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Foreword
ROBERT ORRILL

“Quantitative literacy, in my view, means knowing how to reason and how to think,
and it is all but absent from our curricula today.”

Gina Kolata (1997)

Increasingly, numbers do our thinking for us. They tell us which medication to take, what policy to
support, and why one course of action is better than another. These days any proposal put forward
without numbers is a nonstarter. Theodore Porter does not exaggerate when he writes: “By now
numbers surround us. No important aspect of life is beyond their reach” (Porter, 1997).

Numbers, of course, have long been important in the management of life, but they have never been
so ubiquitous as they are now. The new circumstances arrived suddenly with the coming of com-
puters and their application to gathering, processing, and disseminating quantitative information.
This powerful tool has brought unprecedented access to quantitative data, but in so doing it also has
filled the life of everyone with a bewildering array of numbers that often produce confusion rather
than clarity. The possible consequences for our ability to direct our affairs are worrisome to say the
least. For some observers, the flow of numbers amounts to an inundation that calls forth images of
a destructive flood of biblical proportions. Looking toward the future, James Bailey warns that
“today we are drowning in data, and there is unimaginably more on the way” (Bailey, 1996). Even
if we manage to keep our heads above water, Lynn Steen writes, we can be sure that “the world of the
twenty-first century will be a world awash in numbers” (Steen, 2001).

Gina Kolata looks at this data-drenched environment from a special vantage point. She reports on
science and health issues for the New York Times and often hears from readers who complain that
numbers presented by experts seem to mean “one thing one day and another thing the next.” What
are they to believe, readers ask, when a regimen first said to promote well-being is later said to
undermine it? Kolata’s response is that they must learn to interpret the numbers for themselves. The
only remedy, she says, “is that they have to learn how to think for themselves, and that is what an
education in quantitative reasoning can teach them.” Such an education, she writes, “makes all the
difference in the world in people’s ability to understand issues of national and personal importance
and helps them evaluate in a rational way arguments made by the press, the government, and their
fellow citizens” (Kolata, 1997).

But, as a practical matter, Kolata counts on no such well-prepared readership in her own reporting.
The attention to quantitative reasoning that she thinks so essential to sound judgment simply does
not exist in the academic programs of most of our schools and colleges. Thus, even the college-
educated often lack an understanding of how to make sense of numerical information. For a
democracy, this is no low-stakes concern. If numbers are present everywhere in our public discourse,
and many are more confused than enlightened by them, what happens to decision making in our
society? If we permit this kind of innumeracy to persist, do we not thereby undermine the very
ground and being of government of, by, and for the people?

Robert Orrill is the Executive Director, National Council on Education and the Disciplines (NCED), and Senior Advisor
at The Woodrow Wilson National Fellowship Foundation, Princeton, New Jersey. NCED brings together university
faculty and secondary school teachers to address issues of educational continuity in the later years of high school and the early
years of college.
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How, then, should we act to address this concern? If attention to
quantitative literacy is absent from our curricula, how can we
make certain that it is given the priority it deserves? These are
questions that many educators in our schools and colleges are
beginning to ask, but, at this point, we are still far from having
programmatic answers or anything approaching a plan of action
scaled to the need. This should not be surprising given that the
penetration of numeracy into all aspects of life confronts us with a
rapidly evolving phenomenon that we understand at best imper-
fectly. The need now is to make a start: to bring together the many
scattered discussions that are taking place and mount a sustained
national conversation about how schools and colleges can give
effect to expectations for learning that better take account of the
quantitative challenges of life in the twenty-first century.

To help launch this conversation, the National Council on Edu-
cation and the Disciplines (NCED) sponsored a National Forum
on December 1–2, 2001, aimed at promoting discussion and
debate about Why Numeracy Matters for Schools and Colleges.
Held at the National Academy of Sciences, the Forum was de-
signed to bring together many different points of view — educa-
tion, business, government, and philanthropy were all represented
in the deliberations. International perspectives on quantitative
literacy also were presented, making it clear that numeracy is a
growing global concern. The most immediate outcome is the rich
and abundantly informative proceedings presented in this vol-
ume, which we believe — in giving voice to a wide range of
opinion — provide a benchmark discussion from which the
needed national conversation can go forward.

In an introduction to the proceedings, Bernard Madison provides
a comprehensive overview of the essays and commentaries col-
lected in this volume. Here I need add only that thanks go to many
who joined together in organizing the Forum and making it a
success. Indeed, the event was a cooperative undertaking from first
to last. Special thanks for hosting the Forum are owed to the
Mathematical Sciences Education Board of the National Research
Council and, for its cooperation throughout, to the Mathematical
Association of America. Financial support and welcome encour-
agement were provided by the Pew Charitable Trusts.

A great many individuals contributed to the making of the Forum,
and I am very sorry not to be able to thank them by name in these
overly brief acknowledgments. But a special word must be said
about Bernard Madison, who, with unfailing geniality, led every
step of the way in turning the Forum from idea into reality. In all
ways that count, the Forum is his handiwork. Thanks also to Lynn
Steen, whose many contributions to the cause of quantitative
literacy have become legendary. The Forum benefited immensely
from Lynn’s wise counsel throughout as well as his expert editorial
work on the proceedings. Diane Foster also attended to the pro-
duction of the proceedings with her uncommonly good executive
sense, and Dorothy Downie watched over organizational matters
with the professional skill and tact vital to all cooperative initia-
tives.
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The Many Faces of Quantitative Literacy
BERNARD L. MADISON

Quantitative literacy (QL), the ability to understand and use numbers and data analyses in everyday
life, is everybody’s orphan (Madison 2001). Despite every person’s need for QL, in the discipline-
dominated K–16 education system in the United States there is neither an academic home nor an
administrative promoter for this crucial competency. Needs for QL extend across the traditional
American guarantees of life, liberty, and the pursuit of happiness. Health concerns increasingly are
immersed in risk analysis and probabilities; government decisions and political arguments are
steeped in uses and misuses of quantitative data; and consumer issues, sports, and investments
frequently are reported in terms of averages, rates of change, and changes in rates of change.

To better understand quantitative literacy and the educational challenge it presents, the National
Council on Education and the Disciplines (NCED) initiated a national examination of issues
surrounding QL education, especially in the context of school and college studies. As a starting
point, NCED published Mathematics and Democracy: The Case for Quantitative Literacy (Steen
2001), consisting of a case statement on numeracy in contemporary society and 12 responses. To
expand the conversation about QL, NCED subsequently sponsored a national Forum, Quantitative
Literacy: Why Numeracy Matters for Schools and Colleges, held at the National Academy of Sciences in
Washington, D.C., on December 1–2, 2001. This volume represents the proceedings of this Forum
and includes papers commissioned as background for the Forum, essays presented at the Forum, and
selected reactions to the Forum.

Part I: Background Papers
To help interpret the implications of quantitative literacy in preparation for the national Forum,
NCED commissioned several thought papers, as opposed to research treatises, on various aspects of
QL. Initial drafts of these papers were read by two external reviewers prior to preparation of a second
draft. These second drafts, along with Mathematics and Democracy, provided the foundation for the
Forum. Following discussions at the Forum, several authors revised their papers yet again. The first
section of this volume includes edited versions of these post-Forum revisions plus two additional
papers written after the Forum that are complementary to the commissioned works.

NEED FOR WORK AND LEARNING

Four of these papers focus on the need for quantitative literacy, particularly in the context of
citizenship and work, while eight address components of QL education: curriculum, pedagogy,
articulation, and assessment. Of the eight, four deal directly with curriculum and four consider
policy issues involving curricular relationships and assessment. Although thoroughly grounded in
the realities of U.S. education, these papers explore a variety of paths to the goal of imbuing students
with quantitative habits of mind in addition to conveying facts and procedures. As with all such

Bernard L. Madison is Professor of Mathematics at the University of Arkansas where he previously served as Chair of
Mathematics and Dean of the J.W. Fulbright College of Arts and Sciences. During 1985–89, Madison directed the
MS2000 project at the National Research Council, including the 1987 Calculus for a New Century symposium. Madison has
worked in various roles for the Advanced Placement program, including serving as Chief Faculty Consultant for AP
Calculus and as a member of the Commission on the Future of AP.
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explorations, differences in terminology and emphases emerge,
revealing both the intellectual richness and the complexity of this
challenging issue.

