do in fact exist. In this connection we might
mention the texts by Moise (geometry), Mostow, et al (algebra) and
Courant (calculus). We believe it would be difficult, if not impossible, to
devise textbooks suitable for the transmission of this material to both col-
lege and high school students. It might be added that the provision of
special textbooks may incline colleges to adopt the syllabus, at least experi-
mentally; and it helps to avoid misunderstanding.

We offer some comments on the impressions we have gained from our
deliberations. We have been aware of the danger of putting ourselves — or,
rather, our contemporaries — in the position of the students for whom we
have been trying to cater. There is a tendency, in judging the difficulty of
certain mathematical concepts and pieces of mathematical reasoning, to
supposc that the student approaches these things cquipped as our con-
temporarics were cequipped at the same educational grade. Nowhere, per-
haps. is this potential fallacy more glaring than in estimating the relative
difficulties of algcbra, gcomctry, and calculus.

There is a feeling among some that the algebraic content of the course
is too stiff, that, for example, the notion of a polynomial is too sophisticated
to be described to a 7th grader. The fact is that this notion is onc of the
few which can be described honestly and preciscly at that level, and it is
certainly mathematically useful at the stage at which one is interested in
factorization; we also believe it will be quite sufficiently “rcal” to the 7th
grader. We acknowledge that the notion of plane Euclidean geometry is also
useful to the student at that stage and has enormous intuitive content —
but converting it from an intuitive synthetic-gecometrical concept into a pre-
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cise analytical concept, replete with coordinatization procedures, presents
formidable difficulties. Not least of thesc is the quite general difficulty of
passing from the intuitive to the precisc; for, in the nature of things, no
mathematical demonstration can validate the passage. Yet there may be
some who maintain that it would be better to suppress polynomials rather
because there is no vague notion, familiar to the student at this stage, to be
replaced by a precise one; it seems to be held (clsewhere than in this sub-
group) that advantage should be taken of the familiarity of the function
concept in order to confusc the issuc. In fact, the greatest difficulty we have
had in clarifying our own mathematical thinking about the topics appropri-
ate to a high school course have centered round the problem of tying up
intuitive with precise concepts. Apart from geometry, the examples which
naturally come to mind are logarithms, the trigonometric functions, and con-
cepts of length and arca associated with curves. Certainly we do not deny
that thesc topics incvitably appear first in imprecise form and it would be
sterilizing to await thc mathematical sophistication needed to render them
quite precise. But the very fact of their arrival in the course in immature
form poses problems of tcaching and mathematical understanding from
which algebra is very largely free. Thus we arc unrepentant in giving the
prominence we have to algebra, though we readily admit, as stated earlier,
that it may be preferable to change the order of presentation in certain in-
stances and to interlcave the algebra with some geometry and clementary
probability theory in the 7th and 8th grades.

A second-— and related — point concerns the amount of unlcarning that
should figure in a well-designed course. The process of unlearning is fre-
quently painful to both student and teacher; in the absence of really excellent
rapport between student and teacher it can destroy the student’s confidence.
Thus it is seen to be particularly important to present the student with an
intuitive and imprecise approximation only when he is not yet ready for the
real thing.

Third, we feel it is essential to show the greatest of pedagogical skill and
insight in helping the student to decide the extent to which he should require
proof of validity before feeling entitled to use a technique. It is very impor-
tant not to inhibit the student’s enthusiasm and facility for solving problems
by preoccupying him excessively with scruples about rigor. The essential
point here sccms to be to develop intellectual honesty, so that the student
knows what is being assumed and what has been proved, where the concept
is quite precise and where it is imperfect. This is, of course, an end in itself;
but it also has the immensely desirable effect of cnabling the student to
steer a middle course between the extremes of glib indifference to mathe-
matical principles and paralyzing obsession with mathematical rigor. Dis-
covery and proof are both vital in mathematics.
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A fourth point concerns the relation of applications to mathematics. It
has seemed throughout the preparation of this syllabus that the need to
develop proficiency in certain mathematical techniques by rcason of their
applicability has led incevitably to the discussion ol important mathematical
concepts (e.g., function, polynomial, vector space, limit); and, conversely,
that the introduction of good mathematical topics, judged by the criteria of
coherence and power, has led easily and smoothly to significant applications.
Thus we find no justification, in our own thinking, for the view that, at the
high school level, at any rate, the needs of the potential professional mathe-
matician are different from those of the potential professional user of mathe-
matics and cven more different from thosc of the intelligent citizen of the
21st century. Of course, speeds and styles of presentation will differ and
so too will the facility of absorption, even between individuals belonging
to the same broad catcgory. But there seems to bc a compclling and
inescapable quality about good mathematics — and this must, in the last
analysis, constitute the justification of the curriculum.




