B1. Denote by \(\mathbb{Z}^2 \) the set of all points \((x, y)\) in the plane with integer coordinates. For each integer \(n \geq 0 \), let \(P_n \) be the subset of \(\mathbb{Z}^2 \) consisting of the point \((0, 0)\) together with all points \((x, y)\) such that \(x^2 + y^2 = 2^k \) for some integer \(k \leq n \). Determine, as a function of \(n \), the number of four-point subsets of \(P_n \) whose elements are the vertices of a square.

Answer. \(5n + 1 \).

Solution. Let \(S_k \) be the set of all points \((x, y)\) such that \(x^2 + y^2 = 2^k \), so that

\[
P_n = \{(0, 0)\} \cup \bigcup_{k=0}^{n} S_k.
\]

Then \(S_0 = \{(1, 0), (-1, 0), (0, 1), (0, -1)\} \) and \(S_1 = \{(1, 1), (1, -1), (-1, 1), (-1, -1)\} \).

For \(k \geq 2 \) and any \((x, y) \in S_k\), we have \(x^2 + y^2 \equiv 0 \mod 4 \), so because 0 and 1 are the only squares \(\mod 4 \), \(x \) and \(y \) must both be even. If we put \(x = 2x_1, y = 2y_1 \), then \(4(x_1^2 + y_1^2) = 2^k \), so \(x_1^2 + y_1^2 = 2^{k-2} \) and \((x_1, y_1) \in S_{k-2}\). It follows by induction on \(k \) that

\[
S_k = \{(2^q, 0), (-2^q, 0), (0, 2^q), (0, -2^q)\} \quad \text{for } k = 2q \text{ even} \quad \text{and}
\]

\[
S_k = \{(2^t, 2^t), (2^t, -2^t), (-2^t, 2^t), (-2^t, -2^t)\} \quad \text{for } k = 2t + 1 \text{ odd}.
\]

Note that for any \(k \), the four points of \(S_k \) form the vertices of a square; also, for any \(q \) there are four squares with one vertex at the origin, two vertices in \(S_{2q} \), and one vertex in \(S_{2q+1} \) (the square with vertices \((0, 0), (2^q, 0), (2^q, 2^q), (0, 2^q)\) and the three squares obtained from it by rotation through \(\pi/2, \pi, 3\pi/2 \) around the origin), and for any \(t \) there are four squares with one vertex at the origin, two vertices in \(S_{2t+1} \), and one vertex in \(S_{2t+2} \) (the square with vertices \((0, 0), (2^t, 2^t), (0, 2^{t+1}), (-2^t, 2^t)\) and the three squares obtained from it by rotation). Thus when we pass from \(P_n \) to \(P_{n+1} \) by including the points in \(S_n \), we get at least five additional squares, whether \(n \) is even or odd. Because there is exactly one four-point subset of \(P_0 \) (namely \(S_0 \)) that gives a square, there will be exactly \(5n + 1 \) such subsets of \(P_n \), provided that the only squares of which all vertices are in the set

\[
P_\infty = \bigcup_{n=0}^{\infty} P_n = \{(0, 0)\} \cup \bigcup_{k=0}^{\infty} S_k
\]

are the ones we have mentioned so far.

To see that there are no additional such squares, first note that for all \(k \geq 2 \), all points in \(S_k \) have only even coordinates; if we have a square for which each vertex is in \(\{(0, 0)\} \cup \bigcup_{k=2}^{\infty} S_k \), we can scale down all coordinates by a factor 2 and get another square of which all vertices are in \(P_\infty \). Thus it is sufficient to consider squares for which all vertices are in \(P_\infty \) and at least one vertex is in \(S_0 \cup S_1 \).

It is impossible to have just one of the vertices of such a square be in \(S_0 \cup S_1 \), because the square of the side length from that vertex to any other vertex would be 1 or 2 \(\mod 4 \), whereas the square of a side length not involving that vertex would be 0 \(\mod 4 \). By the same argument, if exactly two of the vertices of such a square are in \(S_0 \cup S_1 \), those two must be opposite vertices of the square. And if three or four of the vertices of such a square are in \(S_0 \cup S_1 \), we can choose two such vertices that are
opposite each other. Thus it is enough to analyze squares of which all vertices are in P_∞ and two opposite vertices are in $S_0 \cup S_1$.