The need for quantitative literacy is both personal and societal.
Although personal needs are addressed to some extent in all the
papers, four focus especially on the societal issues of citizenship
and work. Two of these view QL and the workplace from very
different perspectives. Linda Rosen (with Lindsay Weil and Claus
von Zastrow) addresses QL from the standpoint of the National
Alliance for Business, offering views from the business world con-
cerning the need for QL education and the educational responses
that have been made by businesses. Because QL is a nontraditional
newcomer to education, the business response to it is predicted to
be conservative. Arnold Packer, a pragmatic economist, ap-
proaches QL from the perspective of what mathematics everyone
should know and be able to do. His approach is to evaluate skills
in terms of their frequency of use and economic value in the
workforce.

The third paper addressing societal issues, by historian Patricia
Cline Cohen, views the need for QL from a historical perspective.
She details how the U.S. government has relied on and promoted
QL from the inception of constitutional rule in 1789. The fourth
paper, by Anthony Carnevale and Donna Desrochers, analyzes
the current need for QL education. The authors consider both the
demands of democratic processes and the requirements of the
current and future workforce.

CURRICULUM ISSUES

Four thought papers look specifically at the mathematics curricu-
lum and its role in general education. Deborah Hughes Hallett,
Jan de Lange, and Lynn Arthur Steen address various aspects of
that curriculum, including some that often are classified under the
rubric of statistics. Hughes Hallett writes of the college experience
while de Lange offers an international perspective. Steen argues
for a mathematics curriculum in grades 6 to 12 that would expand
the current narrow focus on algebraic symbol manipulation. Fi-
nally, Randall Richardson and William McCallum discuss how to
extend college QL education beyond mathematics courses to de-
velop authentic contexts for mathematical concepts in other dis-
ciplines.

POLICY CHALLENGES

Policy challenges in various QL areas—articulation, assessment,
relation to mathematics, and core curriculum—are the subjects of
the final four thought papers. Michael Kirst addresses the complex
political and policy issues surrounding articulation, that is, how
QL education is affected by the decision making and transitions
from secondary to higher education. Bernard Madison looks at
articulation from within mathematics and analyzes features of the

current system of school and college mathematics that weaken QL
education. Grant Wiggins discusses the unusual demands of as-
sessing QL that are created by its contextual nature. Finally, Rich-
ard Scheaffer, aided by five statistics colleagues, positions many of
the ideas in the other papers in the context of statistics education.

Part II: Forum Essays
The Forum program stimulated a wide-ranging discussion of the
nature of QL; the relationships of QL to mathematics, statistics,
and other disciplines; the consequences of innumeracy; possible
improvements in QL education; and policy issues related to QL
education. Perspectives expanded well beyond those presented in
the background papers but continued to echo the themes of need
and challenge. Varied voices spoke from broad and experienced
viewpoints. For example, program participants included the pres-
idents of major mathematical sciences professional organizations
such as the American Mathematical Society (AMS), American
Mathematical Association of Two-Year Colleges (AMATYC),
American Statistical Association (ASA), Mathematical Associa-
tion of America (MAA), and National Council of Teachers of
Mathematics (NCTM).

NEED FOR WORK AND LEARNING

Stronger mathematical education of teachers is central to QL in
the view of National Academy of Science member Roger Howe.
J. T. Sutcliffe, a high school mathematics teacher, not only sup-
ports stronger teacher education but also points to the constraints
under which teachers work. Science dean and biologist David
Brakke echoes the need for K–12 teacher education in QL but
expands that in a call for colleges to continue and extend QL
education. NCTM President Johnny Lott points to flaws in the
K–16 mathematics curriculum that weaken QL education for all
students, including future teachers.

Retired General Electric engineer William Steenken writes about
the importance of QL to industry while Arnold Packer expands on
his background paper, exhorting mathematicians to recognize the
need for practical mathematical knowledge. Former astronaut and
astronomer George Nelson discusses the nature of QL and com-
pares it to science literacy.

POLICY PERSPECTIVES

Although most participants at the Forum felt that education for
QL should extend beyond mathematics and statistics, Jan Somer-
ville cites policy issues surrounding college and university mathe-
matics that impede progress toward a more useful mathematics
education. She challenges mathematicians to take QL as a respon-
sibility and to address more forcefully problems in mathematics
education. Margaret Cozzens reinforces Somerville’s views by
identifying higher education policies and practices that hinder QL
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education. Judith Rizzo points to the need for stronger curricula
and better prepared teachers, observing that our standards show
that we already are strongly committed to QL. Sadie Bragg de-
scribes the special role of two-year colleges in general education
and emphasizes how institutional policies can impact basic learn-
ing. In an essay addressing the importance of national networks,
Susan Ganter discusses past and current successes of networks in
mathematics curricular reform.

INTERNATIONAL PERSPECTIVES

In addition to the background paper by Jan de Lange, this volume
contains a group of essays by authors from Brazil, Denmark,
France, Great Britain, and the Netherlands, offering views of QL
in those countries. Lynn Steen writes in his introduction to this
section that “these glimpses of how mathematics educators in
other nations are coming to terms with the new demands of nu-
meracy, mathematics, and citizenship open a window on ap-
proaches that move well beyond those normally considered in
U.S. curriculum discussions.”

FORUM REFLECTIONS AND OBSERVATIONS

Three presentations at the Forum provided reflections on the
central issues. Jeanne Narum opened the Forum with an analysis
of the task ahead and, citing her experience with Project Kaleido-
scope, urged collaboration in addressing QL. In a luncheon pre-
sentation, Rita Colwell, director of the National Science Founda-
tion, challenged Forum attendees to produce national standards
for QL and assessments that measure our progress toward attain-
ment of QL goals. AMS President Hyman Bass, in his closing
remarks, cautioned against major curricular changes until QL is
better understood.

Although regrettably not recorded in the pages of this volume,
Daniel Kennedy’s hilarious monologue on “Why Johnny STILL
Can’t Add” entertained Forum participants after the midpoint
dinner. For a brief respite, QL was replaced by a sterling example
of “high humor” literacy.

The reflections at the end of this volume probably provide the best
summary of Forum discussions. This is what various selected par-
ticipants from a wide variety of backgrounds took away with
them. Two themes dominate: (1) the relationship of QL to math-
ematics and statistics and (2) the perceived difficulty of improving
QL education. AMATYC President Philip Mahler ties these two
themes together, concluding that the difficulty in improving QL
education requires that it must be extended beyond mathematics
and statistics.

Gene Bottoms and Andrea Leskes focus on the need to improve
school mathematics. Leskes suggests that viewing QL as sophisti-
cated uses of elementary mathematics could allow schools to con-

centrate on improved understanding of elementary mathematics
while colleges address more complicated uses. William Haver cau-
tions that too much emphasis on how QL and mathematics differ
could let mathematicians off the educational hook. Russell Ed-
gerton acknowledges that the QL discussions made him more
aware of the need for a curriculum that contributes to general
learning goals. Peter Ewell muses about the struggle to define QL,
the dominance of mathematics in Forum discussions, and the
need for different messages for different audiences. Rob Cole wor-
ries about the narrowness of disciplinary thinking.

Jo Ann Lutz and Mary Jane Schmitt both speak of how the chal-
lenge of QL seemed to become more daunting as the Forum
unfolded. Schmitt also points to the expansion of focus from
education in grades 11 to 14 to “pre-K through grey.” Don Small
urges development of experimental QL education programs and
suggests that reforming college algebra could provide a strong base
for QL in colleges. Stephen Maurer, even though temporarily
discouraged by the difficult task of QL education, left the Forum
with a plan of action for Swarthmore. Edward Tenner notes the
split between the experimentalist views of Small and Maurer and
the more conservative view that QL is a long-term systemic chal-
lenge.

Many Faces and Common Themes
Mathematics and Democracy lays the groundwork for all the pa-
pers, essays, and reflections, providing common terminology,
general definitions, and examples of quantitative literacy. Never-
theless, the thought papers and Forum proceedings exhibit con-
siderable wrestling with the meaning of QL and offer a variety of
interpretations and terminology. Some talk about mathematics
and mathematical literacy as proxies for quantitative literacy while
others draw finer distinctions between mathematics, mathemati-
cal literacy, numeracy, and QL. Many of the reflections on the
Forum recognize that although a general understanding of QL is
critical, precision in definition is unnecessary. The faces of quan-
titative literacy revealed in this volume create a mosaic of complex
issues confronting a U.S. education system unaccustomed to deal-
ing with competencies cutting across all academic disciplines and
almost all aspects of everyday life. Yet these competencies are
crucial for citizens living in a twenty-first-century democracy.