Appendix F

OPPORTUNITIES FOR
PROOF-MAKING IN
THE ELEMENTARY SCHOOL

This material is presented in the belief that more logical inference must be
made with the mathematical concepts of grades K to 6 while the student is
still in grades 4 to 6. Proofs, generally of deductive nature, of interesting
theorems must be evolved from the axiomatic material given the student in
great abundance (although these axioms have not always been formulated
explicitly). The proofs must follow a recognizable logic, although the need
for a detailed logical style or the naming of logical steps is not implied here.
Reasons for presenting proofs in grades 4 to 6 include (1) economizing on
the number of concepts (axioms) required, (2) the illustration of the power
of the concepts already introduced in proving more elaborate and surpiising
statements, (3) the unifying of the material of K to 6, and (4) a suflicient
development of the logical discipline to prepare the students for the large
scale of formal geometry and algebra to be introduced in 7 and 8. The last
point does not interfere with the psychological stimulation a student enter-
ing junior high school should experience from an overall new approach.
There is still a vast difference between proving an occasional theorem and
having a course of organized theorems based largely on each other.

In order to eliminate the need for describing a seven-year course in detail
we will propose a few theorems that can be inserted into the present SMSG
course for grades 4 to 6. It will be apparent in other frameworks where
similar theorems can be proved. Many more theorems will suggest themselves
in any given course and we should think that about twenty theorems should
be distributed through 4 to 6. Those presented below are samples consistent
with SMSG material.

86
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The form of proof thought suitable will be outlined. It is expected that the
pedagogical approach to each proof will be lengthy; that it will involve ele-
ments of self-discovery and directed discovery somewhat as in the Madison
Project approach. That project is a rich source of proved theorems. The
emphasis here is perhaps on theorems of a somewhat more general kind.
(1) Theorems on sets.

It is agreed that emphasizing a formal approach to theorems such as:

AMNB=BMNA
AUB=BU 4 (0
AMNBCA.
would have the disadvantage of laboring at the obvious. It is proposed that
two or three such theorems be briefly used to introduce the required language.
When the student verbalizes the last theorem above as “what is in both 4 and
B is of course in A4, the teacher supplies the language (not even stated to be
a proof):
yeAM B= (by definition) y e 4 and y ¢ B.
.. ye A as required.

This approach can then be applied to the theorems below, which have suffi-
cient complexity to make their proof interesting to the student.

(A—B)NUA—-C)=4—(BUC)
(ANBYNC = AN(BN C) Q)
AUBUC=A4U(BUC)
(AUBNC = AUBNC)unless 4 C C

The proof of the first of these would start

ye(A=—B)MN(A—-C)=ye(4d— B)and ye(4 — C)
etc.

If Venn diagrams are considered helpful, they may be used alongside the
above type of proof.
(2) The C-A-D axioms of operations on integers are used very well in SMSG
to show the correctness of the algorithms of addition, multiplication, ctc. of
multi-digit numbers. This is the only important proof material in SMSG
grades 4 to 6, and it should form an important part of the deductive training
in these grades. We propose that the SMSG approach be extended to include
a systematic statement of the proofs, one equation leading to the next
through axioms and previous equations. One should also prove the valid-
ity of the usual manipulations with fractions.
(3) Number factoring theorems.

This is surely an important prelude to the factoring of polynomials in
grade 7. The series of theorems below ends with a rather important theorem.
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a. If nis a factor of p and ¢, it is a factor of p + q. f
Given p = naand g = nb, o and b integers. :
p+ g = na—+ nb = nla+ b), nisafactor of p + gq.

Corollary: If n is a factor of p but not of ¢, then it is not a divisor of
p + q. Proof by contradiction of above theorem.
b. If ab is a factor of g, then both ¢ and b are factors of ¢.

q = (ab)c = a(bc) = blac)

c. There i1s no largest prime.
If P, is largest, consider Q = PP, ... P, + 1. As | has no factors, by
the corollary of theorem 1 above the factors of Q do not include P, P,
..., P,. Therefore if Q is not prime, it has a prime factor greater than
P,. Ifitis prime, then Q itself is a prime greater than P,.
(4) A nontrivial use of induction following a theorem already seen
“geometrically.”

m

Theorem: X (2n — 1) = m* for every m.

n=1

This is first shown “geometrically” by adding squares around two sides
and a corner of a square. Then we prove it as a nontrivial application
of mathematical induction.

m =1 1l =12

If true for m, then
m—1 m
> 2n-=1)= }_‘,1 Cn—D4+2m+ 1D —1]
n=1 n=
=m*+ 2m—+ |
(m—+ 1)

We may then look at the sum of other finite series in the same way.

I




Appendix G
THE USE OF UNITS

It appears to us that the teaching of the use of units of measurement in-
volves some serious problems. Most of these problems are due to the incon-
gruity between the simplicity of the formal operations and the conceptual
obscurity of the underlying idcas. Thus it is casy to teach a student to cancel
out “sec.” in the expression

(10 ft./sec.®)(S sec.),

but it is not so easy to describe this proceeding in a rational way.