If one of the two opposite vertices in $S_0 \cup S_1$ is in S_0, up to rotational symmetry we can assume it is $(1,0)$. Then it can be checked by a quick case analysis that the vertex of the square opposite it cannot be in S_1; if it is $(-1,0)$, then the vertices of the square are the four points of S_0, otherwise it is $(0,1)$ up to reflectional symmetry, and the vertices of the square are $(0,0), (1,0), (1,1), (0,1)$. The final possibility is that the two opposite vertices in $S_0 \cup S_1$ are both in S_1, in which case we can assume up to symmetry that they are $(1,1)$ and $(-1,-1)$ (and the vertices of the square are all the points of S_1) or $(1,1)$ and $(-1,1)$ (and the vertices of the square are $(0,0), (1,1), (0,2), (-1,1)$). We have now checked that the only possible squares whose vertices are all in P_n are the $5n + 1$ squares found above.

B2. For all $n \geq 1$, let
\[
a_n = \frac{\sin((2k-1)\theta_n)}{\cos^2((k-1)\theta_n) \cos^2(k\theta_n)}.
\]
Determine
\[
\lim_{n \to \infty} \frac{a_n}{n^3}.
\]

Answer. $\frac{8}{\pi^3}$.

Solution. Let $\theta_n = \frac{\pi}{2n}$, and note that $\sin \theta_n \neq 0$. Then we have
\[
a_n = \sum_{k=1}^{n-1} \frac{\sin((2k-1)\theta_n)}{\cos^2((k-1)\theta_n) \cos^2(k\theta_n)}
= \frac{1}{\sin \theta_n} \sum_{k=1}^{n-1} \frac{\sin((2k-1)\theta_n) \sin \theta_n}{\cos^2((k-1)\theta_n) \cos^2(k\theta_n)}
= \frac{1}{\sin \theta_n} \sum_{k=1}^{n-1} \frac{1}{2} \cos((2k-2)\theta_n) - \cos(2k\theta_n)
= \frac{1}{\sin \theta_n} \sum_{k=1}^{n-1} \frac{1}{2} \cos^2((k-1)\theta_n) - \cos^2(k\theta_n)
= \frac{1}{\sin \theta_n} \sum_{k=1}^{n-1} \left(\frac{1}{\cos^2(k\theta_n)} - \frac{1}{\cos^2((k-1)\theta_n)} \right).
\]
We now see that the sum telescopes, and we get
\[
a_n = \frac{1}{\sin \theta_n} \left(\frac{1}{\cos^2((n-1)\theta_n)} - 1 \right).
\]
Because $n\theta_n = \frac{\pi}{2}$, we have $\cos((n-1)\theta_n) = \cos(\frac{\pi}{2} - \theta_n) = \sin \theta_n$, so
\[
a_n = \frac{1}{\sin^3 \theta_n} - \frac{1}{\sin \theta_n}.
\]
Now let \(n \to \infty \). Then \(\theta_n \to 0 \), so

\[
\lim_{n \to \infty} n \sin \theta_n = \lim_{n \to \infty} n \theta_n = \frac{\pi}{2}.
\]

Therefore,

\[
\lim_{n \to \infty} \frac{a_n}{n^3} = \lim_{n \to \infty} \frac{1}{n^2 (n \sin \theta_n)} = \frac{1}{\frac{\pi}{2}^3} - 0 = \frac{8}{\pi^3}.
\]

B3. Let \(Q \) be an \(n \)-by-\(n \) real orthogonal matrix, and let \(u \in \mathbb{R}^n \) be a unit column vector (that is, \(u^T u = 1 \)). Let \(P = I - 2u u^T \), where \(I \) is the \(n \)-by-\(n \) identity matrix. Show that if 1 is not an eigenvalue of \(Q \), then 1 is an eigenvalue of \(PQ \).

