A BEGINNING GRADUATE PROGRAM
IN MATHEMATICS
FOR PROSPECTIVE TEACHERS OF UNDERGRADUATES

A Report of
The Graduate Task Force

February 1969
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>115</td>
</tr>
<tr>
<td>Program Description</td>
<td>118</td>
</tr>
<tr>
<td>Course Outlines</td>
<td></td>
</tr>
<tr>
<td><strong>Analysis</strong></td>
<td></td>
</tr>
<tr>
<td>P. Measure and Integration</td>
<td>121</td>
</tr>
<tr>
<td>Q. Functional Analysis</td>
<td>125</td>
</tr>
<tr>
<td>R. Complex Analysis</td>
<td>127</td>
</tr>
<tr>
<td><strong>Topology</strong></td>
<td></td>
</tr>
<tr>
<td>S. Topology</td>
<td>129</td>
</tr>
<tr>
<td>T. Homology and Multivariable Integration</td>
<td>130</td>
</tr>
<tr>
<td>U. Topology and Geometry of Manifolds</td>
<td>132</td>
</tr>
<tr>
<td><strong>Algebra</strong></td>
<td></td>
</tr>
<tr>
<td>V. Galois and Field Theory</td>
<td>133</td>
</tr>
<tr>
<td>W. Ring Theory and Multilinear Algebra</td>
<td>135</td>
</tr>
<tr>
<td><strong>Applications</strong></td>
<td></td>
</tr>
<tr>
<td>X. Advanced Ordinary Differential Equations with Applications</td>
<td>139</td>
</tr>
<tr>
<td>Y. Problem-oriented Numerical Analysis</td>
<td>140</td>
</tr>
<tr>
<td>Z. Seminar in Applications</td>
<td>142</td>
</tr>
<tr>
<td>Apprenticeship in Teaching</td>
<td>143</td>
</tr>
</tbody>
</table>
INTRODUCTION

More than half of the college and university mathematics teachers in the United States do not hold a Ph.D. in one of the mathematical sciences. Thus, the bulk of undergraduate teaching of mathematics in the country is being done by men and women whose graduate training, for one reason or another, has broken off short of the doctorate. There is no convincing evidence that this situation will soon change: the rising output of Ph.D.s in mathematics is probably more than offset by rapidly rising college enrollments and by increasing demands on mathematics as a service discipline.*

Those concerned with the preparation of college teachers are therefore faced with a basic problem: What is the best way to arrange the early part of the graduate program in mathematics to provide background for effective college teaching? This problem is further complicated because the research potential of most students is still untested when they begin graduate work; thus, it is not possible to separate those who will complete a Ph.D. from those who will not. Accordingly, the choice of topics for the first year or two of graduate study must permit students to progress unretarded toward the Ph.D. This booklet explores one solution to this problem.

We contend that all graduate students of mathematics should be treated as future teachers--first, because most of them do in fact go into teaching, and second, because virtually all professional mathematicians are engaged to some extent in the communication of mathematics. Hence, graduate programs aimed at producing better teachers may be expected to benefit everyone.

The CUPM ad hoc Committee on the Qualifications of College Teachers of Mathematics, in its report Qualifications for a College Faculty in Mathematics [page 102], outlined a graduate program ("First graduate component") which provides both a reasonable first segment of a Ph.D. program and adequate background for teaching the lower-division courses described in Commentary on A General Curriculum in Mathematics for Colleges (GCMC) [page 33]. In 1967 the Graduate Task Force, a group with membership drawn from CUPM and its Panel on College Teacher Preparation, was given the assignment of preparing a more detailed description of the first graduate component. A description appears in the pages that follow.

* The situation has, in fact, changed dramatically since this report was written. According to the 1972 document Undergraduate Education in the Mathematical Sciences, 1970-71 (Report of the Survey Committee of the Conference Board of the Mathematical Sciences), university departments of mathematical sciences had, in the fall of 1970, 6,304 doctorates in mathematical sciences, 348 other doctorates, and 971 nondoctorates. In four-year college departments there were 3,508 mathematical science doctorates, 758 other doctorates, and 5,158 nondoctorates.
Clearly, this set of recommendations is not the only possible solution to the problem stated above, but we believe that it forms a sound basic program which each university can adapt to local conditions. The time for its completion will depend upon the student's ability and preparation, but in most cases one to two years beyond the bachelor's degree should be adequate. Satisfactory completion will insure that the student has sound academic qualifications for teaching lower-division courses in calculus, linear algebra, probability, and advanced multivariable calculus.

Besides serving the purposes already described, appropriate parts of the course of study we recommend would constitute an excellent sabbatical program for established teachers who wish to improve their acquaintance with modern approaches to mathematics.

The recommended program is discussed in detail in the following section. Here we mention some of its characteristic features and reasons for them. Two considerations figure prominently in the selection of topics for courses: first, the relative importance of the topic in all of mathematics, and second, its relevance to teaching the lower-division courses described in the GCMC report.

In analysis, to follow a year of undergraduate real analysis and a semester of undergraduate complex analysis (like the GCMC courses 11, 12, 13), the program includes a semester of measure and integration followed by a semester of functional analysis. The course in measure and integration is obviously relevant to the GCMC courses in calculus and probability. We believe that the course in functional analysis is more important at this stage than a second course in complex analysis, since functional analysis will further develop the methods of linear algebra, the concept of uniform convergence, and various other topics in analysis. Moreover, functional analysis provides an immediate application of the course in measure and integration.

In topology we recommend a sequence which, in addition to the usual material in basic topology, includes an introduction to manifold theory and differential forms, to provide the prospective teacher with a deeper understanding of multivariable calculus.

Since lower-division mathematics needs to be illustrated liberally with uses of the subject, college teachers must command a broad knowledge of the applications of mathematics. Also, many will be called upon to teach elementary probability and statistics. Hence, we recommend that a course of study for college teachers include two or three semesters of work at the advanced undergraduate or beginning graduate level chosen from courses in probability, statistics, differential equations, numerical analysis, or subjects in applied mathematics. Moreover, all courses in the program should give attention to the relevance of their subjects to undergraduate mathematics and related disciplines.

In algebra we believe that a year-long advanced undergraduate
course such as that described in the CUPM publication *Preparation for Graduate Study in Mathematics* [page 453] is essential, but that further study of algebra is less important in the preparation of teachers of lower-division mathematics than the suggested work in analysis, topology, and applied mathematics; therefore, graduate-level algebra has been treated as an elective. Likewise, we do not advocate a special requirement in geometry, partly because a considerable amount of geometry in various forms is distributed throughout other recommended courses, and partly because advanced training in geometry does not seem essential either as background for lower-division teaching or as general preparation for further graduate study. Nevertheless, geometrical points of view should be stressed in courses whenever they are appropriate.