The best response to this problem that we can think of is to discuss the use
of units piecemeal, as the occasion requires. Very early, the student should
learn about units of distance, area, weight, and so on; he should know that
in each case many choices are possible, and that therefore we must indicate
which choice we have made; and he should know how to convert from one
unit to another, e.g., feet to yards to meters to miles, pounds to grams, and so
on. Manipulative processes, €.g.,

Sft.+ 10 ft. = 1S ft.

should be discussed in the context of applications. For example, the above
equation should be interpreted to mean that if segments of length S and 10
(measured in feet) are laid end to end, then the length of their union (measured
in feet) is 15. This, we think, is what the equation means in the contexts in
which it is used. It is not an equation in a new system of “impure numbers.”
The use of units can, indeed, be thought of as a kind of abstract algebra, but
it is not commontly so thought of by the people who use it; and even if young
students could be taught to think of it in this way, they would still need to
bridge the gap between their algebra and the extra-algebraic interpretations
which make it useful.

The next problem is the relation between units of length and area. Sq. ft.
is the unit of area for which it is true that a square one foot along an edge has
area 1. Thus the statement that

(a ft.)(b ft.) = ab sq. ft.

89
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is a statement of fact about rectangles; its validity does not depend on a purely
algebraic claim that the left-hand member in the above equation is an associa-
tive and commutative fourfold product. 1t is possible, in these terms, to
explain conversion of sq. ft. to sq. yd.; as before, the substance of the state-
ments is regarded as geometric. 1f the student observes that “ft.” and “yd.”
are behaving as if they were variables, so much the better. But the teacher
should not attempt to insist that this formalism has any force or validity of
its own, because this aspect of the matter is incapable of intelligible explana-
tion at an elementary level.

The same principle applics to the use of units of distance, time, and speed.
In each such case, it is the fact which justifies the formalism, rather than the
formalism which establishes the fact.

We believe that this sort of treatment is adequate for the uses of units
which come up naturally in mathematics courses. Further ramifications of it -
will be needed in physics; but we believe that they should be taught in con-
nection with the discussions which at the same time require them and eluci-
date them. We believe that this scheme has two main advantages:

. 1t tends to connect the language of mathematics with that of physics,
and suggests that these ficlds live in a spirit of mutual coexistence.

2. It helps to avoid creating the impression that some kinds of mathe-
matics are hopelessly mystical.

It should be understood that in recommending that units be used in
this way, we do not mean to suggest that the language and notation of
units be used on every occasion where they might be. It is quite possible, ina
purely geometric theory of length and area, to treat lengths and areas as pure
numbers. (Indeed, this is the universal practice in advanced treatises on
measure theory.) Some elementary texts treat measurement in both ways;
and this strikes us as a reasonable proceeding. Measurement by pure numbers
must, in fact, come up eventually, if we are to calculate areas by integration:
in the formula,

f)f(x) dx = F(b) — F(a)

the left-hand member is the area of a region, and the right-hand member is
the length of a segment.
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REMARKS ON
SIGNIFICANT FIGURES

In the elementary mathematics curriculum as now planned, numbers
obtained from measurements are to be manipulated by the students to aid in
relating the mathematics to the real world and to science, to aid in the intui-
tive study of geometry, and to assist with the ideas of models. Questions are
bound to arise about the proper treatment of these numbers obtained by
measuring. In handling the “scientific notation™ a body of information about
the treatment of “significant figures” has grown up some of which is useful
but not all of which is satisfactory. The present remarks are designed to
discourage too formal a treatment of the idea of “significant figures’ and to
give some positive suggestions about calculations with numbers obtained from
measuring. In a revised form the remarks might be suitable for a teacher’s
manual.

The notion of number of significant figures tries to do two jobs at once —
to report the result of a calculation and to report on its accuracy all in the
same number. This double burden creates an extra strain that arithmetic and
the decimal system cannot cope with quite satisfactorily.

Suppose significant figures have been defined so that the student knows
87000 has at least two significant figures and that if it has more than two,
someone should have mentioned it. He knows that 0.0246 has threc signifi-
cant figures.

A major source of trouble in dealing with significant figures is the folklore
about hurrying to round back to the number of significant figures in the
original measurements. This is unwise. It is wise to keep everyone informed
about the significant figures in the original numbers and it can be wise to keep
more than the original number of significant figures both in the intermediate
calculation and even in the final answer.

91
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Example. Averages. If we have 10 independent measurements in a
physics experiment, each given to two significant figures, like 8.3, 8.4, 8.1,
8.4, 8.4, 8.2, 8.6, 8.3, 8.5, 8.2, and we have reason to avecragc these
measurements to get a good single descriptive value, or to estimate a con-
stant, it is sensible to report an extra place in the final answer. The average
obtained has a good chance of being closer to the desired number than
the rounded number. Probability thcory shows that averages can be more
reliable than the figures that go to make them up. Why add to the unavoid-
able error in the measurcment by deliberately rounding? On the other hand,
excessive accuracy of the report of the final number is useless so that
carrying 5 cxtra places, while not strictly wrong, suggests that the rcporter
has lost his sense of proportion.