Solution. Note that \(P(u) = u - 2uu^T u = u - 2u = -u \), while if \(v \in \mathbb{R}^n \) is a vector orthogonal to \(u \), that is, if \(u^T v = 0 \), we have \(P(v) = v - 2uu^T v = v \). So \(P \) has a one-dimensional eigenspace for the eigenvalue \(\lambda = -1 \) and an \((n - 1)\)-dimensional eigenspace for the eigenvalue \(\lambda = 1 \), and thus \(\det(P) = -1 \). Also, \(P \) is an orthogonal matrix; this can be seen geometrically by noting that \(P \) is the matrix of the reflection in the hyperplane through the origin with normal vector \(u \), or by direct computation:

\[
P^T P = (I - 2(uu^T)) (1 - 2uu^T) = (1 - 2uu^T) (1 - 2uu^T)
\]

\[
= 1 - 4uu^T + 4u(u^T u)u^T = 1 - 4uu^T + 4uu^T = 1.
\]

Now recall that any orthogonal matrix has determinant \(\pm 1 \), and that the product of orthogonal matrices is orthogonal. Therefore, because \(\det(P) = -1 \), we know \(Q \) and \(PQ \) are orthogonal matrices of the same size that have opposite determinants \(\pm 1 \). The desired result now follows immediately from the following.

Lemma. If \(A \) is an \(n \)-by-\(n \) real orthogonal matrix such that either (i) \(\det(A) = 1 \) and \(n \) is odd or (ii) \(\det(A) = -1 \) and \(n \) is even, then 1 is an eigenvalue of \(A \).

To prove the lemma, first let \(\lambda \in \mathbb{C} \) be any eigenvalue of \(A \) and \(v \in \mathbb{C}^n \) be an associated eigenvector. Then, taking complex conjugates, \(Av = \lambda v \) yields \(A\overline{v} = \overline{\lambda} \overline{v} \), so

\[
(A\overline{v})^T A\overline{v} = \overline{\lambda} \lambda \overline{v}^T v = |\lambda|^2 |v|^2, \quad \text{while also}
\]

\[
(A\overline{v})^T A\overline{v} = \overline{v}^T (A^T A) v = \overline{v}^T v = |v|^2.
\]

Because \(|v| \neq 0 \), it follows that \(|\lambda| = 1 \). Thus the eigenvalues of \(A \) that are not 1 or \(-1 \) must occur in complex conjugate pairs for which \(\lambda \overline{\lambda} = 1 \). The product of all the eigenvalues (counting multiplicity) is \(\det(A) \), and if we leave out the complex conjugate pairs, the product of the real eigenvalues \(\pm 1 \) will still be \(\det(A) \). If \(n \) is odd, the number of real eigenvalues is odd, but to get \(\det(A) = 1 \) the number of factors \(-1 \) must be even, so the eigenvalue 1 must occur at least once. Similarly, if \(n \) is even, the number of real eigenvalues is even (in general, possibly zero), but to get \(\det(A) = -1 \) the number of factors \(-1 \) must be odd, and again the eigenvalue 1 must occur.

B4. Let \(F \) be the set of functions \(f(x, y) \) that are twice continuously differentiable for \(x \geq 1, y \geq 1 \) and that satisfy the following two equations (where subscripts denote partial derivatives):

\[
x f_x + y f_y = x y \ln(xy),
\]

\[
x^2 f_{xx} + y^2 f_{yy} = x y.
\]
For each \(f \in \mathcal{F} \), let
\[
m(f) = \min_{s \geq 1} \left(f(s+1, s+1) - f(s+1, s) - f(s, s+1) + f(s, s) \right).
\]

Determine \(m(f) \), and show that it is independent of the choice of \(f \in \mathcal{F} \).

Answer. \(m(f) = 2 \ln 2 - \frac{1}{2} \), independently of the choice of \(f \in \mathcal{F} \).

