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A s the showrunner of my nine-year-old 
son’s paintball birthday party, I expected 
to face lots of problems. I just didn’t ex-
pect any of them to be math problems.
There were eight boys at the party, includ-

ing my son and his close buddy, and while those two 
would’ve been happy to be on the same team in every 
four-on-four game, my wife wisely suggested that I set 
things up so that each boy would be on my son’s team 
the same number of times. In fact, it would be ideal 
if, over the course of the party, each boy could be each 
other boy’s teammate the same number of times. Then 
no one would have cause to call “No fair!” the way 
nine-year-olds do.

Randomness
One approach to fairness is randomness. For each game 
I could divide the boys randomly into two teams of 
four. In each game my son and his buddy would have 
a 3-out-of-7 chance of being on the same team. So if 
the boys played seven games, which was just about the 
number of games they could play in their three-hour 
window (allowing time for pizza and birthday cake), 
the expected number of times each pair of boys would 
be on the same team would be three.

The problem with the random approach is that 
even though it’s good on average, it’s sometimes bad. 
There’d be about a 2 percent chance that my son and 
his buddy would never be on the same team. And 

there’d be an even larger chance that some pair would 
never be on the same team. If this happened, there’d 
be a good chance that by the end of the party the kids 
would have been calling “No fair!”

Thus, I rejected the random approach and wondered 
if I could design a seven-game schedule for eight boys 
so that any two boys play on the same team exactly 
three times. The reader may wish to try this problem 
before reading further.

Geometry, Geometry, Geometry!
Because I’m a mathematician, the fact that there were 
eight, or 23, boys at the party screamed “Use geom-
etry!” at me: It seemed natural to assign each of the 
eight boys to one corner of a cube, as in figure 1, and 
proceed using geometrical ideas. 

The new, geometrified problem is to divide the 
vertices of a cube into two sets of four in seven differ-
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The Paintball Party

A = (0,0,0)

B = (0,0,1)

C = (0,1,0)

D = (0,1,1) H = (1,1,1)

G = (1,1,0)

E = (1,0,0)

F = (1,0,1)

Figure 1. We represent the eight boys 
by the eight vertices of a cube. 



ent ways, so every pair of vertices is in the same set 
exactly three times (from now on, “three times” means 
exactly three times). It’s helpful to think of painting 
the vertices in the sets purple and green, as in figure 2. 

We could start by slicing the cube with cuts parallel 
to faces of the cube. The six faces give three ways to 
cut, so we get the three colorings in figure 2. We will 
represent my son by the origin  and we 
will color a vertex purple if the corresponding child is 
on the same team as the birthday boy. 

In figure 2a, the point (x,y,z) is purple or green ac-
cording to whether x is 0 or 1; in figure 2b, (x,y,z) is 
purple or green according to whether y is 0 or 1; and 
in figure 2c, (x,y,z) is purple or green according to 
whether z is 0 or 1.

This is a good start, but how should we continue? 
We need to find the four other ways to paint the 
vertices.

Planes with Only Four Points
Finite fields are mathematical systems that mimic some 
aspects of ordinary arithmetic, but with a key differ-
ence: They contain only finitely many numbers. The 
simplest finite field—and the one we need—has two 
elements,  (GF stands for Galois field). It 
satisfies the properties shown in tables 1 and 2. 

The equation  may seem strange, but the 
arithmetic of GF(2) makes sense if you think of 0 and 
1 as meaning even and odd, 
respectively. Then the equation 
just means that the sum of two 
odd integers is even.

Part of the power of finite-
field arithmetic is that it gives 
rise to its own geometry. Recall 
that points in ordinary three- 
dimensional Euclidean geometry 
can be represented by triples 

(x,y,z), where x, y, and z belong to the field of real 
numbers,  We denote three-dimensional Euclidean 
space by  In  we have infinitely many points, 
but using GF(2) in place of  we obtain a space with 
only eight points: 

Recall that a plane in  is the set of ordered triples 
(x,y,z) satisfying a linear equation  
where a, b, c, and d are real numbers not all equal 
to 0. Likewise, a plane in GF(2)3 is the set of triples 
(x,y,z) of elements of GF(2) satisfying an equation 

 where a, b, c, and d are elements of 
GF(2), with a, b, and c not all equal to 0. For instance, 
the equation  (or equivalently  
determines the plane in GF(2)3 consisting of the points 
(1,0,0), (1,0,1), (1,1,0), and (1,1,1). These are precisely 
the green points in the coloring in figure 2a.