Common themes do run through many of the contributions to
this volume. One is the need for better articulation and synergy
between the components of the K–16 education system and be-
tween education and the rapidly changing political and economic
environment. Kirst and Madison focus largely on articulation
between school and college; Kirst analyzes political and policy
issues while Madison aims specifically at circumstances within
mathematics. Somerville and Lott both point to difficulties stu-
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dents face in the transition from to school to college mathematics.
Haver and Small suggest specific ways in which college mathemat-
ics can ease some of those difficulties. Lutz cautions that current
messages from colleges keep schools from emphasizing QL, and
Maurer points to admission tests as an example of one such mes-
sage. Other commentators address the need for different kinds of
articulation.

Carnevale and Desrochers, Rosen, and Packer discuss the need for
articulation between mathematics education and the workplace.
Steenken expands on this need from the perspective of an engineer
in industry. Hughes Hallett, de Lange, Scheaffer, and Richardson
and McCallum all address the need for articulation between
teaching mathematical and statistical concepts and using authen-
tic contexts drawn from a variety of real-world sources. Further,
they argue for the effectiveness of articulation between various
college disciplines (Hughes Hallett calls this a “friendly conspir-
acy”) in teaching the use of mathematics and statistics in numer-
ous contexts. Cole and Edgerton expand on the need for QL to be
a multidisciplinary effort. Leskes echoes the goal of teaching QL
across the disciplines.

Closely aligned to the articulation theme is the complexity of the
education system responsible for teaching quantitative literacy.
The discussions in this volume point to numerous pressures
within and on this system that make change difficult. Kirst speaks
of the “Babel of assessments” facing students as they move
through the mathematics curriculum. Madison describes the
complex and overlapping system of mathematics at the boundary
between school and college. In a Forum reflection, Schmitt ob-
serves that QL education should extend well beyond school and
college to a host of adult education venues in the media, work-
place, and community.

Wiggins writes about the difficulty of finding authentic contex-
tual assessments. Steen discusses the formidable forces that shape
the K–12 mathematics curriculum. Bottoms outlines five chal-
lenges for improving QL in the schools, including changing test-
ing and textbooks and avoiding increased tracking. Cohen chron-
icles the historical development of QL and the forces that were in
play in earlier eras. De Lange illustrates the difficulty of deciding
what mathematics is important for QL and emphasizes the need
for much closer ties between the curriculum and the culture in
which it is taught. Tenner hypothesizes that only a minority of
college faculty are potentially strong QL teachers and that they
need to be convinced that QL is an intellectual challenge.

Rosen and Packer address the complex needs of a major compo-
nent of U.S. culture, the workplace, and show how those needs are
or are not being met by mathematics and quantitative education.
Scheaffer confronts the doubly complex task of explaining how
the relatively new and poorly understood discipline of statistics
and statistics education fit into the haze of QL education.

Aside from the discussion—albeit mostly academic—about the
need for a better definition of QL, the Forum papers and essays
clearly point to two other needs:

1. Systematic evidence to support the call for stronger QL ed-
ucation; and

2. Clear descriptions of the levels of QL and of strategies for
how they can be assessed.

Numerous anecdotes and the results of national and international
tests point to low levels of QL, even among U.S. college graduates.
Most people are familiar with this deficiency, but stronger evi-
dence is needed about the consequences for society and for indi-
viduals. Although there is widespread agreement that a basic level
of quantitative literacy should result from K–12 education and
that levels of QL should continue to rise throughout higher edu-
cation, neither the levels of QL nor assessments for these levels are
yet identified in a form that commands widespread support.

Neither the background papers nor the Forum essays and reflec-
tions answer all the questions about the need for QL and how best
to achieve it. They do, however, present valuable and informed
views on quantitative literacy from a variety of perspectives. To-
gether with Mathematics and Democracy, these views form a solid
basis for furthering the national conversation on how to achieve
quantitative literacy for all. As Peter Ewell observed, the Forum
was helpful in “stirring the pot, which was exactly what was in-
tended. The question now is how to keep the thing cooking with-
out boiling over.”
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Democracy and the Numerate Citizen:
Quantitative Literacy in Historical
Perspective

PATRICIA CLINE COHEN

“Political Arithmetick is an art daily growing more important in the United States,” wrote the
Massachusetts statesman Josiah Quincy in 1816. In a lengthy analysis of an innovative new book on
American statistics published in the North American Review, Quincy expounded on the connections
he saw between statistical knowledge and the duties of citizens and lawmakers in the fledgling
American republic. Democratic government, as ordained by the Federal Constitution, made “a
knowledge of our civil condition . . . something more than the gratification of mere curiosity.” The
careful accumulation of hard data about society—“authentic facts,” “certain knowledge,” “stati-
sticks,” in the language of Quincy’s day—was essential information for a government whose goal was
to promote the general welfare of its citizens. Hard data, Quincy declared,

“are to be sought, and ought to be studied by all who aspire to regulate, or improve the state of
the nation; and even by all who would judge rightly of their duties as citizens, and who are
conscientiously scrupulous, even in private life, of so casting their influence into the scale of
parties, as best to promote the general happiness and prosperity.”1

Quincy’s language sounds formal, antiquated, musty even, to modern ears, but his point about the
growing importance of numbers to an informed citizenry was certainly farsighted. Over the two
centuries that America has developed and matured under democratic institutions, numbers and
quantities have achieved an overwhelming preeminence in the politics of public life. This is so
because “Political Arithmetick” connects to democratic government in three distinct ways. First, the
very political legitimacy of a representative democracy rests on repeated acts of counting: tallying
people in periodic census enumerations to apportion the size and balance of legislative bodies, and
tallying votes in varieties of elections to determine office-holding and public policies. Second, as
Quincy suggested, a government whose goal is the general welfare of its citizens needs good aggregate
information about those citizens on which to erect and assess public policy. It is no coincidence,
then, that the word “statisticks” was coined in English in the 1790s (although what was meant by it
was somewhat different from its meaning today). And third, the citizens of democratic governments
also need good information, to assess their leaders’ political decisions and judge them on election
day. Voters certainly have always appraised the character and leadership qualities of candidates, but
it is increasingly the case that candidacies in the modern era can be won or lost based on the
unemployment rate, the crime rate, or the Dow Jones index. Our multitudes of numerical indicators
summarize the complex economic, political, and social health of the country, and citizens need to be
able to decode and decipher this modern-day “political arithmetic.”2

To say that there is a vital link between numbers and representative democracy is not to suggest that
this was fully understood from the founding days of the United States. The vast majority of citizens

Patricia Cline Cohen is Chair of the History Department at the University of California, Santa Barbara, where she has also
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The Spread of Numeracy in Early America, a cultural history of the diffusion of arithmetic skills and the propensity to use
quantification in American culture in the 18th and early 19th centuries.
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in 1789 had quite limited numeracy skills, skills that got exercised
the most (if at all) in the world of commerce and trade, not in the
world of politics. Although at the outset, the U.S. Constitution
provided for a decennial census for apportioning the House of
Representatives, the Congress took two decades just to begin to
realize that the labor-intensive enumeration process could be aug-
mented almost without cost to capture additional data that might
be useful for a government to have. Even the apportionment
function was carried out with considerable imprecision, showing
us that a general faith in representative institutions in 1789 did
not yet translate to anything so arithmetically concrete as one
man, one vote.

We have moved, over two centuries, from a country where nu-
meracy skills were in short supply and low demand, to one in
which the demand is now very high indeed—and in which the
supply, while greatly augmented, has not kept up with the need.
This Forum is primarily focused on the present and the future,
asking how much quantitative literacy is necessary to function in
these beginning years of the twenty-first century. But it helps to
look backward as well, to understand the development of the ideas
linking quantitative literacy to citizenship in a representative de-
mocracy. By mapping out the spread of numeracy in specific
arenas, we can begin to see what factors spurred the growth of
quantitative literacy in American history. More than just arith-
metic, the shopkeeper’s skill, was highly valued in the early years
of our democracy; leaders also championed the study of geometry
as a pathway to the superior reasoning skills required by represen-
tative government. Our exploration of the practices of arithmetic
and geometry instruction will quickly lead us to another impor-
tant problem: the differential distribution of mathematical skills
in past populations, which provides a further important clue to
the question of how quantitative literacy bears on citizenship. And
finally, we need to move beyond the naı̈ve enthusiasm for “polit-
ical arithmetick” characteristic of the early nineteenth century,
which valued numbers for their seemingly objective, neutral, and
therefore authoritative status, to see the symbolic and constructed
uses of political numbers that can both convey and hide important
information. As we all learned so dramatically in the election of
2000, “simple counting” in politics is never really simple.

