For $k > 0$, let $I_k = 10 \cdots 064$, where there are k zeros between the 1 and the 6. Let $N(k)$ be the number of factors of 2 in the prime factorization of I_k. What is the maximum value of $N(k)$?

QUICK STATS:

MAA AMC GRADE LEVEL
This question is appropriate for the lower high-school grade levels.

MATHEMATICAL TOPICS
Factors and Primes, Integer Exponents

COMMON CORE STATE STANDARDS
A.SEE.1b Interpret complicated expressions by viewing one or more of their parts as a single entity.

MATHEMATICAL PRACTICE STANDARDS
MP1 Make sense of problems and persevere in solving them.
MP2 Reason abstractly and quantitatively.
MP3 Construct viable arguments and critique the reasoning of others.
MP7 Look for and make use of structure.

PROBLEM SOLVING STRATEGY
ESSAY 10: GO TO EXTREMES

SOURCE: This is question # 25 from the 2009 MAA AMC 10A Competition.
THE PROBLEM-SOLVING PROCESS:

As always, the best start is ...

STEP 1: Read the question, have an emotional reaction to it, take a deep breath, and then reread the question.

This question looks positively scary! It’s going to take some doing just to understand what is being asked.

So we have all these numbers of the form “10⋯0064” – a one, some zeros, and then a six and a four. Just to be clear I am going to write them out, catching the very beginning and “end” cases:

- 164 (no zeros)
- 1064
- 10064
- 100064

and

1000000000000000000000064

and so on.

The “N(k)” part of the question is scary, so I am going to see if I can get away with ignoring it.

I need to look at the prime factorizations of these numbers and count the number of 2s in those factorizations.

Hmm. There is no way I am going to factor these numbers! But how can I tell how many 2s are in the factorization?

Look at the smallest number: How many 2s are in the prime factorization of 164? Well, I can divide 164 by 2 two times: 164 → 82 → 41. This tells me that there are two 2s in its prime factorization: 164 = 2² × other primes.

This problem is starting to feel do-able.

In rereading the question I see that this N(k) business is something about the count of 2s in all these prime factorizations, and we want the biggest this number can be. The question basically is: What is the largest count of 2s you can get from these prime factorizations?

Let’s divide 1000000000064 (ten zeros) by 2 as many times as we can.

- 1 000 000 000 064
- → 500 000 000 032
- → 250 000 000 016
- → 125 000 000 008
- → 62 500 000 004
- → 31 250 000 002
- → 15 625 000 001

Okay. Six times. So with lots of zeros involved there are six 2s in the prime factorization. Can we beat six?

Actually, in the above work there we left with five middle 0s. So if we took away five zeros from the ten we began with, we’d still be able to divide by 2 six times (and no more).

What happens with one, two, three or four 0s? Let’s look at the number 1000064 next. The arithmetic above stays the same, except after the fifth division by 2 we have:

31252 = 31250 + 2. Dividing by two one more time gives: 15625 + 1 = 15626, which can be divided by 2 one more time:

15626 → something that ends with 3.

Thus 1000064 has seven 2s in its prime factorization.

Alright, how about three zeros? I am getting tired of the arithmetic, how about thinking of this as:

\[100064 = 10 \times 10 \times 10 \times 10 + 64\]

Dividing this by 2 five times gives: 5 × 5 × 5 × 5 + 2, which is an odd number and so cannot be divided in half a sixth time. Actually... 10064 = 10×10×10×10 + 64 can only be halved four times, 1064 = 10×10×10 + 64 can only be halved four times, 1064 = 10×10×10 + 64 can only be halved four times, and 164 = 10×10 + 64 two, as we’ve already seen. (I like this approach of think of products of 10 plus 64. I wish I thought of this approach first!)

We have that the largest number of 2s among the prime factorizations of these numbers is seven (for 1000064).

Extension: What is the largest count of 2s that appear among the prime factorizations of the numbers of the form 10^k + 2^{100}?
MAA acknowledges with gratitude the generous contributions of the following donors to the Curriculum Inspirations Project:

The TBL and Akamai Foundations
for providing continuing support

The Mary P. Dolciani Halloran Foundation for providing seed funding by supporting the Dolciani Visiting Mathematician Program during fall 2012

MathWorks for its support at the Winner's Circle Level