Products

We generally think of a number stated to a given number of significant
figures as possibly varying each way 5 digits in the next place, so that a
measurement of 80 to one significant figure is believed to be, or even known
to be, between 75 and 85, Under these circumstances, if we have to multiply
2 one-significant-figure numbers, say 20 X 80, we might well think that the
true product 1s between 15 X 75 and 25 X 85. That is, we have a number
represented by 1600 that we think is somewhere between 1125 and 2125,

and the swing here is substantial. In spite of this, to round the number 1600

off to its one-significant-figure representation of 2000, merely to preserve the
consistency of winding up with no more significant figures than we had in the
multiplicative components, adds error. 1n tins problem we have little reason
to think the number 2000 is preferable to 1600 and some reason to prefer the
latter. These remarks are intended to explain why attempts to make standard
rules about the handling of significant figures usually run into difficulty.

Rounding early in more extended calculations

Let a, b, ¢, and d be numbers given to a certain number of significant figures
each. We wish to make a calculation of the form ab — ¢d. For convenience
of exposition let us illustrate with one-significant-digit numbers. Let a = 8§,
b=7 ¢=9,d=6. Then ¢b =87 =56 and cd = 9-6 = 54. 1t 1s 1m-
portant not to round at this intermediate stage of the calculation. If you do
you get, in this example,

ab ~ 60, cd ~ 50
and then
ab — ed ~ 60 — 50 = 10,

instead of the more direct 56 - 54 = 2.

.
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Of course, with these measurements, errors of 4 in the worst directions can
be given an upper limit to the result of

8.5(7.5) — 8.5(5.5) = 17.0
and a lower limit of
7.5(6.5) — 9.5(6.5) = —13.0

But that is not a good reason for reporting 10 instead of 2. These examples
all suggest that the student can profitably explore the bounds on the answers
given by manipulation of measurement numbers. He will get arithmetic
practice in a new context, and he will get another carthy experience with
inequalities and bounds. These are all to the good. On the other hand, it
should not be done to death, first becausc a little of such work is interesting
but a lot can become tedious. Second, we are partly training a mistaken
attitude, and in the early grades at least we are not in a position to correct
it satisfactorily.

The exact bounds do not carry all the information in the system. As
mentioned above, we may merely believe or choose to act as if the true meas-
urement number were within 5 units each way from the one we obtained. In
many measurement processes the rounding is not that good, as a little experi-
ence with slide rule calculations done side-by-side with exact calculations will
show. Number preferences and misreadings distort the meaning of significant
figures. Thus the bounds may underestimate the swings the answer can have.

On the other hand, when the numbers really are afllicted only with the kind
of errors which arise from unbiased measurement an appropriate theory
of the distribution of errors exists. This theory lays the basis for keep-
ing more places in the answer than in the original measurements in such in-
stances as the average mentioned carlier. And in general that thcory suggests
that we should not be so pessimistic as the extreme bounds would suggest.
Since this theory is complicated and uses more probability theory than we
plan to give in grades K through 6, we cannot hope to supply it to the student.
Furthcrmore it is only used occasionally even in advanced work.

To sum up, the bounds can be mislcading in either direction, depending on
the appropriate model for measurement.  Much more glaring cxamples of
the effects of rounding can be given — many in which the intermediate round-
ing throws the final answer completely outside the possible range that a care-
ful error analysis would give.

Discontinuity of significant figures

This related example is intended to illustrate a different point. Let us calcu-
late 10/x where x is @ one-significant digit number, say 8, and the 10 is an exact
number:

10/8 = 1.25 (1 for the eager rounder).
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But
10/7.5 ~ 1.33, 10/8.5 ~ 1.18.

By rounding to one significant figure we get out of the range.

The trouble is that the notion of a given nuniber of significant figures does
not carry with it the full value of the information contained in the number,
whereas the notion of per-cent error does better, while still ignoring any
probability theory that might underlie the problem. Thus the one-significant-
digit number 1 offers a 50 per cent error measured from its current position,
while the number 9 offers only a bit more than 5 per cent. The two-
significant digit number 10 also offers about 5 per cent error. This sharp
discontinuity in the number of significant digits, while the per-cent error
Is continuous, is one source of dissatisfaction with the notion of signifi-
cant digits because it 1s the per-cent error that we ordinarily wish to control.