This essay looks at three historical eras: the founding generation,
from the 1780s to about 1810; the antebellum period, from the
1820s to the 1850s, when direct democracy came into full bloom
and the country underwent a market revolution; and the late
nineteenth century, when empirical social science became wedded
to government and when new citizens—the newly freed slaves and
the many thousands of immigrants—posed new challenges and
choices for the developing education system. For each period I will
sketch out features of the spreading domain of number in service
to the state and then assess the levels of numeracy prevalent that

helped (or hindered) citizens from functioning effectively as citi-
zens.

The Founding Generation:
Who Counts
The writers of the U.S. Constitution embedded three ideas in
their ingenious plan of government that implied and eventually
fostered a relationship between quantification and politics. First,
they chose to erect a representative government that acted on and
represented people, not the states, as had the predecessor plan, the
Articles of Confederation. The size of each state’s population de-
termined the composition of the House of Representatives and
the number of electors in the electoral college that selected the
president. Second, the Constitution inaugurated a regular and
recurring census based on “actual enumeration,” and the results
would determine not only apportionment in the House and elec-
toral college but also apportionment of direct taxes. And third, the
framers handled the thorny problem of noncitizen inhabitants by
counting slaves (circumspectly described as “other Persons” in
contrast to the category of the “free”) at a three-fifths ratio, which
meant that slaves added weight, but not full weight, to the political
power as well as the tax burden of slave states. (This was judged at the
time to be a brilliant compromise between the North and the South;
however, with relatively few instances of direct federal taxation before
the Civil War—in 1798 and three times in the 1810s—the slave
states derived constant political benefit without the counterbalancing
pain of taxation essential to the three-fifths clause.)

These features of the Constitution suggest a numerical approach
to governance, a way of imagining citizens as individuals who
“count” or matter, as objects of, participants in, and paying sup-
porters of government. But in the first several decades, scant at-
tention was paid to direct democracy. (After all, these were the
men who gave us the electoral college as a method of selecting the
president.) The 1790 census no doubt substantially undercounted
the population—Thomas Jefferson and George Washington both
suspected that—but its precise accuracy was not a matter of great
consternation at the time. Indeed, many of the people tallied in
that census—women, children, servants, slaves, the unproper-
tied—although included for the headcount were never imagined
therefore to be active participants in government. The narrow goal
of the count was to yield proportional representation at a ratio of
one representative to no fewer than 30,000 people, voters or not.
The simplicity of the Constitution’s mandate, however, was be-
lied by the complexities of actually making a fair apportionment
once the population was ascertained. Congress spent over five
months on the problem, finding it both a politically and mathe-
matically fraught question. What number of representatives, cou-
pled with what divisor (in the ratio of representation), yielded the
closest thing to proportional representation? And crucially, how
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would remainders be handled? Delaware, for example, had an
enumerated population of 50,209 free people and 8,887 slaves,
leaving it with one representative and a very large remainder no
matter whether a divisor of 30,000 or 33,000 (the number finally
chosen) was used. The final two opposing apportionment formu-
las were the work of Jefferson and Alexander Hamilton, which
tells us right there that considerable political clout was at stake.
But for much of the winter and early spring of 1792, members of
Congress struggled with tedious repetitions of long division, test-
ing out different divisors and trying to fathom the political con-
sequences of different ways of treating the remainders. Little of
this internal jockeying made the newspapers, which suggests that
the “political arithmetick” of direct democracy was in its infancy
then. Probably few citizens of Delaware ever drew the conclusion
that their state had been shortchanged.3

Further, only a very few political thinkers saw that the innovation
of a repeated census might be put to extended uses. Censuses
before 1790, both in Europe and in the colonies, had been infre-
quent acts of monarchical power designed to assess military
strength or taxation potential. Not surprisingly, then, enumera-
tions historically had been met with suspicion and sometimes
resistance. But in the U.S. case, counting people was a tactic to
ensure representation, a good thing. Congressman James Madi-
son served on the committee charged with drawing up the first
“enumeration bill” in 1790. Madison proposed an expanded cen-
sus, one that went beyond a basic tally of free and slave to further
categorize people by race, by sex, and—for white males only—by
age (those over 16, those under, a split that gauged military man-
power). He also proposed that each employed person be tallied as
doing either agricultural, commercial, or manufacturing work,
arguing reasonably that “in order to accommodate our laws to the
real situation of our constituents, we ought to be acquainted with
that situation.” In the end, however, Congress accepted the race,
sex, and age additions but rejected the occupational categoriza-
tion. As one representative said, it would “occasion an alarm”
among the people, for “they would suppose the government in-
tended something, by putting the union to this additional ex-
pence, beside gratifying an idle curiosity.”4

When the 1800 census came up for drafting, two learned societies
each petitioned Congress to enlarge the census to serve the cause
of science. The Connecticut Academy of Arts and Sciences, lo-
cated in New Haven, and the American Philosophical Society, in
Philadelphia, each memorialized Congress with a plea to turn the
census into a national gathering of “authentic facts.” Such facts
might include the age, nativity, occupation, and marital status of
each person so that, over a run of years, future generations could
chart the aggregate progress, health, and longevity of the citizens.
But again Congress ignored these requests, not thinking them
worth the bother.5 The census was expanded a bit, in that the
white population was now recorded in five age classifications for

both sexes. The black population, however, whether free or slave,
was not distinguished by any sex or age classification. Disparities
like this one are very revealing, because they remind us pointedly
of the constructedness of political numbers. Who gets counted
and how: these are always political decisions. In all the U.S. cen-
suses up to and including the 1840 count, blacks and whites were
categorized under different age classifications, making it very dif-
ficult to compare their longevity or other vital rates.

The Connecticut Academy of Arts and Sciences undertook to do
for Connecticut what it had failed to accomplish at the national
level. It embarked on an ambitious survey of all Connecticut
towns, with an instrument of 32 questions that probed for an
account of the population, the numbers of houses and carriages,
local manufactures, the number of clergymen and their salaries,
and “instances of suicide in the last twenty years,” among other
things. The academy leaders failed in that task, too, finding that
local respondents were mostly disinclined to collect the data; in
the end, only two town studies were published.

The idea for a state-based survey came from a parallel survey
project undertaken in Scotland by Sir John Sinclair, the man who
came up with the word “statisticks” and defined it to mean “an
inquiry into the state of a country, for the purpose of ascertaining
the quantum of happiness enjoyed by its inhabitants, and the
means of its future improvement.”6 “Statistick” first appeared in
an American dictionary in 1803 with an enigmatic definition
referring to Sinclair and his “statement of the trade, population,
production [of Scotland] . . . with the food, diseases, and longev-
ity of its inhabitants.” By 1806, the word gained a clearer articu-
lation in Noah Webster’s first dictionary as “a statement or view of
the civil condition of a people.”7 The word state was embedded in
the term in two ways: facts about the state that could be plainly
stated. Although such facts might take the form of numbers, this
did not become an essential part of the definition for several more
decades. By the mid 1820s, just over a dozen books had been
published with the word “statistics” or “statistical” in the title, and
another 17 not emblazoned with the word still had the character
of reference books of authentic facts and numbers. Nearly all these
books proclaimed the novelty of their shared project, assembling
facts and figures for the aid of statesmen and citizens.8

The Founding Generation: Small Steps
Toward Greater Numeracy
This slow but definite start to America’s affinity for quantification
in politics was paralleled by a similarly gradual embrace of arith-
metic education in these early years.9 The founding fathers in the
1790s were quick to form grand schemes to improve education;
an educated citizenry was well understood to be the bulwark of a
republican government, and there was no shortage of public-spir-
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ited plans formulated to improve the mental reasoning of the
nation’s youngest citizens and future voters. There also were good
reasons in particular to address what had been an abysmal state of
arithmetic instruction in the colonies. But, as ever, the fulfillment
of these good intentions proved considerably harder to accom-
plish, in view of the costs to taxpayers of public education.