Solution. First note that for any \(f \in \mathcal{F} \),
\[
f(s+1, s+1) - f(s+1, s) - f(s, s+1) + f(s, s) =
= (f(s+1, s+1) - f(s, s+1)) - ((f(s+1, s) - f(s, s))
\]
\[
= \int_s^{s+1} f_x(x, s+1) dx - \int_s^{s+1} f_x(x, s) dx
\]
\[
= \int_s^{s+1} (f_x(x, s+1) - f_x(x, s)) dx
\]
\[
= \int_s^{s+1} \int_s^{s+1} f_{xy}(x, y) dy dx,
\]
so to find \(m(f) \) we must minimize this double integral. We now use the given partial differential equations to find \(f_{xy} \). Taking partial derivatives of both sides of \(xf_x + yf_y = xy \ln(xy) \) with respect to each of \(x \) and \(y \), we get the two equations
\[
f_x + xf_{xx} + yf_{yx} = y \ln(xy) + y, \quad xf_{xy} + f_y + yf_{yy} = x \ln(xy) + x. \quad (*)
\]
Note that because \(f \) is twice continuously differentiable, \(f_{yx} = f_{xy} \). If we multiply the first equation in (\(* \)) by \(x \) and the second equation by \(y \) and add the results, we obtain
\[
(xf_x + yf_y) + (x^2f_{xx} + y^2f_{yy}) + 2xyf_{xy} = 2xy \ln(xy) + 2xy.
\]
Using the two given equations to replace the bracketed expressions on the left and then dividing by \(2xy \) leads to
\[
f_{xy} = \frac{1}{2} (\ln(xy) + 1) = \frac{1}{2} (\ln x + \ln y + 1).
\]
Therefore, we have
\[
m(f) = \min_{s \geq 1} \int_s^{s+1} \int_s^{s+1} \frac{1}{2} (\ln x + \ln y + 1) dy dx
\]
\[
= \frac{1}{2} \min_{s \geq 1} \int_s^{s+1} (\ln x + 1 + \int_s^{s+1} \ln y dy) dx
\]
\[
= \frac{1}{2} \min_{s \geq 1} \left(\int_s^{s+1} \ln x dx + 1 + \int_s^{s+1} \ln y dy \right)
\]
\[
= \min_{s \geq 1} \left(\int_s^{s+1} \ln t dt + \frac{1}{2} \right).
\]
Because the function \(\ln \) is increasing, the minimum occurs for \(s = 1 \), and so
\[
m(f) = \frac{1}{2} + \int_1^2 \ln t dt = \frac{1}{2} + (t \ln t - t)|_{t=1}^2 = 2 \ln 2 - \frac{1}{2}.
\]
Comment. With some additional calculation it can be shown that the functions in \mathcal{F} are exactly those of the form

$$f(x, y) = \frac{1}{2} xy \ln(xy) - \frac{1}{2} xy + C(\ln x - \ln y) + D,$$

where C and D are arbitrary constants.

B5. Let F_m be the mth Fibonacci number, defined by $F_1 = F_2 = 1$ and $F_m = F_{m-1} + F_{m-2}$ for all $m \geq 3$. Let $p(x)$ be the polynomial of degree 1008 such that $p(2n+1) = F_{2n+1}$ for $n = 0, 1, 2, \ldots, 1008$. Find integers j and k such that $p(2019) = F_j - F_k$.

Solution 1. More generally, let $p_N(x)$ be the polynomial of degree N such that $p_N(2n+1) = F_{2n+1}$ for $n = 0, 1, 2, \ldots, N$. We will show by induction on N that $p_N(2N+3) = F_{2N+3} - F_{N+2}$; setting $N = 1008$ then gives the desired answer. For the basis step, $p_1(x)$ is the linear polynomial with $p_1(1) = 1$, $p_1(3) = 2$, so $p_1(x) = (x+1)/2$ and $p_1(5) = 3 = F_5 - F_3$. To start the induction step, note that $p_N(x)$ and $p_{N-1}(x)$ have the same values for $x = 1, 3, 5, \ldots, 2N - 1$, and therefore there is a constant c_N such that

$$p_N(x) = p_{N-1}(x) + c_N(x-1)(x-3) \cdots (x-(2N-1)).$$

We can find c_N by substituting $x = 2N + 1$ and using the induction hypothesis $p_{N-1}(2N+1) = F_{2N+1} - F_{N+1}$, which yields

$$F_{2N+1} = F_{2N+1} - F_{N+1} + c_N(2N)(2N-2) \cdots 2 \quad \text{and thus} \quad c_N = \frac{F_{N+1}}{2N N!}.$$