It is certain that many teachers of lower-division mathematics will, in the very near future, be called upon to use the computer to some extent in their courses. However, in view of the rapid developments in computer science and the many nonmathematical factors involved, any explicit recommendations on the role of computing in this program must be regarded as tentative at this time. We do expect that students completing this program will have acquired at least a basic knowledge of computers [for example, the content of the course C1 in *Recommendations for an Undergraduate Program in Computational Mathematics*, page 563].

Apart from formal course work, we feel that a meaningful apprenticeship in teaching is an essential aspect of the student's preparation. Activities to provide such an apprenticeship should form an integral part of beginning graduate work.

A master's degree would suitably recognize completion of the first graduate component. However, in place of a master's thesis we strongly recommend the substitution of a comprehensive examination. Foreign language requirements are not discussed here because we believe that they are irrelevant for a student whose graduate training stops at the first graduate component; however, the student who hopes to earn a Ph.D. should be advised that a reading knowledge of foreign languages is likely to be essential in his subsequent work.

It must be understood that the student who has completed this or any other program will not be, by that reason alone, a complete teacher or mathematician for the rest of his career; sustained intellectual and professional growth is essential to continued competence as a teacher and as a mathematician. For this reason, we urge a graduate faculty to make vigorous efforts to involve the students seriously, as participants rather than observers, in the mathematics they are studying. It is important for the student who stops short of the Ph.D., even more than for the one who will complete it, that course work of the first two years of graduate study emphasize fundamentals and basic understanding. This applies especially to the prospective college teacher who must be able to relate his graduate work to the material he will be teaching later. Courses which involve the student in doing mathematics as distinct from hearing about
mathematics would seem to be particularly valuable. Depth of understanding on the part of the student is to be preferred to superficial exposure to mathematical terms. Our course outlines should be understood in this context.

Finally, we emphasize that it has not been our objective to design a separate track in graduate mathematics. This program is intended to prepare the student as an effective and well-informed teacher of lower-division mathematics; but, at the same time, we believe it moves him toward the Ph.D. at a satisfactory rate.

PROGRAM DESCRIPTION

The "first graduate component," as described in Qualifications for a College Faculty in Mathematics [page 107], is a program of graduate study built upon strong undergraduate preparation in mathematics. Because the undergraduate preparation of graduate students varies widely, it is useful to describe the first graduate component in terms of the combined undergraduate and graduate preparation of the candidate. It is likely that many students will have to complete in graduate school some undergraduate-level work; for such students, up to two years of post-baccalaureate study may be required to complete this program.

We assume that every student has already completed lower-division courses equivalent to the GCMC courses Mathematics 1, 2, 2P, 3, 4, 5, including a basic course in computer science, like C1 [page 563].

In addition, he will have studied some, but probably not all, of the following upper-division courses: Mathematics 7 (Probability and Statistics)*, 8 (Introduction to Numerical Analysis), 9 (Geometry), 10 (Applied Mathematics) [see page 79].

The following five courses form the core of preparation for graduate study: Mathematics 11-12 (Introductory Real Variable Theory), 13 (Complex Analysis), D-E (Abstract Algebra). For outlines of Mathematics 11-12 and 13, see page 93. For outlines of D-E, see page 453.

Graduate courses which are especially appropriate for the first graduate component, and for which suggested course descriptions are given starting on page 121 of this COMPENDIUM, are:

* We use 7A and 7B to refer to the probability component and statistics component, respectively, of Mathematics 7.
P  Measure and Integration
Q  Functional Analysis
R  Complex Analysis
S  Topology
T  Homology and Multivariable Integration
U  Topology and Geometry of Manifolds
V  Galois and Field Theory
W  Ring Theory and Multilinear Algebra
X  Advanced Ordinary Differential Equations with Applications
Y  Problem-oriented Numerical Analysis
Z  Seminar in Applications

Courses 11-12, 13, D-E, P, Q, S, and T should be in every student's program. Because of the great importance of applied mathematics, every program of study should include at least one year of applied work, of which the following four sequences are examples: 7A-7B, X-10, X-Y, X-Z.

Each student should, if possible, include a third course from among the courses 7A, 7B, 10, X, Y, Z in his program. Students who plan to continue into the advanced graduate component and to specialize in some area of pure mathematics are advised to take as many as possible of the courses R, U, V, W. Other students may substitute electives in geometry, logic, foundations, number theory, or other subjects.

For the sake of convenience, we have stated our recommendations in terms of semester courses. However, we believe that courses at the graduate level are best thought of as year courses. The material outlined for pairs of related courses can, of course, be rearranged within the year to suit local conditions.

Since beginning graduate programs ordinarily include year courses in analysis, topology, and algebra, our recommendations depart from the norm only in ways intended to enhance the ability of the student to teach lower-division mathematics.

Effective exposition is a skill of major importance to any prospective mathematician, whether he expects his principal professional emphasis to be research or teaching. However, it is unrealistic to assume that a beginning graduate student is qualified to teach well, even in introductory undergraduate courses. Therefore, we propose that he be required to complete an apprenticeship in teaching under the thoughtful direction of experienced members of the faculty. Suggestions for such a program are discussed later in this report.
To complete the program, we suggest that every student be required to take a comprehensive examination designed specifically to test the breadth and depth of the candidate's understanding of mathematics relevant to the undergraduate curriculum. Whenever feasible, the examination should be scheduled so that students have several weeks devoted exclusively to preparation for it. We believe that a truly comprehensive examination is a more appropriate requirement than the traditional master's thesis, principally because preparation for such an examination demands that the student regard his subject as a whole rather than a collection of parts.

In summary, the first graduate component, as described here, consists of the following work:

(1) Completion (if necessary) of a strong undergraduate major program which includes these upper-division courses: three semesters of real and complex analysis, a full year of abstract algebra (the equivalent of Mathematics 11-12, 13, D-E).

(2) A year of graduate topology, including differential forms.

(2b) A year of graduate analysis: measure and integration and functional analysis.

(2c) A year of work at the advanced undergraduate or beginning graduate level, emphasizing the applications of mathematics: e.g., a year of probability and statistics; or a semester of differential equations followed by a semester of numerical analysis, a seminar in applications, or a "model building" course.

(3) A year or more of work focused on problems of teaching undergraduates.