Arithmetic instruction in prerevolutionary America occupied a
very narrow slice of what was already not a very generous provision
of education before the 1790s. The South’s few private schools
and tutors educated only a small fraction of the gentry’s children.
It was in New England where literacy and numeracy were the
most advanced, thanks to a patchwork tradition of district schools
supported by local and state funds. But even there, significant
obstacles kept arithmetic skills at bay, obstacles also at work in the
South. The subject was identified with commerce, and generally
only boys headed for the mercantile life troubled to learn it. It was
demonstrably a difficult and arcane subject, requiring the writing
and reasoning skills characteristic of children over age 11 or 12, so
anyone whose education did not extend to the adolescent years
skipped it entirely—thus, most girls missed out. Simple counting
and adding in Arabic numerals below a hundred probably was
routinely passed on from parents to children, eminently useful for
handling small sums of money, paying taxes, toting up firkins of
butter, selling excess eggs, measuring lumber and, in general,
thinking about prices in the typically static colonial economy. But
anything in the “higher branches” was not commonly taught,
except to boys in vocational training.

A glance at any of the arithmetic textbooks used in the colonies
reveals how truly convoluted and challenging this subject was. For
two centuries, imported English texts had organized knowledge of
the arithmetic arts into a catechism-like set of rules that relied on
memory rather than reasoning. (The rules in different texts were
not so regularized, however, that they found similar expression.
Books even jumbled the order of presentation, bragging that no
section depended on any previous section for completion.) Gen-
erally, a student first was introduced to Arabic numerals and then
to the first four rules of addition, subtraction, multiplication, and
division in whole numbers. Next, a text might repeat the rules in
fractions, or repeat them afresh using denominate numbers—
“named” numbers that expressed the elaborate and complex de-
nominations of the English system of weights, measures, and
money. Denominate arithmetic was undoubtedly the worst stum-
bling block in the acquisition of numeracy. Texts presented page
after page of equivalencies in gallons and pints, bushels and pecks,
pounds and ounces. Often the denominations of volume or size
were specific to the item being measured: so, for example, a firkin
of butter weighed 56 pounds whereas a firkin of soap weighed 64;
a hogshead of beer contained 45 gallons whereas a hogshead of
wine contained 63. Troy and apothecary ounces totaled 12 to the
pound, whereas avoirdupois ounces equaled 16 per pound. Stu-

dents struggled with a rule called “reduction,” learning to figure
how many minutes in a week, how many ounces in a hundred-
weight, how many inches in 3 furlongs and 58 yards. Reduction
was essential for the key problem of calculating the price of mea-
sured commodities in pounds, shillings, and pence.

The capstone of basic arithmetic arrived with the “rule of three”:
“Given three parts, to find the fourth” was the usual phraseology.
This rule and its variations (single and double, direct and inverse)
covered the basic commercial problem of proportional relation-
ships. If a man pays 1s. 7d. to pasture a cow for one week, how
much will it cost him to pasture 37 cows for two weeks? If nine
men can build a house in five months, working 14 hours a day, in
what time can nine men do it if they work only 10 hours per day?
The solution required writing down the three known quantities in
a certain order, multiplying the middle term by the last, and
dividing the product by the first. Knowing the proper order and
choosing the proper version of the rule were essential. Some books
helpfully provided gimmicks to aid memory: “If more require
more, or less require less, the question belongs to the Rule of
Three Direct. But if more require less, or less require more, it
belongs to the Rule of Three Inverse.”10

Arithmetic was unrelentingly mercantile, and the chief method of
instruction, up to about 1820, was the copybook. A teacher likely
had just one text, and every student copied each rule into a manu-
script copybook and worked a selected example for each rule. A
student who passed through the major “rules” produced his own
permanent record of the rules, essential for later reference in life. A
large collection of arithmetic copybooks owned by Harvard Uni-
versity shows that the typical copybook ended with the rule of
three. But printed textbooks and a few copybooks forged on, to
the rules of fellowship, interest, compound interest, discount, tare
and tret, and dozens more that covered seemingly unique business
applications.

These textbooks and their derivative copybooks look quite impos-
sible as teaching aids to us now. They eschew explanation, give
minimal examples, invoke no repeat drills, and treat each type of
problem as a universe unto itself, with nary a hint of logical con-
nections between, say, subtraction and division, addition and
multiplication, or fractions and decimals. The rule of three was
about the only rule that attempted a form of generalization in
abstract numbers and, as the copybooks show, many students
were at sea in applying it to novel situations with the burdensome
denominate numbers. Yet it is possible that having a multitude of
seemingly distinct formulas actually improved marketplace calcu-
lation, precisely because a young merchant getting his footing in
the world of trade did not try to reason things out but instead
paged through his copybook looking for the exact rule that fit the
situation. This was applied mathematics, and the point precisely
was to give each application its own algorithm. In time, the young
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merchant would grow very familiar with the particular and lim-
ited kinds of calculations his type of business required, and the
copybook would have served its purpose.11 But such a form of
training did little to enhance the generalized facility with numbers
that we now call quantitative literacy.

This eighteenth-century picture of arithmetic training began to
change in the 1790s, coincident with and explicitly connected to
the arrival of republican institutions. Citizenship was a term newly
invested with patriotic meanings, and leading statesmen contem-
plated the best pathways for creating an informed citizenry. Rais-
ing literacy rates was one obvious strategy, to improve the flow and
reception of ideas and information; and reforming mathematics
instruction to sharpen citizens’ minds was another. No less a pub-
lic figure than George Washington endorsed mathematics educa-
tion as a civic benefit: “The science of figures, to a certain degree,
is not only indispensably requisite in every walk of civilized life,
but the investigation of mathematical truths accustoms the mind
to method and correctness in reasoning, and is an employm. pe-
culiarly worthy of rational beings.”12 Thomas Jefferson was on
record with his support as well: “The faculties of the mind, like the
members of the body, are strengthened and improved by exercise.
Mathematical reasoning and deductions are, therefore, a fine
preparation for investigating the abstruse speculations of the
law.”13

Jefferson sketched out an ambitious system of education for Vir-
ginia that would have provided three years of publicly supported
schooling for all free boys and girls, covering reading, writing, and
“common arithmetic” (probably to the rule of three). From there,
the worthy boys (ones who could pay tuition plus a tiny fraction
invited on scholarships) could progress to a Latin grammar school
where “the higher branches of numerical arithmetic” would be
taught. At the pinnacle, a college would educate the most deserv-
ing; here was where algebra and geometry would be encoun-
tered.14 Notable in this plan was the provision for girls to be
taught basic arithmetic. But the two lower levels of Jefferson’s
system were not built in his lifetime. Similar schemes for common
school systems in other states were equally hard to implement
because of the expense of public education. This meant that col-
leges—the handful that there were around 1800—generally
needed to offer first-year courses in basic arithmetic to compensate
for persistent deficiencies at the lower levels of instruction.15

Jefferson took another route, however, that had a much more
immediate impact on numeracy in the 1790s. As secretary of state
under Washington, he proposed a major reform in the monetary
system of the nation in 1793, abolishing pounds and shillings in
favor of decimal dollars, dimes, and cents. (Jefferson was equally
inspired by French Enlightenment plans for the metric system,
but that did not fly in the 1790s.) Ease of calculation was Jeffer-
son’s goal: “The facility which this would introduce into the vul-

gar arithmetic would, unquestionably, be soon and sensibly felt by
the whole mass of people, who would thereby be enabled to com-
pute for themselves whatever they should have occasion to buy, to
sell, or measure, which the present complicated and difficult ratios
place beyond their computation for the most part.”16

By 1796, the mint was producing the new money, triggering the
publication of dozens of new arithmetic textbooks with national-
istic titles, for example, The Federal Calculator, The Scholar’s Arith-
metic: or, Federal Accountant, The Columbian Arithmetician, and
The American Arithmetic: Adapted to the Currency of the United
States.17 One book of 1796 spelled out explicitly the interconnec-
tions between common arithmetic, decimal money, and republi-
can government:

It is expected that before many years, nay, many months,
shall elapse, this mode of reckoning [decimal money] will
become general throughout the United States. . . . Then let
us, I beg of you, Fellow-Citizens, no longer meanly follow the
British intricate mode of reckoning. —Let them have their
own way—and us, ours.—Their mode is suited to the genius
of their government, for it seems to be the policy of tyrants, to
keep their accounts in as intricate, and perplexing a method
as possible; that the smaller number of their subjects may be
able to estimate their enormous impositions and exactions.
But Republican money ought to be simple, and adapted to
the meanest capacity.18

In other words, bad governments prefer complicated money and
innumerate citizens who cannot figure out how a tyrant can be
fleecing them, while republican governments should make it pos-
sible for people of “the meanest capacity” to be able to decode the
country’s budget and tax policy.