It follows that

$$p_N(x) = (x+1)/2 + c_2(x-1)(x-3) + \cdots + c_N(x-1)(x-3) \cdots (x-(2N-1))$$

$$= (x+1)/2 + \sum_{i=2}^{N} \frac{F_{i+1}}{2i!} (x-1)(x-3) \cdots (x-(2i-1)),$$

and in particular

$$p_N(2N+3) = N + 2 + \sum_{i=2}^{N} \frac{F_{i+1}(2N+2)(2N) \cdots (2N-2i+4)}{2i!}$$

$$= N + 2 + \sum_{i=2}^{N} \frac{F_{i+1}(N+1)N \cdots (N-i+2)}{i!}$$

$$= N + 2 + \sum_{i=2}^{N} F_{i+1} \binom{N+1}{i}$$

$$= \sum_{i=0}^{N} F_{i+1} \binom{N+1}{i} = \sum_{i=0}^{N+1} F_{i+1} \binom{N+1}{i} - F_{N+2}.$$
Thus the induction on N will be complete if we can prove that $\sum_{i=0}^{K} F_{i+1} \binom{K}{i} = F_{2K+1}$ for any positive integer K. This in turn follows from the more general fact

$$\sum_{i=0}^{K} F_{i+m} \binom{K}{i} = F_{2K+m},$$

which is true for all positive integers K and m and can be shown by a relatively straightforward induction on K (the generality helps because the induction step uses the induction hypothesis both for m and for $m+1$).

Solution 2. By Binet’s formula, we have

$$F_{2n+1} = \frac{1}{\sqrt{5}} \left(\left(1 + \sqrt{5} \right)^{2n+1} - \left(1 - \sqrt{5} \right)^{2n+1} \right)$$

$$= \frac{1 + \sqrt{5}}{2\sqrt{5}} r^n_1 - \frac{1 - \sqrt{5}}{2\sqrt{5}} r^n_2,$$

where r_1, r_2 are given by

$$r_1 = \frac{3 + \sqrt{5}}{2} = \left(\frac{1 + \sqrt{5}}{2} \right)^2, \quad r_2 = \frac{3 - \sqrt{5}}{2} = \left(\frac{1 - \sqrt{5}}{2} \right)^2.$$

Therefore, if we define $q_1(x), q_2(x)$ to be the polynomials of degree 1008 such that

$$q_1(2n+1) = r^n_1 \quad \text{and} \quad q_2(2n+1) = r^n_2 \quad \text{for} \quad n = 0, 1, 2, \ldots, 1008,$$

we will have

$$p(x) = \frac{1 + \sqrt{5}}{2\sqrt{5}} q_1(x) - \frac{1 - \sqrt{5}}{2\sqrt{5}} q_2(x).$$

Thus the following fact about interpolating polynomials will be useful.

Lemma. If $q(x)$ is the polynomial of degree N such that $q(n) = r^n$ for $n = 0, 1, 2, \ldots N$, where r is some fixed real number, then $q(N+1) = r^{N+1} - (r-1)^{N+1}$.

To prove the lemma, first define

$$T_{N,k}(x) = \prod_{j=0}^{N} (x - j) \quad \text{and} \quad Q_{N,k}(x) = \frac{T_{N,k}(x)}{T_{N,k}(k)}.$$

Then $Q_{N,k}(x)$ is the polynomial of degree N such that for integers n with $0 \leq n \leq N$, we have $Q_{N,k}(n) = \delta_{n,k}$, where δ is the Kronecker delta. Therefore, $q(x)$ is the linear combination

$$q(x) = \sum_{k=0}^{N} r^k Q_{N,k}(x).$$
of these “basic” interpolating polynomials. We then get
\[q(N + 1) = \sum_{k=0}^{N} r_k Q_{N,k}(N + 1) = \sum_{k=0}^{N} r_k \frac{T_{N,k}(N + 1)}{T_{N,k}(k)} \]
\[= \sum_{k=0}^{N} r_k \frac{(N + 1)!/(N + 1 - k)}{k!(-1)^{N-k} (N-k)!} \]
\[= \sum_{k=0}^{N} (-1)^{N-k} r_k \frac{(N + 1)!}{k! (N + 1 - k)!} = \sum_{k=0}^{N} (-1)^{N-k} r_k \binom{N+1}{k} \]
\[= -\sum_{k=0}^{N+1} (-1)^{N+1-k} r_k \binom{N+1}{k} + r^{N+1} = r^{N+1} - (r - 1)^{N+1}, \]
proving the lemma.