For a student whose undergraduate preparation does not meet the standards described in (1) and (2c), completion of the first graduate component may require two years of study beyond his bachelor's degree. For example, if his undergraduate preparation in algebra and in analysis is weak, his program for the first graduate component might be as follows:

**First Year**

<table>
<thead>
<tr>
<th>Analysis (Mathematics 11)</th>
<th>Analysis (Mathematics 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex Analysis (Mathematics 13)</td>
<td>Applied Mathematics (Mathematics 10)</td>
</tr>
<tr>
<td>Algebra D</td>
<td>Algebra E</td>
</tr>
<tr>
<td>Apprenticeship in Teaching</td>
<td>Apprenticeship in Teaching</td>
</tr>
</tbody>
</table>
Second Year

Analysis P
Topology S
Probability (Mathematics 7A) and Statistics (Mathematics 7B)

OR

Differential Equations X and Numerical Analysis Y or Applications Seminar Z

Apprenticeship in Teaching

Comprehensive Examination

Most students will have completed some of the undergraduate courses in this program and thus will be able to substitute electives for some of the subjects listed. A student who has a very strong undergraduate major in mathematics will be able to complete the program in one year, for example, by taking the second year of the preceding schedule.

Graduate departments are urged to give careful attention to the proper placement of entering graduate students and to continue to advise them regarding course selections.

COURSE OUTLINES

Analysis

The following section includes suggested outlines for three one-semester graduate courses in analysis:

P. Measure and Integration (two suggested outlines are offered)

Q. Functional Analysis

R. Complex Analysis

Each student should include courses P and Q in his program of study.
P. Measure and Integration

This course provides an introduction to and essential background for Course Q, can be used in Course R, and is naturally useful in more advanced courses in real analysis. We present two outlines, which represent different approaches and a somewhat different selection of material. If presented in the right spirit, a course in Measure and Integration provides insights into the material of lower-division courses that the student will have to teach.

First Outline

1. The limitations of the Riemann integral. Examples of a series that fails to be integrable term-by-term only because its sum is not integrable; of a differentiable function with a nonintegrable derivative. Limitations of integration in general: there is no countably additive, translation-invariant integral for all characteristic functions of sets (the usual construction of a nonmeasurable set will serve).

2. Lebesgue integration on the line. Outer measure; definition of measurable sets by means of outer measure. Measurability of sets of measure 0, of intersections and unions, of Borel sets. Countable additivity. Application: the Steinhaus theorem on the set of distances of a set of positive measure. Measurable functions, Borel measurability, measurability of continuous functions. Egoroff's theorem. Definition of the integral of a bounded measurable function as the common value of \( \inf \int Y(x) \, dx \) for simple majorants of \( Y \) of \( f \) and \( \sup \int \varphi(x) \, dx \) for simple minorants \( \varphi \). Riemann integrable functions are Lebesgue integrable. Bounded convergence and applications (necessary and sufficient condition for Riemann integrability; \( \log 2 = 1 - 1/2 + 1/3 + \ldots \)). Integrability of nonnegative functions, Fatou's lemma, monotone convergence, integrability of general functions. A nonnegative function with zero integral is zero almost everywhere.

3. \( L^p \) spaces, with emphasis on \( L^2 \); motivation from orthogonal series. Schwarz inequality; with little extra effort one gets (via convex functions) the Hölder, Minkowski, and Jensen inequalities. \( L^0 \) as a formal limit of \( L^p \) via \( (\int f^p) \, 1/p \to \text{ess sup} \, f \) as \( p \to \infty \). Parseval's theorem, Riesz-Fischer theorem. Rademacher functions;
proof that almost all numbers are normal. Convergence of $\sum \pm \frac{1}{n}$ and other series with random signs. Proof (by Bernstein polynomials or otherwise) that continuous functions on an interval are uniformly approximable by polynomials; hence, continuous functions are dense in $L^p$.

4. Differentiation and integration. Proof that an indefinite integral is differentiable almost everywhere and its derivative is the integrand; the Lebesgue set. Equivalence of the properties of absolute continuity and of being an integral.

5. Lebesgue-Stieltjes integral with respect to a function of bounded variation. A rapid survey pointing out what changes have to be made in the previous development. Applications in probability, at least enough to show how to treat discrete and continuous cases simultaneously. Riesz representation for continuous linear functionals on $C[a,b]$.

6. General measure spaces. Definition of the integral and convergence theorems in the general setting; specialization to n-dimensional Euclidean space. Fubini's theorem. Application to convolutions and to such matters as gamma-function integrals and $\int e^{-x^2} \, dx$. The one-dimensional integral as the integral of the characteristic function of the ordinate set.


Second Outline

1. Lebesgue integration on the line. F. Riesz's step function approach. Definition of the integral for simple step functions and extension to the class of functions which are limits almost everywhere of monotone sequences of simple step functions. Definition of summable function and fundamental properties of the integral. Extension to complex-valued functions. The basic convergence theorems, including monotone, bounded, and dominated convergence theorems. Fatou's lemma and convergence in measure. Illustrations and
applications: (a) justifications, by bounded convergence, of term-
by-term integration of series leading to formulas such as \( \log 2 \\
= 1 - 1/2 + 1/3 - 1/4 + \ldots \); (b) use of dominated convergence to
perform operations such as \( \frac{d}{dx} \int f(x,\alpha) \, dx = \int \frac{d}{dx} f(x,\alpha) \, dx \); 
(c) proof of the analogue of Fatou's theorem for series:
\[
\lim \sum a_n \leq \sum \lim a_n \quad \text{when} \quad a_n \geq 0.
\]
Comparison of the Riemann and Lebesgue integral.

2. Measure and absolute continuity. Measurable functions and 
Cantor's function and the relationship between Lebesgue and Borel 
sets. Normmeasurable sets. Proof that the integral of a summable 
function is a countably additive set function. Almost everywhere 
differentiability of monotone functions. Review of basic properties 
of functions of bounded variation. Absolutely continuous functions. 
Fundamental theorem concerning differentiation of the integral of a 
summable function. Proof that an absolutely continuous function on 
an interval is of bounded variation and that its total variation is 
equal to the \( L^1 \)-norm of its derivative. Helly's theorem on compact-
ness of families of normalized functions of bounded variation.

3. \( L^p \) spaces and orthogonal expansions. Convex functions 
and the inequalities of Hölder and Minkowski. Proof that the \( L^p \) 
spaces are complete. Theorem: If \( \{f_i\} \) is a sequence of measur-
able functions, if \( f_i \rightarrow f \) pointwise almost everywhere, and if 
\[
\lim \int |f_i| = \int |f|, \quad \text{then} \quad \lim \int |f_i - f| = 0.
\]
Lusin's theorem: \( f \) measurable and finite almost everywhere and \( \delta > 0 \) implies there 
exists a continuous function \( \varphi \) such that \( \varphi = f \) except on a set 
of measure less than \( \delta \). Hence, continuous functions are dense in 
\( L^p \), \( 1 \leq p < \infty \). Representation of continuous linear functionals on 
\( L^p \). Orthonormal systems in \( L^p(a,b) \). Bessel's inequality, Parseval's 
inequality, and the Riesz-Fischer theorem. Proof that the Cesàro 
means of the Fourier series of a function \( f \) in \( L^p(0,2\pi) \) converge 
to \( f \) in the \( L^p \)-norm \( (1 \leq p < \infty) \) and uniformly, provided that \( f \)
is periodic and continuous. From this latter fact deduce the 
Weierstrass theorem on polynomial approximation of continuous func-
tions on an interval. The trigonometric functions form a complete
orthonormal system in $L^2(0,2\pi)$.