The Antebellum Era:
Numeracy Training Accelerates
Simplified decimal money alone did not drive the coming revo-
lution in arithmetic training. Just after 1820, remarkable innova-
tions and teaching techniques altered the look of arithmetic texts
and heightened the social valuation put on numeracy. The under-
lying cause of this major change is not hard to identify: the rapid
and unprecedented expansion of commerce in the years after
1815, when the War of 1812 ended. Economic historians call this
the takeoff period of early capitalism, a time when more and more
citizens eagerly committed themselves to (or found themselves
enmeshed in) a market economy characterized by the rise of bank-
ing and economies of scale, the vast development of internal trans-
portation, the introduction of water-powered factories, the sale of
and speculation in western lands, wage labor, cyclical financial
panics, and urbanization. Added to this, the years after 1820
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brought a remarkable democratization of American politics, as
state after state did away with property requirements, opened the
franchise to all white men, and developed a sharply competitive
party system that mobilized voters at the state and federal levels.
(In the 1840 presidential election, an impressive 80 percent of
eligible voters voted.) And, as noted at the opening of this essay,
this was the period when a statistical approach to politics began to
flourish, linking good government with vital data and measured
economic strength. Both economic and political developments
were accompanied by the growth of public education, leading to
more schools, more teachers, surer state support, and a gradual
bureaucratization of schooling with the development of state
school systems starting in the 1830s, of which Horace Mann’s
leadership in Massachusetts is perhaps the best known. Within
this new context, arithmetic education was spectacularly recon-
ceived.

The most impressive change in arithmetic instruction came in the
1820s, when an entirely new approach to the field, based on
inductive reasoning, challenged the heavy, memory-based books
of the eighteenth century. The move started with a young Harvard
graduate named Warren Colburn, who published a text of “intel-
lectual arithmetic” for very young children, ages 4 to 8, that omit-
ted all rules. The book instead consisted of pages of problems in
addition, subtraction, multiplication, and division, with whole
numbers and fractions, and for the first part of the book the
numbers were written out as words, avoiding any explanation of
Arabic numerals or the place system. In the next few years, Col-
burn extended his anti-rule method to another arithmetic text and
to an algebra book.19 By the late 1820s and well into the 1830s
and 1840s, dozens of other text authors followed the Colburn
method. Some two million copies of Colburn’s first book were
sold in its first 35 years and it was still in print in the 1850s,
reportedly selling over 100,000 copies annually.20

Two distinct pedagogical techniques characterized this new ap-
proach. First, arithmetic began as a mental (or “intellectual”) ex-
ercise, done in the mind without pencil and paper and without
abstract symbols for numbers and operations. The idea here was to
train the mind to reason with numbers, not to do problems by rote
formula. An important side benefit was that mental arithmetic
could be taught to children too young to read or write. Colburn’s
second and controversial innovation rested on his claim that chil-
dren could develop their own calculation techniques, recapitulat-
ing mathematics through inductive reasoning. Set a student to
work on an addition problem, Colburn advised,

. . . without telling him what to do. He will discover what is
to be done, and invent a way to do it. Let him perform several
in his own way, and then suggest some method a little differ-
ent from his, and nearer the common method. If he readily

comprehends it, he will be pleased with it, and adopt it. If he
does not, his mind is not yet prepared for it, and should be
allowed to continue his own way longer and then it should be
suggested again.21

The rule of three was entirely omitted from all his books. “Those
who understand the principles sufficiently to comprehend the
nature of the rule of three, can do much better without it than
with it, for when it is used, it obscures, rather than illustrates, the
subject to which it is applied.”22 Colburn wanted to end chil-
dren’s slavish reliance on rules and rote learning and to teach them
to think for themselves. “Most scholars soon acquire such a habit
of thinking and reasoning for themselves, that they will not be
satisfied with anything, which they do not understand, in any of
their studies.”23

This “new math” of the 1820s did not completely sweep the field
of arithmetic instruction, of course. By the mid 1830s and increas-
ing thereafter, a steady stream of criticism challenged the assertion
that students could invent arithmetic wholly in their heads. Texts
touting arithmetic by the “deductive” method appeared, present-
ing axioms and definitions to be memorized and applied. By the
second half of the nineteenth century, the inductive method was
remembered only as a failure. In the 1870s, the Paterson (New
Jersey) superintendent of schools reflected that arithmetic was
once “taught backward—reason before observation.” Instead,
fundamentals, number facts, and rote computation now took pre-
cedence over mathematical reasoning. “Reasoning upon facts is
the work of a maturer mind,” he wrote, something reserved for
children age 12 and older.24

Nonetheless, Colburn’s innovations had galvanized the field of
arithmetic instruction, provoking scores of new textbook titles
each taking one side or the other in this lively educational debate.
(Schools and individual teachers usually chose their own text-
books, creating further incentive for new textbook authors to
jump into the market.) After the 1820s, the catechism-like books
of the eighteenth century, with their multitudes of terse, unintel-
ligible rules each with a single example, were no longer published,
having been rendered obsolete by the new books that outdid
themselves in their efforts to connect to students. (The old books
remained in use for some time, of course, even though they were
no longer being republished in new editions.) Whether they called
themselves inductive or deductive, mental or written, or analytic
or synthetic, in a third axis of the debate, all the new books joined
in an effort to promote solid and generalizable mathematical
skills. Arithmetic still was valued for its business applications, but
it also was valued for its ability to promote powers of reasoning. It
was thought of now as a basic part of every school’s curriculum,
not a set-aside appropriate for future merchants alone.
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Although more children were learning basic arithmetic and learn-
ing it better than ever before, coverage was uneven, of course, only
reaching children who attended school; the days of mandatory
school attendance lay far in the future. What is perhaps most
striking about this early period of the flowering of numeracy is
that it was, in theory, as available to young girls as it was to young
boys. This was an unprecedented development. Before 1820, girls
had only limited chances to become proficient in arithmetic. The
spread of common schooling, the drop in the age at which formal
arithmetic instruction began (from 11 to 12 down to 5 to 6), the
disconnect between narrow vocational training and arithmetic,
and—perhaps most significant—the large-scale entry of women
into the teaching profession: all these factors combined to bring
arithmetic instruction into the orbit of young women.

It was not an unproblematic development, however. It is ironic
that, when at long last basic arithmetic education was routinely
available to young girls in school, critics of that development
began to assert that girls had a distinctly lesser talent for mathe-
matics than boys. It is a gender stereotype that was actually rather
new in the nineteenth century or, if not entirely new, appearing in
a new and more precise form. In the eighteenth century, when
proficiency with the rules of figuring was the province of boys
bound for commercial vocations, any gender differential in math-
ematical skill could easily be understood as the product of sex
differences in education. Women were less numerate than men,
and they were also less often literate, but no one needed to con-
clude that women had an innately inferior capacity for reading the
printed page just because fewer women could read. So too with
numbers: the divide between the numerate and innumerate was
traced to specific training and needs, not to sex-based mental
capacity. And, to be sure, many female activities of the eighteenth
century required, if not actual arithmetic performed via rules, then
some degree of what we now see as part of a mathematical intel-
ligence—counting, spatial relations, measuring, halving and dou-
bling—as women went about cooking, weaving, knitting, and
turning flat cloth into three-dimensional clothing without benefit
of patterns.25

But in the early nineteenth century, when young girls finally had
a chance to be included in formal arithmetic instruction, the per-
ceived differences between the sexes were increasingly naturalized.
Critics of arithmetic instruction for girls questioned whether girls
needed it. “Who is to make the puddings and pies” if girls become
scholars, one critic wondered. A state legislature objected to “mas-
culine studies” in mathematics at one school, studies with no
discernable bearing on the making of puddings and stockings.
“What need is there of learning how far off the sun is, when it is
near enough to warm us?” said a third.26 Of course, there were
champions of arithmetic instruction for girls. Most argued that a
knowledge of household accounts was highly valuable for thrifty
wives to have, but a few moved beyond the purely practical and

staked their claim on the mental discipline and reasoning acquired
through arithmetic and the higher branches of mathematics.