The finite geometry GF(2)3 has exactly 14 planes, 
given by the 14 ways of choosing a, b, c, and d. The 
planes that go through (0,0,0) correspond to the equa-
tions      

 and  The other seven planes 
are given by the same equations, but with the right- 
hand side replaced by 1. Figure 3 shows the colorings 
given by the expressions    and 
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(a) (b) (c)
X 0 1

0 0 0

1 0 1

+ 0 1

0 0 1

1 1 0

Table 1. The addition table for GF(2).

Table 2. The multiplication table for GF(2).

(a) (b) (c) (d)
Figure 3. Four more ways to divide the eight vertices.

Figure 2. Three ways to divide the eight vertices  
into two sets of four.
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shows that the same must be true for players E and F. 
This style of reasoning using symmetry has its roots 
in common sense, but it takes some getting used to; 
that’s part of what one picks up in an abstract algebra 
course.

Using only rotation about the line through A and H, 
we can reduce the number of cases to be checked from 
28 to 10. If we use more symmetries of the cube, we 
can bring that down to just three. Wearing symmetry-
spectacles, we see that we just need to check that our 
condition holds for a pair of points that share an edge 
of the cube (such as A and B), that share a diagonal of 
one of the cube’s faces (such as A and D), and that are 
diametrically opposite (such as A and H).

That (approximately) 10-fold saving of labor is 
pretty neat, isn’t it? But it’s not what I actually did. 
That’s because there are some symmetries in GF(2)3 
that aren’t present in  There’s a symmetry opera-
tion on GF(2)3 that carries the points A and B to A 
and D, respectively, and there’s another that carries A 
and D to A and H, respectively. 

The symmetry operation on GF(2)3 that carries 
 and  to A and  is 

the shear mapping that sends the points of the form 
(x,y,z) to  We know that this symmetry 
permutes the seven colorings because, being a linear 
transformation, it sends planes to planes, and the 14 
planes given by our seven colorings are all the planes in 
GF(2)3! So, if A and B satisfy the exactly-three-games 
condition, so must A and D. 

Likewise, the shear mapping that sends (x,y,z) to 
 provides a way to see that if A and D sat-

isfy the exactly-three-games condition, so must A and 
H. Together, these transformations show that there’s 
only a single case to check.

The Final Trick: Checking No Cases at All
That 27-fold saving of labor is even neater, isn’t it? 
But it’s still not what I actually did. Once we know 
that the answer to the question “How many times is 
a pair of points the same color?” is the same for all 
pairs, and once we show that the average value of that 
answer (as we vary the pair) must be three, we can 
conclude that in every case, the answer must be three, 
as we wanted to show! Thanks to symmetry and an 
averaging argument, there are zero cases to check.

Here’s one way to see that the average is three. For 
each of the 28 pairs of boys, make a row on a piece 
of paper, and every time two boys play on the same 

 (left to right), with points painted purple or 
green according to whether the expression equals 0 or 
1, respectively. 

The colorings in figures 2 and 3 produce the sched-
ule shown in table 3. If you came up with this same 
solution, or something like it, without knowing about 
GF(2)3, take a bow!

Symmetry, Symmetry, Symmetry!
Our work isn’t done yet. How do we know that each 
pair of boys plays on the same team exactly three 
times? Or, equivalently, how do we know each pair 
of vertices of the cube is the same color exactly three 
times?

We could take the brute force approach and check 
that this schedule has the desired property, but there 
are 28 pairs of boys at the party. That would be a fair 
bit of work!

One way to reduce the number of pairs to check is 
to use the symmetries of a cube sitting in  For 
instance, let’s consider threefold rotational symmetry 
of the cube about the axis going through A and H. (If 
you’ve got a pet cube, Rubik’s or otherwise, hold op-
posite corners between your two index fingers and then 
give the cube a spin with your thumb.) For any point 
(x,y,z), a 120-degree rotation about this axis sends 
(x,y,z) to (y,z,x), a second rotation brings it to (z,x,y), 
and a third rotation brings it back to (x,y,z). 