4. **Integration on product spaces.** Integration and measure in $\mathbb{R}^n$. Theorems of Fubini and Tonelli. Applications to nonlinear change of variable in multiple integrals.

5. **Convolution (optional).** If $f$ is summable, then $f(t - x)$ is a measurable function on the plane. By Fubini's theorem, $f$ and $g$ in $L^1$ implies that $f * g(t) = \int f(t - x) g(x) \, dx$, the convolution of $f$ with $g$, is finite for almost all $t$, $f * g$ is in $L^1$, and $\|f * g\| \leq \|f\| \|g\|$. In fact, for $p > 1$, $q > 1$, and $0 < \frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$, we have $L^p \times L^q \subseteq L^r$ and $\|f * g\|_r \leq \|f\|_p \|g\|_q$. (Actually, $L^1 \times L^1 = L^1$ for $1 \leq p < \infty$.) Also, if $1 < p < \infty$ and $p' = p/(p-1)$ and $f \in L^p$, $g \in L^{p'}$, then $f * g$ is bounded. $L^1$ under convolution is an algebra without unit. Proof that $\hat{f * g} = \hat{f} \hat{g}$, where $\wedge$ denotes the Fourier transform. Riemann-Lebesgue lemma.


Q. **Functional Analysis**

The purpose of this course is to develop some of the basic ideas of functional analysis in a form suitable to applications and to deepen the student's understanding of linear methods in undergraduate mathematics. Whenever possible, topics should be treated and applied in a setting with which the student has some familiarity; main theorems should be supported with concrete and meaningful examples.

1. **Metric spaces.** Review of topology and metric spaces if necessary. Completion of metric spaces. Method of successive approximations. Proof that a contraction operator on a complete
metric space has a unique fixed point. Application to existence of the solution of a system of linear equations, polynomial equations, initial value problems for ordinary differential equations and integral equations.

2. Normed linear spaces. Examples (not all complete) from sequence spaces, function spaces, and finite-dimensional spaces. Completion of $C[a,b]$ under the $L^1$-norm. Proof that the unit ball in a normed linear space is compact if and only if the space is finite-dimensional. Equivalence of norms in finite-dimensional spaces.

3. Linear functionals. The dual space of a normed linear space. Computation of the dual for spaces $\mathbb{R}^n$, $c_0$, $L_p$ $(1 \leq p < \infty)$, and $C[a,b]$. Contrast with algebraic dual. Convex sets and separation of convex sets by linear functionals. Support functionals. Analytic, geometric, and complex forms of the Hahn-Banach theorem. Applications of the Hahn-Banach theorem, such as (a) computation of the distance from a point to a subspace in terms of the linear functionals which vanish on the subspace; (b) the existence of a function in $L^\infty(0,1)$ of minimal $L^\infty$-norm which satisfies the $N + 1$ relations $\int_0^1 t^nf(t)\,dt = a_n$, $n = 0, 1, \ldots, N$; (c) solution of the Hausdorff moment problem for $C[0,1]$; (d) the existence of Green's function for Laplace's equation in the plane for a domain with sufficiently smooth boundary. Principle of uniform boundedness and applications, such as (a) existence of a continuous periodic function on $[-\pi,\pi]$ whose Fourier series fails to converge; (b) the Silverman-Töplitz conditions for a regular matrix summability method; (c) existence of the Riemann-Stieltjes integral $\int_0^1 f\,d\alpha$ for every continuous $f$ implies that $\alpha$ is of bounded variation on $[0,1]$. Weak (not weak*) convergence of sequences in normed linear spaces. Proof that weakly convergent sequences are bounded but not necessarily norm convergent. Characterization of weakly convergent sequences in spaces such as $L_p$ $(1 \leq p < \infty)$ and $C[a,b]$. Elementary introduction to distribution theory.

4. Linear operators. Examples from matrix theory,

5. **Hilbert spaces.** Inner products, orthogonality, orthogonal systems. Fourier expansions, Bessel's inequality, and completeness. Representation of linear functionals. Self-adjoint operators on a real Hilbert space as a generalization of symmetric linear transformations on $\mathbb{R}^n$. Eigenvalues, eigenvectors, invariant subspaces, and projection operators. The spectral theorem for completely continuous self-adjoint operators. (Here the goal is the formula $Ax = \sum \lambda_k (x, x_k)x_k$, where $A$ is a compact and self-adjoint operator, $x$ is any point, $\lambda_1, \lambda_2, \lambda_3, \ldots$ is the sequence of nonzero eigenvalues, and $x_1, x_2, x_3, \ldots$ is the corresponding set of eigenvectors.) Construction of a one-parameter family of projections $E_\lambda$ which allows representation of the action of $A$ in terms of a vector-valued Riemann-Stieltjes integral $Ax = \int \lambda \, dE_\lambda x$.

Description (without proof) of the corresponding theorem for the unbounded case. Application of the theory of compact, self-adjoint operators to Sturm-Liouville systems or integral equations with symmetric kernels.

R. **Complex Analysis**

The amount of material that can be covered in this course depends very much on the amount of knowledge that can be assumed from Mathematics 13. The outline assumes that the student knows this material quite well, but some of the more advanced topics may have to be omitted or treated in less depth. Such topics are enclosed in brackets.

1. **Holomorphic functions.** (Much of this should be review.) Cauchy's integral theorem in a more general setting than was used in Mathematics 13. According to circumstances, this may be for unions of star-shaped regions, for $C^1$ Jordan curves, for singular
[Evaluation of some definite integrals which are more sophisticated than those of Mathematics 13.] Classification of isolated singularities, Casorati-Weierstrass theorem. Liouville's theorem. Fundamental Theorem of Algebra. \[\int f'/f = 2\pi i \cdot \text{(number of zeros minus number of poles)},\] with applications to some special cases (number of zeros of a polynomial in a quadrant, for example). Maximum modulus theorem. Schwarz's lemma. Rouché's theorem with some concrete applications (Fundamental Theorem of Algebra again; zeros of \(e^z + z\) and other special functions). [Montel's theorem, Phragmèn-Lindelöf theorems.]  

[Other problems on functions holomorphic in a disk: Abel's theorem, elementary Tauberian theorems.] [Fatou's theorem on radial limits.] [Positive harmonic functions, Herglotz's theorem on the integral representation of holomorphic functions with positive real part in a disk. Harnack's theorem.]  