One does not wish to go hog-wild in keeping significant figures, however.
If we multiply two 3-significant-digit numbers 384 X 529, we get 203,136.
If this is the end of the calculation, the final 36 is meaningless. And, of course,
we are uncertain even about the 3 in the thousands position. The student
should know that these last few digits are unreliable and that we do not want
to keep endless meaningless digits. This side of the calculation is the one that
the usual approaches to significant digits are correctly meant to cure. Their
overemphasis has bred loss of information, but here is where the real value
of rounding rules resides. In such a short calculation we would not be justified
in keeping more than 203,100. And the reporter should say that there is
uncertainty in the third significant figure.

The student should also know that when he multiplies a 2-significant-digit
number by a S-significant-digit number, the result is essentially 2-figure
accuracy. Related remarks can be made about division, and the other arithme-
tic operations.

To sum up, the notion of significant figures has served the community
fairly well, and the rules about them when used with discretion can be useful,
though in the hands of a novice, worrisome. A basic trouble is that many
people feel that the “algebra” of significant figures can be made rigorous if
someone will take the trouble to do it, or, taking the blame upon themselves,
is rigorous, but they had not studied it sufficiently carefully. Instead, the
system has basic weaknesses that are rigidly fixed into the framework. We
might distinguish between rules of thumb and rules of crumb. Both are use-
ful. If a man makes a small barrel hoop by multiplying the diameter of the
barrel by 3 and adding on a generous thumb length, he is using a rule of
thumb, and mathematicians can tell him how to fix the rule if he gets into
trouble with a big barrel. Rules of crumb are handy rules that often help one
do better than nothing, but that cannot be sufficiently improved or extended,
because they are not based on any theory, right or wrong. Thus it is worth-
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while to continue to think in significant digits, but to regard that enterprise
as a very useful rule of crumb.

As a final recommendation for calculations with measurcment numbers
through secondary school: carry them to as many places as you would if they
were exact, and then consider at the end what sort of reporting is sensible.
Often you will need a statement in English as well as a number. The state-
ment may say something about the possible percentage error of the result or
about the first figure that seems uncertain.



INDEX

Absolute value, 37, 63
Acceleration, 59, 60
normal, 60
tangential, 60
Accuracy, 91
Addition, 32, 37
of two polynomials, 51
Additive sct functions, 60, 71
Affine transformations, 46, 56, 64
Algebra, 15,43, 48
elementary, 22
fundamental theorem of, 44, 52, 57
linear, 44, 46, 47, 49-50, 57-58, 64
matrix, 64, 65
polynomial, 50-53
Algorithm
division, 62
Euclidean, 36, 43, 52
Analysis
multivarijate, 66
vector, 66
Analytic geometry, 15, 45, 47, 62, 63
Angles, 34, 47, 56, 62, 63
Eulerian, 56
Antiderivatives, 44, 46, 59, 60, 65
Applications, 21, 85
Approximations, 37
iterational, 66
successive, 59
variational, 66
Archimedean property, 37, 48, 58, 61
Arc length, 60, 62, 66
Area, 33, 40, 44, 46, 60, 62, 64, 66, 84
of a circle, 60
of polygonal regions, 62
surface, 66
Arithmetic, 22
modular, 36, 43
Associative laws, 10, 36, 48, 50
Automorphism, 50
Average of a function, 49
Axes, principal, 56
Axioms, 38, 48, 87

96

Bases, 32, 46, 65

change of, 44

for number systems, 37
Basis, change of, 56
Binomial coefficients, 63
Binomial theorem, 45, 63
Binormal, 60

C-A-D axioms, 61, 87
Calculus, 22, 49, 63
Fundamental Theorem of, 46, 64, 65
multidimensional differential and in-
tegral, 46
Cancellation, 48
Cardinals, 34
Cartesian coordinates, 32, 33, 35, 38, 55
in three dimensions, 38
Cartesian plane, 44
Cauchy distributions, 61
Cayley-Hamilton theorem, 44, 58
Center of gravity, 54
Central limit theorem, 61
Centroids, 56
Chain processes, Markov, 59
Characteristic function, 62
Charts, flow, 38, 45, 61
Chcebychev’s inequality, 43, 45, 55
Checking, 16, 37
Circles, 44, 45, 55, 62
area of, 60
Circumference, 62
Combinatorial problems, 45
Commutative laws, 10, 33, 36, 48, 50
Compass, 34
Completing the square, 51, 62
Complex conjugate, 52, 57, 63
Complex numbers, 36, 43, 44, 45, 46,
48, 52, 56, 63
Composite functions, 45, 65
Composition of functions, 62
Computer methods, 22
Computers, 19
digital, 61