Geometry in particular became the real battleground in this de-
bate in the 1820s and 1830s. Vaunted by European and American
Enlightenment thinkers for its ability to teach citizens to reason,
geometry had escaped the deadening pedagogy of rule-based com-
mercial arithmetics. It rested on comprehensible axioms and def-
initions, mobilized in elegant, logical arguments. A handful of
girls’ academies took up the challenge of putting Euclid into the
hands of students—Emma Willard’s famous Seminary at Troy,
New York, was one, and Catharine Beecher’s school in Hartford,
Connecticut, was another. Beecher saw geometry as a mental
gymnastic, good for “disciplining and invigorating the powers of
the mind.”27 But critics professed to be shocked, as seen in this
reaction to the news in 1824 that a Philadelphia girl’s school was
taking up geometry: “The proper object of geometry is the devel-
opment of the abstract properties and relations of space. In this
science it cannot be expected that females will make much profi-
ciency. Nor ought geometrical knowledge be considered as a nec-
essary object of their pursuit.”28 The real concern for many was
the blurring of sex roles and the creation of overly intellectual
women that instruction in geometry implied, and the debate re-
mained a lively one up until at least the 1850s. A middle course
struck by one contributor to the debate helpfully suggested that
no social harm would result if young women studied algebra and
geometry, because their innate desire to be pleasing to men would
keep them modest about their attainments. Similarly, their moth-
ering instincts would remain unscathed: “Would [a mother]
desert an infant for a quadratic equation?”29 Of course not. But it
took more than confidence in women’s yearnings to be wives and
mothers to quell this debate. In the end, it was the economic
advantages of a female (cheap) labor force to fill public teaching
positions that helped undermine the prejudices against women
learning algebra and geometry.

The Antebellum Enthusiasm
for Statistics
As the new arithmetic texts prospered and the higher branches
became more familiar to many, so too did the use of numbers and
statistics in American civic life. It is a chicken-and-egg question to
ask which inspired which. Certainly the two phenomena were
mutually reinforcing. A basic numeracy, along with a basic liter-
acy, was fast becoming the hallmark of American public life. And
this showed in the repeated uses of numbers and statistics that
materialized in the newspapers, periodicals, and public debate of
antebellum America.

Let me just itemize, quickly, some of the places in which a numer-
ical frame of mind freshly and creatively took hold. The U.S.
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Congress slowly shed its earlier reluctance to maximize the infor-
mation derived from the census. The 1810 enumeration,
launched during the failed embargo policies of Jefferson and Mad-
ison in the prelude to the War of 1812, was pressed into service as
a way to learn about the actual state of manufactures and industry
in the country. For the first time, data were collected that went
beyond population, but the actual results were riddled with errors
and many omissions. The 1820 census finally noted occupation,
but again the effort was rudimentary, sorting all working adults
into only three expansive categories. The 1830 census broadened
the scope to further fine-tune age categories for the white popu-
lation (but not the black) and to count the numbers of deaf,
dumb, and blind in the population; here we see the start of federal
interest in social statistics. But it was in 1840 that Congress com-
pletely succumbed to the siren song of statistics. The census pop-
ulation schedule expanded to 74 columns, adding new inquiries
about the number of insane and idiot Americans, the number of
scholars and schools, a tally of literacy, and a headcount of revo-
lutionary war pensioners, a category associated with direct govern-
ment expense. A second schedule also filled in by all enumerators
contained 214 headings and answered Congress’s blanket call for
“statistical tables” containing “all such information in relation to
mines, agriculture, commerce, manufacturers, and schools, as will
exhibit a full view of the pursuits, industry, education, and re-
sources of the country.” From this massive aggregation, a person
could learn the number of swine, of retail stores, of newspapers, of
the bushels of potatoes and 200 more economic “statistics” (i.e.,
descriptive numbers) for every census district in the United States.

This deluge of statistics was eagerly awaited by the reading public.
A variety of statistical almanacs first appeared and gained popu-
larity in the 1830s, and they were eager to carry news of America’s
progress to their readers. The American Almanac and Repository of
Useful Knowledge was an annual Boston publication dating from
1830, which was devoted to statistics, defined as “an account of
whatever influences the condition of the inhabitants, or the oper-
ations of government on the welfare of men in promoting the ends
of social being, and the best interest of communities.”30 This
almanac filled its pages with miscellaneous figures—on banks,
canals and railroads, pupils and schools. Other annual publica-
tions had a strictly political focus, such as the Politician’s Register,
begun in 1840, and the Whig Almanac and United States Register,
begun in 1842; both recorded elections back to 1788 for many
localities and provided county-level data for recent elections, giv-
ing readers information to strategize future campaigns.31 We take
this kind of data for granted now, but it was newly publicized
information in the years around 1840—not coincidentally, the
year when electoral participation was at an unprecedented high, a
high that was sustained for another five decades.

Another rough but very innovative act of political quantification
arrived on the scene in the 1850s, the straw poll of voters. Jour-

nalists roamed the public thoroughfares, targeting mixed assem-
blages of people, often passengers on a steamboat or a passenger
railroad, to ask about voter preference in an upcoming election.
Interestingly, women passengers usually were not excluded from
such polls even though they were not voters, but their votes were
tallied separately from men’s (which is how we can know that
women were asked). These 1850s straw polls were the first Amer-
ican efforts to quantify public opinion.32

Antebellum newspapers, the everyday reading of many thousands
of Americans, studded their columns with facts and figures. A very
typical small item, from the New York Herald of 1839, titled
“Railway and Stagecoach Travelling,” drew on “a return of the
mileage and composition duties on railway and stage carriages
respectively” to show that over the previous two years, 4,800,000
fewer persons had traveled by stage while 14,400,000 more per-
sons had traveled by railway.33 No meaning or analysis was at-
tached to these data; they simply stood alone, in manifest testa-
ment to the railroad revolution that all the Herald’s readers knew
was underway. Mileage of railroad tracks was another favorite and
frequent boast. But newspaper readers of the 1830s would not
have been able to learn the total number of lives lost in steamboat
explosions and accidents over that decade (unless they added up
the losses reported for each accident, a rather shocking sum that
historians have been able to reconstruct).

Not all statistical reports were cheery and boastful. The antebel-
lum era has been tagged the “era of reform” by some historians for
the rich variety of civic movements dedicated to eradicating social
problems. Although the federal and state governments were not
yet counting and publicizing the numbers of inebriates, prosti-
tutes, or runaway slaves, other associations were—the temper-
ance, moral reform, and abolitionist movements. A faith in the
unimpeachable truth of numbers was part of the landscape now,
and the most powerful way to draw attention to and gain legiti-
macy for a political or social goal was to measure and analyze it
with the aid of arithmetic, giving the analysis the aura of scientific
result.

It was in the 1850s that statistics were finally harnessed to oppos-
ing sides of the most pressing political division in the history of the
United States, the conflict over slavery that led to the Civil War.
In this decade-long debate, we can most clearly see the political
constructedness of numbers and their mobilization to serve both
symbolic and instrumental functions. Although it is very unlikely
that anyone—a voter, a member of Congress—changed opinions
about the sectional crisis based on quantitative data, it is instruc-
tive to see how both sides tried hard to harness the numbers to
endorse their own predilections.

The quantitative dueling started in the congressional debate over
the 1850 census. This was the first census designed to gather
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information on the individual level rather than the household,
and the initial proposal included revealing individual-level data
about slaves. Although relegated to a separate slave schedule, slaves
were to be identified by name, age, sex, color, and place of birth. In
addition, the proposal included asking for the number of children
ever born of each woman, whether alive or dead now, and then a
measure of the “degree of removal” from white or black in race.
Southern congressmen powerfully objected to this level of data
collecting, which would enable significant comparisons of blacks
and whites as to fertility, longevity, and family formation. An
acrimonious floor fight resulted in the removal of a significant part
of the schedule. In the end, slaves were listed by number, not
name, and place of birth and number of children were omitted,
along with the explosive question on racial admixture. Political
maneuvering had blocked the collection of data that would have
furthered potentially invidious comparisons between North and
South.34

Remaining parts of the 1850 census lent themselves to the North-
South debate, however. In 1857, an antislavery southerner named
Hinton Helper published The Impending Crisis of the South, a
book that used the agricultural and social statistics of the census to
argue that the South was trailing behind the North in every con-
ceivable measure of economic productivity, wealth, education,
and general progress. The fault, Helper declared, was slavery.
Helper’s book created quite a stir, and many northern and south-
ern commentators wrestled with the questions it provoked. If
slavery was bad, what about menial wage labor in the North? If the
South’s economy was ruined, why were there more paupers in
New England than in the South? One critic pointed to Helper’s
mistake of comparing plain numbers from the census without
recasting the data to take account of state sizes, a mistake in the
“rule of simple proportion” that “any schoolboy can calculate.”35

But since Helper’s error had eluded him and most of his support-
ers and critics, it is doubtful that a typical schoolboy in the United
States would have had sufficient quantitative literacy to recognize
the problem.