Topology

The following section includes suggested outlines for a sequence of three one-semester graduate courses in topology:

S. Topology

T. Homology and Multivariable Integration (two outlines are offered)

U. Topology and Geometry of Manifolds

Each student should include courses S and T in his program of study. Students who plan to elect course U must study the first (preferred) outline of T.

S. Topology

We assume that the students have made a brief study of metric spaces, Euclidean spaces, and the notion of continuity of functions in metric spaces. (This material is covered in Sections 4, 5, and 6 of Mathematics 11-12.)


2. Applications to calculus. Use the above results to prove again the basic topological results needed for calculus and the Heine-Borel and Bolzano-Weierstrass theorems.

3. Fundamental group. Homotopies of maps, homotopy equivalence. The fundamental group \( \pi_1 \), functional properties, dependence on base point. Show that \( \pi_1(S^1) = \mathbb{Z} \).
4. **Applications of the fundamental group.** Brouwer fixed point theorem for the disk $D^2$. $\mathbb{R}^2$ is not homeomorphic with $\mathbb{R}^3$. Relevance of the fundamental group to Cauchy's residue theorem. Fundamental Theorem of Algebra.


---

T. **Homology and Multivariable Integration**

Preferred Outline

1. **Manifolds.** Topological manifolds. $C^k$ and $C^\infty$ functions on $\mathbb{R}^n$. Differentiable structure on a topological manifold. Diffeomorphisms. $C^\infty$ partitions of unity for paracompact manifolds.

2. **Functions on manifolds.** The ring $\mathcal{O}(U)$ of $C^\infty$ real-valued functions on an open set $U$, the ring $\mathcal{O}(x)$ of germs of $C^\infty$ functions at a point $x$. Pullbacks of these rings via a $C^\infty$ function. Tangent bundle and cotangent bundle. Bases for tangent and cotangent spaces in a coordinate system. Vector fields, Poisson bracket, flows. Inverse and implicit function theorems. Frobenius' theorem.

3. **Applications to differential equations.** Relation of vector fields to ordinary differential equations and of Frobenius' theorem to partial differential equations.

4. **Differential forms.** Differential forms, elementary forms. Exterior multiplication of forms, the differential operator $d$ on forms; $dd = 0$ and $d$ of a product.

5. **Applications to classical vector analysis.** The algebra of forms on $\mathbb{R}^3$ contains vector algebra and with $d$ contains vector analysis.

6. **deRham cohomology.** Pullback of forms via a $C^\infty$ map commutes with $d$. Closed and exact forms, deRham groups as a cohomology theory.

7. **Simplicial homology.** Simplicial complexes, simplicial
homology. Barycentric subdivision, simplicial approximation theorem. Calculation of $\pi_1$ for a simplicial complex. Singular homology and cohomology of a space.

8. **Applications of simplicial homology.** The Brouwer fixed point theorem for $D^n$, invariance of domain, and the Jordan curve theorem. (Recall use of the Jordan curve theorem in complex analysis.)

9. **Stokes' theorem.** Integral of a p-form over a singular p-chain. Proof of Stokes' theorem. This implies that integration induces a bilinear map from singular homology and deRham groups to $R$. Green's theorem as a special case of Stokes' theorem.

Second Outline

Note: If a student does not plan to take course U, then the following easier version of T may be desirable. This is carried out by working in $R^n$ instead of in general differentiable manifolds, and the result is still a fairly general version of Stokes' theorem.

1. **Simplicial homology.** Simplicial complexes, barycentric subdivision, simplicial maps, and the simplicial approximation theorem. Simplicial homology theory, functional properties of homology groups. Calculation of homology groups for simple complexes.

2. **Differential forms.** Differential forms on open sets of $R^n$. Properties of differential forms, the operator $d$ on forms. Pull-back of forms via a $C^\infty$ function. Application to vector algebra and vector calculus. Closed and exact forms, the deRham groups.

3. **Singular homology and applications.** Singular homology theory. Applications: the Brouwer fixed point theorem, $R^n$ and $R^m$ are homeomorphic if and only if $n = m$, invariance of domain, Jordan curve theorem.

4. **Stokes' theorem.** Integration of p-forms over differentiable singular p-chains. Proof of Stokes' theorem.
U. Topology and Geometry of Manifolds

1. Chain complexes. Chain and cochain complexes (examples from T), derived groups. Exact sequences, ladders, the 5-lemma. Exact sequences of chain complexes, Bockstein exact sequence. Chain homotopies. Poincaré lemma and cone construction; derived groups of a contractible open set are zero.

2. Riemannian metrics for manifolds. Riemannian metrics for paracompact manifolds. Geodesics: existence and uniqueness. A paracompact \(C^\infty\) manifold may be covered with a star-finite covering by geodesically convex sets (so that all sets in the covering and all intersections are contractible).

3. Comparison of homology theories. A lattice \(L\) of subsets of \(X\) containing \(\emptyset\) and \(X\) gives a category \(S\) with elements of \(L\) as objects and inclusions as morphisms. A cohomology theory \(h\) on \(S\) is a sequence of cofunctors \(h^q\) from \(S\) to abelian groups, along with natural transformations

\[
\delta: h^q(A \cap B) \to h^{q+1}(A \cup B)
\]

such that the Mayer-Vietoris sequence is exact. Proof that if \(L\) is a star-finite covering of \(X\) by open sets, then cohomology theories \(h, h^\mathfrak{A}\) which agree on finite intersections agree on \(X\). Use of these results to deduce deRham's theorem and to prove that simplicial and singular theories agree on a simplicial complex.

4. Global differential geometry. The remainder of the course is devoted to surfaces. Gaussian curvature, spaces of constant curvature. Gauss-Bonnet theorem for surfaces, non-Euclidean geometries.

Algebra

The following section includes suggested outlines for two one-semester graduate courses in algebra:

V. Galois and Field Theory

W. Ring Theory and Multilinear Algebra
These courses are independent of one another and should be offered as electives. Each course outline includes a basic minimal list of topics as well as a list of optional topics from which the instructor is invited to choose.

V. Galois and Field Theory

Note: 1 and 2 are reviews of topics that should have been covered in the previous one-year algebra course D-E outlined on page 453.

1. Review of group theory. The third isomorphism theorem. Definition of simple group and composition series for finite groups. The Jordan-Hölder theorem. Solvable groups. Simplicity of the alternating group for $n > 4$. Elements of theory of p-groups. Theorems: A p-group has nontrivial center; a p-group is solvable. Sylow theory. Sylow theorem on the existence of p-Sylow subgroups. Theorems: Every p-subgroup is contained in a p-Sylow subgroup; all p-Sylow subgroups are conjugate and their number is congruent to 1 modulo $p$.