4 INDEX 97
Conditional convergence, 64 Determinants, 44, 46, 58, 64, 65
;] Congruence, 55, 62 Diagonal form, 44, 58, 64
of the base angles, 38 Diagonalization, 46, 65
'} s.s.s. theorem, 56 Difference methods, 46
Congruences, modulo #n, 56 interpolation and, 66
Conics, 38, 44, 46, 56, 64 Differential equations, 44, 46, 59, 60, 65,
Constant function, 62 66
Constants, 54 partial, 66
Constructions, 34, 47 Differential geomciry, 44, 46, 66
Continuity, 45, 46 Differentials, 60, 65
Continuous functions, 44, 57, 59, 65 Diflerentiation, 46
8 Contradiction, 38 Digits, random, 54
[ Contravariance, 57 Dimension(s), 46, 65
B Convergence, 64 invariance of, 56
absolute, 46, 58, 64 vector space of n, 44
conditional, 64 Diophantine equations, 36, 43, 52
of power series, 58 Discovery approach, 17, 28, 49
tests for, 58 Discriminant, 51
: unconditional, 46 Distributions, 43
j Convexity, 39 binomial, 71
Coordinate systems, 47 Cauchy, 61
{ Coordinates, 46, 63, 65 continuous, 46, 71
: Cartesian, 32, 33, 35, 38, 55 density functions of, 61
change of, 56 discrete, 61
homogeneous, 57 of errors, 93
polar, 38 exponential, 61
Cosine function, 46, 63 joint, of random variables, 43, 54
cos z, 60 normal, 61, 71
i} Counting, 31-32, 35 Poisson, 43, 45, 55, 61,71
i Covariance, 55, 57, 61 probability, 23
Cubics, 62 continuous, 14
Curriculum, spiral, 13 uniform, 61
Curvature, 60, 66 Distributive law, 10, 36, 37, 48, 50
{ Curve, 60 Division, 37
Curve tracing, 46, 63 algorithm, 62

synthetic, 50, 51, 62, 64
with remainder, 33

Deccimal system, 37 Divisors

Decimals, 32, 37 of zero, 36
infinite, 52 zero, 50, 51, 52,61
periodic, 52 Domain, 62
terminating, 37 integral, 50

deMotvre's rule, 63 Drill, 7-8, 16

Derivatives, 44, 45, 63, 65 Duality, 57

directional, 61, 66

of a function at a point, 59

partial, 61, 66 e'd 56
of a polynomial, 43, 46, 53, 59 e’, 64
of rational functions, 59 e’, 60




98

Equation(s), 37
characteristic, 58
differential, 44, 46, 59, 60, 65, 66
Diophantine, 43, 52
integral, 46, 66
linear, 44, 45,46, 61, 64
solutions of systemis of, 65
of lines, 56
parametric, 60
partial differential, 66
of planes, 56
quadratic, 43, 45, 62
simultaneous linear, 51, 57
systems of, 46
two linear, systems of, 61
Estimates, 37
Estimation
point, 55
statistical, 43, 45
Euclidean algorithm, 36, 43, 52
for polynomials, 52
Euclidean geometry, 45, 62
Euclidean space, 35
motions in, 44, 47, 49, 55
Eulerian angles, 56
Euler ¢-function, 52
Euler’s formula, 64
Event(s), 53
random, 40
sample, 53
Event sets
countable, 49
countably infinite, 64
probability for, 58
finite, 48
Expectation, 43, 45, 54, 58,61, 71
Exponential distributions, 61
Exponential functions, 44, 46, 59, 65
Exponents, 36,73
fractional, 81
Extrapolation, 33

Factor, 52
Factor spaces, 44, 57
Factoring, 36, 51, 62
Factoring theorems, 87-88
Field(s), S0

finite, 36

ordered, 58, 61, 63
Flow charts, 38, 42, 45, 61

INDEX

Foci, 57
Formula(s), 9
Euler’s, 64
Frenet-Serret, 60, 66
Lagrange interpolation, 66
mensuration, 38
Newton’s, 66
Fourier series, 46, 66
Fractions, 32, 50
partial, 53, 66
Function, 10, 34, 38, 39-40, 62
Fundamental operations, 50
Fundamental Theorem
of algebra, 44, 52, 57
of calculus, 46, 64, 65

Game theory, 23
Gaussian elimination method, 61
Geometric series, 52, 64
Geometry, 15, 31, 33-34, 37, 47-48,
55-57
affine, 56
analytic, 13, 45, 47, 62, 63
axiomatic, 62
of complex numbers, 44
differential, 44, 46, 66
elementary, 22
Euclidean, 45, 62
formal, 77-79
intuitive, 55
postulational, 77
projective, 44, 57
synthetic, 55
Gradient, 61, 66
Gram-Schmidt orthogonalization proc-
ess, 56, 58
Graphs, 33, 38, 61
Green's functions, 46, 66
Groups, 34,44, 51, 56
one-parameter, 56
theory of, 82
transformation, [0