The seventh coloring (the cube in figure 3d) isn’t 
affected by these rotations. The other colorings are 
permuted by these rotations: A rotation turns each of 
the six colorings into one of the other six. This symme-
try cuts down the number of cases we need to check. If 
players  and  play on the same 
team three times, then the same must be true for play-
ers  and  and similar reasoning 

Game Blue Team Red Team

1 ABCD EFGH

2 ABEF CDGH

3 ACEG BDFH

4 ABGH CDEF

5 ADEH BCFG

6 ACFH BDEG

7 ADFG BCEH

Table 3. The schedule constructed from the colorings in 
figures 2 and 3.
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team, put a mark in that row. For 
instance, suppose that in the first 
game we pit A, B, C, and D against 
E, F, G, and H. Then we put tick-
marks in rows AB, AC, AD, BC, 
BD, and CD and rows EF, EG, EH, 
FG, FH, and GH—twelve marks 
in all. Over the seven games, the 
number of marks in our tally-chart 
will be  So the average 
number per row is 

The party was a success—so 
much so that my son’s buddy had 

Finally, here’s something I don’t 
know: If the number of players is an 
even number not divisible by four, 
is there a fair schedule in which the 
number of games is not the number 
of players minus 1, but twice that? 
For example, if there are 10 boys, is 
there an 18-game schedule in which 
the same two boys are teammates 
eight times?

Proof that there’s no sched-
ule for 10 boys: For the sake of 

contradiction, suppose we can come up with such a 
schedule. Let A, B, and C be three of the boys. Let w 
be the number of times A, B, and C are teammates, 
let x be the number of times A and B play on the same 
team against C, let y be the number of times A and 
C play on the same team against B, and let z be the 
number of times A plays against both B and C. Then 
A and B are teammates  times, A and C are 
teammates  times, and B and C are team-
mates  times. Adding the three equations, 
we get  On the other hand, there 
are nine games, so  Combining these 
equations we get  which is a contradiction, 
since w is a whole number.

Further Reading
This piece is a shortened version of one of my blog 
posts. See http://bit.ly/paintballproblem for a more 
detailed discussion and references. n
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The party was 
a success—so 

much so that my 
son’s buddy had a 
paintball party for 
his birthday too.

a paintball party for his birthday too. But his father 
took a different approach to the fairness problem: At 
the start of each game, he randomly lined the kids 
up, counted off “One, two, one, two . . .” and assigned 
them to teams accordingly. My son liked the other 
dad’s solution a lot better than mine. Sometimes plain 
old randomness is the way to go. Perhaps the voice I 
should have heeded was Thoreau’s: “Simplicity, simplic-
ity, simplicity!”

Variations of the Problem
I was lucky that there were eight boys at the party. 
Had there been six boys, 10 boys, 14 boys, or indeed 
any even number of boys not divisible by 4 (leaving 
aside the easy case of two boys), then there’d be no 
way to come up with a schedule with the number of 
games being one less than the number of boys. 

Try proving that it is impossible to schedule nine 
five-on-five games for 10 boys so each boy is on every 
other boy’s team exactly four times. Our proof is at 
the end of the article, and an analogous argument 
holds when the number of boys is greater than 2 and is 
congruent to 2 mod 4. 

What about 12 boys or 16 or 20? In the case of 
12 boys, there’s a very special solution based on the 
sporadic finite simple group M11 (see Dima Pasechnik’s 
response to my question at http://bit.ly/ProppQues); 
I certainly wouldn’t have come up with that schedule 
during the first few minutes of the paintball party! 

With 16 boys, we can adapt my solution using 
GF(2)4 instead of GF(2)3. It’s believed that for a larger 
number of boys the problem can be solved whenever 
the number is divisible by four, but this has not been 
proved. It’s equivalent to one of the oldest unsolved 
problems in the theory of combinatorial designs: the 
Hadamard matrix conjecture.