2. Review of elementary field theory. Prime fields and characteristic. Extension fields. Algebraic extensions. Structure of $F(a)$, $F$ a field, $a$ an algebraic element of some extension field. Direct proof that if $a$ has degree $n$, then the set of polynomials of degree $n - 1$ in $a$ is a field; demonstration that $F(a) \cong F[x]/(f(x))$, where $f$ is the minimum polynomial of $a$. Definition of $(K:F)$, where $K$ is an extension field of $F$. If $F \subset K \subset L$ and $(L:F)$ is finite, then $(L:F) = (L:K)(K:F)$. Ruler-and-compass constructions. Impossibility of trisecting an angle, duplicating the cube, squaring the circle (assuming $\pi$ transcendental).

3. Galois theory. The group $G(M/K)$ of $K$-automorphisms of a field $M$ containing $K$. Fixed field $H'$ of a subgroup $H$ of $G(M/K)$. Subgroup $F'$ of $G(M/K)$ leaving an intermediate field $F$ fixed. Examples like $Q(\sqrt[3]{2})$ to show that $G(M/K)'$ may be bigger than $K$. An object is closed if it equals its double prime. If $M \supset F \supset F_1 \supset K$ and $G(M/K) \supset H \supset H_1$, then $[F_1:F'] \leq (F:F_1)$ and
(H':H) ≤ [H:H_1]. All finite subgroups of \( G(M/K) \) are closed.

M/K is galois if \( G(M/K)' = K \). Fundamental theorem. Artin's theorem: If M is a field and G is a finite group of automorphisms of M, then M is galois over G'. Extension of isomorphisms theorem. Applications to elementary symmetric functions. Galois subfields and normal subgroups.


5. Solution of equations by radicals. Definition of radical extension fields. In characteristic 0, if M/K is radical, then \( G(M/K) \) is solvable. Tie-up between radical extensions and solving equations by radicals. Insolvability of general equations of degree \( \geq 5 \). If f is irreducible over Q, of prime degree p, and has exactly 2 real roots, then its galois group is \( S_p \). Explicit examples. Hilbert's Theorem 90. Form of cyclic extension if ground field contains roots of unity. If \( G(M/K) \) is solvable, then M/K is radical.

6. Finite fields. Recall \( GF(p) \). A field has \( p^n \) elements if and only if it is the splitting field of \( x^p - x \). M ⊃ K, finite fields, implies M is galois and cyclic. Examples from elementary number theory. The normal basis theorem.

Optional Topics

The following topics are listed with no preferential order. They are to be used at the instructor's discretion.

7. Simple extensions and separability. A finite-dimensional extension field is simple if there are only finitely many intermediate fields. M separable and finite-dimensional over K implies M is simple. Purely inseparable extensions and elements. Maximal separable and purely inseparable subfields. Splitting fields are
generated by these. Transitivity of separability.

8. **Algebraic closure and infinite galois theory.** Definition of algebraically closed field. Existence and uniqueness of algebraic closure (use Zorn's lemma). Point out that one cannot get the Fundamental Theorem of Algebra this way. Infinite algebraic extensions, Krull topology on galois group. Galois group is compact and totally disconnected. Inverse limit of finite groups. Fundamental Theorem of Galois Theory for this case.


W. **Ring Theory and Multilinear Algebra**

1. **Categories and functors.** Introduce the category of sets. Definition of a category. Examples of categories: the category of groups, the category of rings, the category of fields, the category of vector spaces, the category of modules; epimorphisms, monomorphisms, isomorphisms, surjections, injections. Examples to show that an epimorphism is not necessarily surjective and a monomorphism is not necessarily injective. A group as a one-object category whose morphisms are all isomorphisms; similar ways of looking at groupoids and other algebraic systems. Dual of a category, duality, examples. Additive and abelian categories with examples. Functors and natural transformations with many examples, for instance viewing modules as functors. The Yoneda lemma: \( \text{Nat}(\text{Hom}(A,-),T) = T(A) \). Illustrations and examples of universal objects. Definition and elementary properties of adjoint functors. (The language of categories will be useful throughout the course and elementary categorical notions can simplify many proofs.)

2. **Introduction to algebraic number theory.** Noetherian rings
and their modules. The Hilbert Basis Theorem. Definition of integral elements. Integral closure. Integers in a number field. Examples of quadratic fields. Units. The integers of \( \mathbb{Q}(i) \), \( \mathbb{Q}(\omega) \) form a UFD, but the integers in \( \mathbb{Q}(\sqrt{-5}) \), \( \mathbb{Q}(\sqrt{10}) \) do not form a UFD. Fermat's last theorem for \( p = 3 \) using \( \mathbb{Q}(\omega) \).

3. Valuation and Dedekind rings. Definition of a discrete valuation ring as a PID with exactly one nonzero prime ideal. Valuation of quotient field associated with discrete valuation ring and converse. Examples of rank one discrete valuations. Various characterizations of discrete valuation rings including: \( R \) is a discrete valuation ring if it is a Noetherian domain which is integrally closed and has exactly one nonzero prime ideal. The ring of fractions of a domain with respect to a multiplicative semigroup. \( R_p \) for \( p \) a prime ideal. A Dedekind ring is a ring \( R \) such that \( R_p \) is a discrete valuation ring for all prime ideals \( p \) of \( R \). Unique factorization of ideals in Dedekind rings. Other characterizations of Dedekind rings. Approximation lemma. If \( M \supseteq K \) are fields with \( M \) finite-dimensional and separable over \( K \), and if \( K \) is the field of quotients of a Dedekind ring \( A \), then the integral closure of \( A \) in \( M \) is Dedekind. Integers of a number field are Dedekind.

4. Tensor products. Definition of one-sided module over a ring \( R \). Examples. Free modules. Submodules, quotient modules, exact sequences. Tensor products defined via universal properties. Uniqueness. Existence. Examples, \( \mathbb{Z}/2\mathbb{Z} \otimes \mathbb{Z}/3\mathbb{Z} = 0 \). If \( R \) is commutative, tensor product is again an \( R \)-module. Tensor product of maps. Behavior of tensor products with regard to exact sequences and direct sums. Examples. Tensor products of free modules and matrix rings. Associativity of tensor product. Tensor product of \( n \) modules over a commutative ring, multilinear maps. Tensors. Tensor product of \( p \) copies of a free module and \( q \) copies of its dual, components in notation of physics. Tensors as defined in physics: \( R \) is the ring of \( C^\infty \) functions on \( R^n \) and \( M \) is the \( R \)-module of derivatives of \( R \). \( M \) is free, generated by the usual partials. Transformation of coordinates. Express elements of \( M^p \otimes_R M^{*q} \) in terms of two coordinate systems to get usual transformation rules. The tensor algebra and its universal property.