Harmonic motion, 39
Histogram, 54
Homogeneity, 55
Hyperbolic functions, 46, 65

e i s st



INDEX

I, 52
Identities, trigonometric, 60, 62
Images, inverse, 57
Implication, 38
Implicit functions, 65, 66
Implicit function theorem, 61
Implicitly defined functions, 62
Independence, 45, 54, 71
Indeterminate forms, 45, 46, 61
Indicators I, 54
Indirect measurement, 38, 40
Indirect proof, 38, 39
Inequalities, 8, 32, 34, 37, 39, 45, 52, 61
Inference

logical, 38, 62

statistical, 70
Infinite series, 46
Integers, 37
Integrals, 60

definite, 44, 46, 65

equations, 46, 66

improper, 66

indefinite, 44

mean value theorem for, 60

multiple, 66, 82

table of, 60, 66

test, 60
Integration, 60

by parts, 64, 66

techniques of, 46, 66
Intermediate value property, 59, 65
Interpolation, 37, 39, 46, 52,73

and difference methods, 66

Lagrange formula, 66
Intervals, nested, 37, 52, 64
Intuition, 11, 14, 18, 49, 80
{4 Invariance, 33
Invariants, 57

subspaces, 44
Inverse function(s), 45, 62, 65, 66

theorem, 59

trigonometric, 81
Inverse operations, 33, 36
Invertible elements, 52
Irrational numbers, 37
Isomorphism, 10, 36, 39, 56, 60
Isotropy, 55
Iterational approximations, 66
Iterative processes, 42, 43, 52, 66
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Jacobians, 66

Kernels, 57
Kinematics, linear, 38

Lagrange interpolation formula, 66
Lagrange multipliers, 61, 66
Length, 56, 84
arg, 60, 62, 66
Limits, 23, 49, 58, 59, 63, 64
of functions, 44, 45, 46, 65
of products, 59
of quotients, 59
of sums, 59
Linear algebra, 44, 46, 47, 49-50, 57—
58, 64
Lincar functional, 58
Linear functions, 33
Linear programming, 82
Linear transformations, 44, 46, 47, 56,
64, 65
Linearity, 39
Lines, 38, 44, 45,55, 62
tangent, 45, 57, 62
Location of roots, 44, 62
Logarithmic functions, 44, 46, 60, 65
Logarithms, 39, 45, 63, 73-76, 84
Logic, 34, 38-39, 47

Magnitude, order of, 23, 34, 37, 58
Mappings, linear, 44, 57
Markov chain processes, 59
Mathematical induction, 38, 88
Matrices, 36, 44, 46, 47, 56, 57, 59, 64,
65

algebra of, 64, 65

equivalences on, 57

inversion of, 36, 64

linear transformations and, 46

methods of, 66

rotation, 56

of a transformation, 44
Maxima, 46, 51, 61

local, 53

problems, 59, 64

properties, 56
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Mean Valuce theorem, 44, 46, 59, 64, 65
for integrals, 60
Measure theory, 70
Minima, 51, 61
local, 53
maxima and, 46
problems, 64
Models, 12, 40
conditional, 54
finite probability, 53
mathematical, 12, 22
Modulo n, congruences, 56
Mod p, residue classes, 52
Moment-gencrating functions, 61
Motions
in Euclidcan space, 44, 47, 49, 55
harmonic, 39
of a particle, 60
rigid, 46, 64
Motivation, 35
Multiplication, 32, 37
of integers, 9
of polynomials, 51

Negation, 61

Negative numbers, 32, 34

Neighborhood, 32, 44, 57

Nested intervals, 37, 52, 64

Newton’s method, 46, 64, 66

Norm, 56

Notation, 10, 15,21
scientific, 37

n-tuples, 49, 64

Number line, 31-32

Numerical functions, 34

Numecrical methods, 46, 66

One, 36,48, 61
One-parameter group, 56
One-to-one correspondence, 25
Open-endedness, 19
Open sentences, 39, 45, 61
Operator(s), 52

derivation, 59

difference, 48

differential, 60

methods, 66

Order, 23

of contact, 53

of magnitude, 23, 34, 37, 58
Orderings

linear, 39

partial, 39
Orthogonal functions, 66
Orthogonality, 56

Orthonormal, 56

=, 10, 38, 60

¢-function, Euler, 52
Parabolas, 45, 62
Parallelism, 62
Parentheses, 50
Perpendicularity, 62
Pctersburg paradox, 58
Place-value, 32
Planes, 44, 46, 55, 62
Cartesian, 44
complex, 57
tangent, 57, 62
Point estimation, 55
Poisson tables, 55
Polar form, 56, 63
Polynomial forms, 48

INDEX '

Polynomial functions, 43, 45, 48, 62

Polynomials, 51, 63, 64
addition of two, 51
algebra, 50-53
degree of, 51, 62
derivatives of, 43, 46, 53, 59
difference, 43
Euclidean algorithm for, 52
multiplication of, 51
ring of, 43, 48
trigonometric, 65
zeros of, 51