The lemma applies to the polynomials \(q(x) = q_1(2x + 1) \) and \(q(x) = q_2(2x + 1) \), so we can compute

\[p(2019) = \frac{1 + \sqrt{5}}{2\sqrt{5}} q_1(2019) - \frac{1 - \sqrt{5}}{2\sqrt{5}} q_2(2019) \]
\[= \frac{1 + \sqrt{5}}{2\sqrt{5}} (r_1^{1009} - (r_1 - 1)^{1009}) - \frac{1 - \sqrt{5}}{2\sqrt{5}} (r_2^{1009} - (r_2 - 1)^{1009}) \]
\[= \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{2019} - \left(\frac{1 - \sqrt{5}}{2} \right)^{2019} \right) - \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{1010} - \left(\frac{1 - \sqrt{5}}{2} \right)^{1010} \right) \]
\[= F_{2019} - F_{1010}, \]
where we have used that \(r_1 - 1 = \frac{1 + \sqrt{5}}{2} \) and \(r_2 - 1 = \frac{1 - \sqrt{5}}{2} \).

B6. Let \(\mathbb{Z}^n \) be the integer lattice in \(\mathbb{R}^n \). Two points in \(\mathbb{Z}^n \) are called neighbors if they differ by exactly 1 in one coordinate and are equal in all other coordinates. For which integers \(n \geq 1 \) does there exist a set of points \(S \subset \mathbb{Z}^n \) satisfying the following two conditions?

(1) If \(p \) is in \(S \), then none of the neighbors of \(p \) is in \(S \).
(2) If \(p \in \mathbb{Z}^n \) is not in \(S \), then exactly one of the neighbors of \(p \) is in \(S \).

Solution. We will show how to construct such a subset for every \(n \). Because each point in \(\mathbb{Z}^n \) has exactly 2\(n \) neighbors, for each point there is a set of size 2\(n + 1 \) (consisting of its neighbors and itself) of which exactly one element should be in \(S \). This may suggest looking at congruences modulo 2\(n + 1 \). More specifically, for each integer \(k \) with 0 \leq k \leq 2n we can define a subset \(S_k \) of \(\mathbb{Z}^n \) by

\[S_k = \{(x_1, x_2, \ldots, x_n) \in \mathbb{Z}^n | x_1 + 3x_2 + 5x_3 + \cdots + (2n - 1)x_n \equiv k \mod (2n + 1)\}. \]

It is immediate that these 2\(n + 1 \) subsets partition \(\mathbb{Z}^n \); we claim that any of the subsets has the desired properties for \(S \). To see this, let

\[f(x_1, x_2, \ldots, x_n) = x_1 + 3x_2 + \cdots + (2n - 1)x_n, \quad \text{so that} \]
\[S_k = \{(x_1, \ldots, x_n) | f(x_1, \ldots, x_n) \equiv k \mod (2n + 1)\}. \]
Note that moving from a point \(p = (x_1, \ldots, x_n) \) to one of its neighbors adds one of the numbers \(\pm 1, \pm 3, \ldots, \pm (2n - 1) \) to the value of \(f(x_1, \ldots, x_n) \). Because these numbers represent all the nonzero
congruence classes mod $(2n + 1)$
(specifically, $1 \equiv 1$, $2 \equiv -(2n-1)$, $3 \equiv 3$, $4 \equiv -(2n-3)$, \ldots, $2n-1 \equiv 2n-1$, $2n \equiv -1$),
for any k exactly one of the point p and its $2n$ neighbors is guaranteed to be in the set S_k, as desired.