7. **Finite group representations.** The group algebra. Maschke's theorem: The group algebra of a group of order \( n \) over a field of characteristic prime to \( n \) is semisimple. Representations and characters. Connection between the decomposition of the group algebra over the complex field and the simple representations. The characters determine the representation.

Optional Topics

The following topics are listed with no preferential order. They are to be used at the teacher's discretion.


9. **Further group theory.** Permutation groups. Linear groups. Structure theory of linear groups. Examples of finite simple groups. Groups defined by generators and relations. Further work on representations of finite groups: One-dimensional representations, the
number of simple characters, orthogonality relations, applications, and examples.

10. **Further algebraic number theory.** Infinite primes. The product formula. The Dirichlet unit theorem and finiteness of the class number.

**Applications**

It is essential that the prospective teacher of college mathematics know and appreciate some of the honest applications of the calculus, linear algebra, and probability. Merely as a matter of expediency a teacher of these subjects will have need of convincing examples and illustrations; but, more important, a knowledge of some applications will enable him to know best how to present mathematics and will add an extra dimension to his exposition.

There are many different ways in which the prospective teacher can acquire a background in applications of mathematics. We list here several possibilities which seem highly appropriate; each requires at least one year of course work.

1. **Probability and Statistics.** Some students will wish to pursue the study of probability and statistics at the advanced undergraduate or graduate level. The year-long course Mathematics 7 [page 79] will serve our purpose well, provided that due emphasis is placed upon applications of these subjects.

2. **Differential Equations--Applications.** In the pages that follow, three one-semester courses at the advanced undergraduate or beginning graduate level are described:

   X. Advanced Ordinary Differential Equations with Applications
   Y. Problem-oriented Numerical Analysis
   Z. Seminar in Applications

As a source of material in applied mathematics, perhaps no subject is richer than differential equations. Hence, our alternative recommendations for a year's study in applications begin with course X.

A second semester can be chosen from several possibilities. Perhaps the best is the course Mathematics 10 [page 92], using one of the three outlines given in the 1972 CUPM publication
Applied Mathematics in the Undergraduate Curriculum [page 705].

Course Y, if taught in the proper manner, will also be suitable for this purpose. Another alternative for this second semester would be for the mathematics department to offer a seminar (course Z) presenting applications of the calculus, linear algebra, and probability to the physical, biological, and social sciences.

In summary, the suggested requirement for a year of study in applications of mathematics is one of the four sequences: 7A-7B; X-10; X-Y; X-Z. Because of the demand on students' time, we have been compelled to limit this requirement to one year. Nevertheless, we hope that many students will have the opportunity and interest to elect a third semester from among 7A, 7B, 10, X, Y, Z.

X. Advanced Ordinary Differential Equations with Applications

This course is designed to provide background for teaching the topics in differential equations that occur in the lower-division GCMC courses; to give further exposure to applications via one of the most intensively used classical routes; and to provide a first course for students who may be interested in specializing in this area. Because of the nature of the subject, many different good course outlines are possible, but, in any case, emphasis should be put on efficient ways of obtaining from differential equations useful information about their solutions, as distinguished, say, from methods for finding baroque solution formulas of little practical value.

1. Fundamentals. The vector differential equation \( \dot{x} = f(t,x) \); prototypes in physics, biology, control theory, etc. Local existence (without uniqueness) by the Cauchy construction, when \( f \) is continuous. Prolongation of solutions and finite escape times. Properties of integral funnels (e.g., Kneser's theorem); extreme solutions when \( n = 2 \). Jacobian matrix of \( f \) locally bounded \( \Rightarrow \) Lipschitz condition \( \Rightarrow \) uniqueness \( \Rightarrow \) continuous dependence on initial values and parameters. Effects of stationarity.


3. Linear equations. Discussion of physical and other real-world models leading to linear equations. Linearization. Structure
of the solution set of the vector equation \((*)\) \(\dot{x} = A(t)x + b(t)\); variation of parameters formula; the fundamental matrix. Matrix exponentials; thorough treatment of \((*)\), using Jordan canonical form, when \(A\) is constant. Applications in engineering system theory. Floquet's theorem.


5. **Stability.** Liapunov, asymptotic, and orbital stability; uniform properties. Basic theorems of Liapunov's direct method. Extensive treatment of the linear case. Applications in control theory.


**Optional Topics**

7. **Power series solutions.** Classification of isolated singularities of linear equations; formal solutions; Frobenius' method. Asymptotic series.

8. **Carathéodory theory.** (Prerequisite: Lebesgue integration).

---

**X. Problem-oriented Numerical Analysis**

Although the course we have in mind overlaps with standard courses in numerical analysis in some of its material, it differs fundamentally in spirit from such courses. The traditional course in numerical computation is intended to train the student to be able to compute certain specific quantities, such as the approximate value of definite integrals, roots of polynomial and transcendental equations, or solutions of ordinary differential equations, by applying known algorithms to well-formulated specific numerical problems. Courses in contemporary theoretical numerical analysis have tended to emphasize the technical aspects of specialized topics, such as the theory of approximation, spline interpolation, numerical linear algebra, or discrete variable techniques for differential equations; here the stress is on widely applicable computational techniques, their
underlying theory, and the errors arising in their application.

A problem-oriented course in numerical analysis starts with real-life problems (from physics, economics, genetics, etc.), develops mathematical models (often in the form of differential or other types of functional equations), analyzes the models, and develops and applies numerical methods to the models in order to get some answers. The student's knowledge of analysis, linear algebra, or differential equations is called upon in the analysis of the model; techniques of numerical analysis are studied and sifted through in the search for applicable methods; specific numerical computations are performed by the student, using a computer; and, finally, the numerical answers are examined in two ways: by means of a theoretical analysis of the errors inherent in the algorithm and in the machine computation, and by a comparison with the original problem to see whether the "answer" (often a table of values of some unknown functions) is a reasonably good approximation to reality.