Power series, 46, 64
convergence of, 58
formal, 51

Prime numbers, 36

Principal normal, 60, 66

Probability, 14, 43, 48-49, 53-55

conditional, 43, 45, 71
finitc models in, 53

for countably infinite event sets, 58

statistics and, 9, 40, 70-72
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Probability theory, 22
Problem formulation, 90-91
Problems, 27-29
boundary value, 46, 66
combinatorial, 45
Diophantine, 36
discovery, 28
maximum-minimum, 59, 64
rate, 64

unsolved, 19

Products

inner, 44, 58, 63

limits of, 59

scalar, 56

Programmed learning, 3
Programming, linear, 82
Projections, 63
stereographic, 44, 57
Projectivities, 57

Proof, 39, 86
constructive, 16
formal, 47, 62
indirect, 38, 39
Pseudosynthetic, 47

Quadrics, 44, 46, 56
Quantifications, 47
Quantifiers, 45, 61
Queuing theory, 23

1 Radian measure, 62

Range, 62

Rank, 57, 65

Rate of change, 40, 49
Rational forms, 43

Rational functions, 50, 51, 62
derivatives of, 59
Rationalizing the denominator, 51
Real number system, 31

Real numbers, 36, 44, 46
Reference system, 56
Reflections, 56,79

Relations, 38

orthogonality, 56
Relativity theory, special, 66

Pythagorean theorem, 44, 47, 55, 56, 62

Quadratic forms, 44, 46, 56, 57, 64, 65

Remainder theorem, 52, 62

Replacement and ordered sampling, 54

Residue classes, 52

mod p, 52
Rigor, 13-15
Ring, 50, 51, 52, 58

of polynomials, 43, 48
Rolle’s theorem, 59
Roots

location of, 44, 52

of unity, 56

square, 37, 81
Rotations, 44, 58
Round-off, 23, 37
Round-off error, 72
Round-off procedures, 52

T-notation, 51
Sampling, 43, 45
ordered, 43, 45, 53, 54
random, 53
unordered, 43, 45, 53
Scientific notation, 37
Second-order contact, 53
Segments, 34
Separation, 62
Scquences, 44, 52, 58, 65
infinite, 39, 46, 49, 50, 64
Series, 44

(14-x)", 61
alternating, 58, 64
Fourier, 46, 66

geometric, 52, 64

infinite, 46, 64

power, 46, 51, 58, 64

for standard functions, 61

Taylor, 40, 45, 46, 61, 66
Sets, 10, 34, 38

countable, 49, 58, 64, 71

finite event, 48

solution, 61

truth, 39
Sign test, 55
Signed numbers, 36
Significant figures, 37, 91-95
Similar figures, 34, 38
Similarity, 47, 55, 62
Sine function, 46, 63
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sin z, 60

Slide rules, 32, 37

Slope of tange  line, 45
Solution sets, 6

Solutions of lire: r systems, 46, 65

Spaces
dual, 60
factor, 44, 57
linear, 49

motions in Euclidean, 44, 47, 49, 55,

64

sample, 44, 70

tangent, 60

vector, 44, 56, 64
Spheres, 44, 45, 55, 62
Statics, 38
Stokes’s theorem, 82
Straightedge, 34
Subspaces, 44, 46, 57, 65

invariant, 44, 58
Subtraction, 37
Symmetry, 33, 38

Tables, 37
integral, 60, 66
Poisson, 55
truth, 38
Tangent, 48, 59, 66
Tangent line, 45, 57, 62
Tangent plane, 57, 62
Tangent space, 60
Taylor series, 40, 45, 46, 61, 66
Taylor’s theorem, 61
Teacher training, 3, 25, 27, 82
Tensors, 44, 57
Tests, 20, 29-30
convergence, 58
integral, 60
Wilcoxon, 55
Theory
function, 15
game, 23
group, 82
measure, 70
probability, 22
queuing, 23
set, 34
Topology, 57

Torsion, 60, 66
Transformations, 39
affine, 46, 56, 64
group, 10
laws, 44

linear, 44, 46, 47, 56, 57, 64, 65

matrices of, 44, 46, 57
orthogonal, 44, 56, 58, 64, 65
unitary, 65

Transitivity, 32

Translations, 56

Triangle(s), 35, 62
Pascal’s, 53

Triangular form, 44, 58

INDEX

Trigonometric functions, 39, 44, 43, 46,

48, 56, 60, 62, 81, 84
Trigonometric polynomials, 65
Triples, Pythagorean, 80
Truth sets, 39
Truth tables, 38

Unique factorization theorem, 52

Units, 34, 89-90

Variabies, 33
functions of several, 43, 61
independent, 54
random, 43, 45, 54, 60
Variance, 43, 45, 55, 58, 61, 71
Vector analysis, 66
Vectors, 38, 44, 45, 63
binomial, 66
dual, 57
free, 56
position, 56
velocity, 60
Vector spaces, 56, 64
of n dimensions, 44
Velocity, 45, 59
vector, 60
Venn diagrams, 38, 87
Volumes, 40, 46, 60, 64, 66

Winding number, 44, 57

Zero, 32, 36,48, 61
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