It seems clear that text materials for Mathematics Y should include books or journal articles on applications (as a source of real problems) and numerical analysis texts (as a source of numerical methods). Sample topics and associated texts are:

a. Problems in the theory of flight. Here one can find mathematical models and their analyses in works such as Theory of Flight Paths by Angelo Miele (Reading, Massachusetts, Addison-Wesley Publishing Company, Inc., 1962). One can apply to the ensuing systems of differential equations techniques found in Discrete Variable Methods in Ordinary Differential Equations by Peter Henrici (New York, John Wiley and Sons, Inc., 1962). One sample problem on these lines can be found in Section 10.9 of Numerical Methods and Fortran Programming by Daniel D. McCracken and William S. Dorn (New York, John Wiley and Sons, Inc., 1964). Although these authors pull a refined model of a simplified flight problem out of a hat--which the instructor in course Y must not do--they examine at length the implications of the properties of the numerical solutions for the behavior of the physical system and use the flexibility of their computer program to vary parameters and do some interesting mathematical experimentation.

b. Control theory. Selected models and analyses from an applied text such as Optimum Systems Control by Andrew P. Sage (Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1968) can lead to problems of numerical solution of partial differential equations, two-point boundary value problems, and problems of numerical linear algebra. There are several suitable sources for numerical methods.
Z. **Seminar in Applications**

As another approach to applications, we suggest a seminar devoted to applications of the calculus, linear algebra, and probability to the physical, biological, and social sciences. Fortunately, there are now several books which contain a wealth of readily accessible examples. Many of these are referenced in the 1972 CUPM report *Applied Mathematics in the Undergraduate Curriculum*.

The students would participate in the formulation of scientific problems in mathematical terms and in the interpretation and evaluation of the mathematical analysis of the resulting models. Due emphasis should be given to problems whose analysis rests on the use of the computer. It might be appropriate for the instructor to invite guests who could expose the student to the attitudes of users of mathematics. While such an arrangement would, perhaps, not be a traditional course in applied mathematics, it would allow the students to come into contact with a variety of serious applications of the usual mathematics of the first two undergraduate years. The following illustrate the type of examples we have in mind:

a. The formulation and analysis of a system of differential equations which serves as a model for (i) the interdependence of two species, one of which serves as food for the other, or (ii) a time-optimal navigation problem which requires that a boat be transferred from a given initial position to a given terminal position in minimal time.

b. The formulation and analysis of waiting line and traffic problems involving simple calculus and probability.

c. Elementary matrix analysis associated with chemical mixture problems and mechanical equilibrium problems; matrix eigenvalue problems arising from electrical circuit analysis.

d. The "transportation problem" of making optimal use of a given shipping network to obtain a specified redistribution of commodities. This is, of course, a special case of linear programming.

e. Game theory as applied to games of timing ("duels") in which rewards to competing strategists depend on when certain acts are performed.
APPRENTICESHIP IN TEACHING

Every mathematician is a teacher in the sense that he must explain mathematical ideas to other people—to students, to colleagues, or to the mathematical community at large. For this reason the graduate education of every mathematics student should include a program designed to develop skill in oral and written communication of mathematics. This program should begin as soon as the student enters graduate school and continue at increasing levels of responsibility.

Ultimately, the attitude of the graduate faculty will determine the success of any such program. If effective teaching is regarded as an important and nontrivial function of the department, and if senior mathematicians encourage excellent exposition by precept and personal interest, graduate students and younger faculty will respond accordingly. Every instructor of a graduate class should realize that his course can have a profound effect upon his students in the way it serves to strengthen the attributes of a good teacher.

Because the conditions of undergraduate and graduate instruction vary widely from one university to another, the suggestions given below offer a variety of ways in which the mathematics departments might stimulate more interest in good teaching. Each university is encouraged to create its program individually, seeking to establish an intellectual environment in which teaching and learning flourish together.

Some universities have experimented recently with special programs which bring new teaching assistants to the campus before the start of classes in the fall. Sessions are devoted to a general orientation to graduate and undergraduate study at that university and to the role of the graduate assistant. At least one program runs for the entire summer term and includes an initial involvement with graduate mathematics besides activities in preparation for teaching.

During the first stage of his training, the teaching assistant should be given limited duties, but he should be made to feel that he is a junior colleague in a profession rather than a hired hand in a work crew. At a pace which is adjusted individually to his rate of development, he should progress through a sequence of teaching assignments, acquiring more responsibility and independence as he gains in experience and confidence. He can mark homework papers, conduct office hours for undergraduates, prepare questions for tests, and assist in marking tests.

A prospective teacher can learn much by observing a skillful teacher in an undergraduate class in a subject familiar to the apprentice. This is of particular value in a class of selected students, such as freshman or sophomore honors sections, where the interchange between students and the instructor is lively and challenging.
Regular consultation between an apprentice and his supervisor is essential. Each course supervisor should arrange meetings of all assistants for that course; at these meetings there should be free exchange of ideas concerning problems of instruction, alternate suggestions for presenting specific concepts, proposals for future tests, questions, and planning the development of the course. In addition to formal consultation, however, supervisors should maintain a running dialogue with apprentices, work with them in the marking of tests, and cooperate in performing with them the day-to-day duties which are an integral part of teaching.

After a graduate student has developed competence in these duties and has acquired a basic feeling for classroom instruction, he should be drawn more actively into teaching by conducting discussion sections, by giving occasional class lectures, or by accepting major responsibility for teaching an appropriate course at an appropriate level. His supervisor should maintain good contact through continued consultation, classroom visitation, and informal discussions. As the assistant matures in his teaching role, direct supervision should be relaxed gradually to encourage him to develop his individual classroom style and techniques; the opportunity for consultation should remain open, but the initiative should pass from the supervisor to the assistant.

Special seminars can also be used to assist students to improve their exposition. Many departments require a proseminar in which graduate students present advanced mathematical topics to fellow students and several members of the faculty. It would be equally appropriate to require each first-year graduate student to present a short series of talks on some phase of undergraduate mathematics which is outside his previous course of study. The objective should be to present the topic at a level suitable for undergraduates, emphasizing clarity in organization and expression rather than making the occasion a mathematical "tour de force."

Another possibility is to assign a few graduate students to experimental projects in undergraduate mathematical instruction instead of assigning them regular classroom duties. For example, they could help to prepare a collection of classroom examples for a calculus course, develop problems to be solved on the computer, or plan and evaluate alternative approaches to specific topics in lower-division undergraduate mathematics.

As indicated in the Program Description, the apprenticeship in teaching should constitute approximately one fourth of the total workload of a student during his first graduate component. It is conceivable that some of these activities, such as seminars, can qualify for academic credit. But whether or not academic credit is granted for this phase of graduate work, the student's performance as a teacher should be evaluated, and an informal departmental record should be kept in sufficient detail to show the work done and the level of competence attained.
Finally, any program of increased attention to the teaching role of prospective mathematicians has budgetary implications which cannot be ignored. One additional cost is for increased faculty time devoted to supervising teaching assistants. Another is for stipends for graduate students if the number of apprentice teachers is expanded. But if the quality of mathematics instruction improves in the future as a result of such efforts, the money will have been well spent. Fortunately, there is reason to believe that imaginative proposals to improve the quality of teaching by graduate students can attract the additional financial support needed to make them effective.

Although many graduate students welcome an opportunity to teach and thereby to become self-supporting, the stipend itself is not an adequate incentive for good teaching. This incentive can best be provided by the persistent concern of established mathematicians that teaching be excellent throughout the department.