Arithmetic and Statistics in the Late
Nineteenth and Twentieth Centuries
The post–Civil War era finally brought a full melding of statistical
data with the functioning of representative government. A cen-
tury after the first census of 1790, no one any longer suggested
that an expanded census would alarm the people or merely gratify
idle curiosity. The government had accepted an ongoing obliga-
tion to monitor the vital signs of the nation’s health, wealth, and
happiness. The census bureau was at last turned into a permanent
federal agency, lodged for a time in the Department of Labor and
later the Department of Commerce. The rapid urbanization and
industrialization of the country suggested the agenda for national

statistics collection, with a new focus on urban problems, immi-
gration, labor conditions, and standards of living. Unlike mid-
century censuses, which had been run by men with no particular
training in mathematics, the later census officials, such as Carroll
Wright and Francis Amasa Walker, came from the new ranks of
professionally trained economists and statisticians. Statistics was
no longer limited to descriptive number facts; work by European
thinkers such as Adolphe Quetelet, Francis Galton, and Karl Pear-
son had pushed the field into an increasingly sophisticated math-
ematical methodology. Federal censuses still were used to appor-
tion Congress, but that was a minor sideline to a much larger
enterprise engaged in measuring social indicators that would be
helpful not only to legislators but to external commercial agencies
and businesses as well, including universities, private research or-
ganizations, and trade associations.36

This growing sophistication of government statistical surveillance
was not matched by a corresponding improvement in quantitative
literacy on the part of the public. Unlike the early nineteenth
century, when a public enthusiasm for numbers and arithmetic
developed along with a statistical approach to civic life, in the early
twentieth century the producers of statistics quickly outstripped
most consumers’ abilities to comprehend. The number crunchers
developed more complex formulations while the arithmetic cur-
riculum stagnated—this despite two further major attempts to
reform the mathematics curriculum, first in the 1910s to 1920s
and again in the 1950s to 1960s.

In the earlier phase of reform, a new breed of specialist—the
professional mathematics educators in the university—addressed
the problem of a rapidly growing student population assumed to
have limited abilities. Foreign immigration and African-American
migration combined with new compulsory schooling laws shifted
the demographics of American schools. The percentage of youth
ages 14 to 17 who attended school went from 10 percent in 1890
to 70 percent by 1940; the decades of maximum change were the
1910s and 1920s. When primarily middle- and upper-middle-
class students had attended high school or academy, higher math-
ematics was typically served up in two or three standard courses,
algebra, geometry, and trigonometry. But when the children of
immigrants, emancipated slaves, and industrial workers arrived on
the high school’s steps, the wisdom of teaching the higher
branches for the intellectual development they promised was in-
creasingly called into question. A leading educational theorist,
Edward Thorndike, reversed the truism of the early nineteenth
century and argued that mathematics did not encourage mental
discipline. Vocational education and the manual arts became
prominent themes in educational circles, promoting the line that
instruction should be geared to likely job placement. Several states
removed all mathematics requirements for graduation and, pre-
dictably, enrollments declined. One study of Baltimore’s schools
in the 1920s explicitly recommended that algebra and geometry

15Democracy and the Numerate Citizen: Quantitative Literacy in Historical Perspective



be withdrawn from the curriculum for worker’s children because
of their “lack of practical value” and that they be replaced by a
two-year course that would teach mathematics “needed as a work-
ing tool in industry.” In 1905, a Milwaukee trade school for
mechanics endorsed mathematics only as a subject taught via
practical problems that arose in the context of the specific me-
chanical tasks at hand.37 The history of arithmetic education and
blacks in the post-emancipation period is one yet to be written,
although its outlines can be guessed at in light of the manual arts
training promoted by black and white educational leaders. The
details of how the most basic numeracy was imparted to a popu-
lation just on the threshold of literacy will likely be an important
story, however, in view of persistent race differentials in mathe-
matics achievement in late twentieth-century America.38

In the second period of curricular reform, the 1950s to 1960s,
university educators along with mathematics professors joined to
revamp the K–12 mathematics curriculum in a climate of Cold
War competition with the Soviet Union over scientific brain-
power. The result was the widely publicized “new math” program
that attempted to introduce set theory and discovery methods into
the elementary school curriculum. In the judgment of current
researchers, the new math resulted in a lot of sound and fury but
made much less of a dent in actual mathematics instruction, in
part because teachers were not nearly so enthused about the new
or so ready to abandon the old methods of instruction.39 Further,
the new math tended to the abstract and thus had little effect in
promoting the kind of quantitative literacy related to political or
civic life.

Conclusion
This brief survey of quantitative literacy and citizenship in the
nineteenth century has tried to demonstrate that although there is
a natural affinity between numerical thinking and democratic
institutions, that affinity was not necessarily predicated on quan-
titative sophistication on the part of citizens, at least not at first.
Representative democracy originated in a numerical conception
of the social order, under the U.S. Constitution. That same doc-
ument ordained that government should “promote the general
welfare and secure the blessings of liberty,” a mandate that around
1820 was increasingly answered with a turn toward “authentic
facts” and statistics. Statistics soon became compressed into quan-
titative facts, an efficient and authoritative form of information
that everyone assumed would help public-spirited legislators gov-
ern more wisely. Schools, both public and private, correspond-
ingly stepped up arithmetic instruction for youth, bringing a
greatly simplified subject to all school-attending children and
making it possible for them to participate with competency both
in the new market economy and in the civic pride that resulted
from the early focus on quantitative boasting.

As basic numeracy skills spread, so did the domain of number in
civic life. The unsophisticated empiricism of early statistical his-
tory yielded to a more complex political terrain where numbers
were enlisted in service of political debates and strategizing. At
mid-century, the level of quantitative mastery required to keep up
with debates based on numbers was still within the reach of any-
one schooled in long division and percentage calculations. At a
deeper level, the quantitative savvy required to challenge numbers
(for bias, for errors in measurement and counting, for incorrect
comparison of figures, for selective use of numbers) was not well
developed, either in the producers or consumers of numbers.
Choices about what to count and what not to count might be
made naively, or purposefully and politically, as in the decision
not to collect comparable demographic data on blacks and whites
in the census.

Since the late nineteenth century, statistics has become a branch of
mathematics and a powerful tool of the social sciences, but there
has been little corresponding change in the arithmetic curriculum
delivered to the vast majority of school-attending children. A
much higher percentage of children attend primary and secondary
school now compared with the late nineteenth century, which
would suggest that the diffusion of civic numeracy also should be
higher than a century ago. But at that crucial time of vast demo-
graphic change, back around 1890 to 1920, educators too often
responded by scaling back or abandoning requirements such as
algebra and geometry, setting them to the side with other subjects,
such as Latin, now deemed unnecessary and even inappropriate
for the children of immigrants and workers. Vocational tracks
with courses on bookkeeping proliferated in the 1920s and gar-
nered high enrollments mainly from female students preparing for
clerical jobs. Aside from that, however, little thought was given to
what might replace the once-standard higher mathematics curric-
ulum of nineteenth-century academies. Noncollege-bound stu-
dents continued to be sidelined and shortchanged in mathematics
preparation so that now, something as basic as reinstating algebra
as a high school graduation requirement (as recently happened in
California) leads some to predict that graduation rates will tum-
ble. Both sides in the current “math wars” debate acknowledge
that the mathematical competencies of U.S. high school students
are worrisomely low.40 And quite apart from the math wars issue,
high schools have not taken on the task of developing courses
specifically aimed at teaching a kind of practical, context-based
“political arithmetic” that would help students learn to evaluate
the types of numbers that are routinely invoked in political life.

Our political system today uses and produces numerical data at a
rapid clip, and the numbers are often in dispute or contradiction.
Both the politicians and the voters may be in over their heads
when it comes to evaluating different projections on the future of
Social Security, the differential and future effects of tax cuts, the
flow of immigration into the country, the rising or falling of
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student test scores, and the gyrations of the stock market as sum-
marized in a few one-number indexes reported hourly on the
radio. The danger is that we may not realize we are in over our
heads. The attractiveness of numbers and statistics in the early-
and mid-nineteenth century arose from their status as apparently
authoritative, unambiguous, objective bits of knowledge that
could form a sure foundation for political decisions. That may
have been naı̈ve, but gains in numeracy enabled some, at least, to
learn to question numbers, to refine them, and to improve on their
accuracy. Now, however, numbers are so ubiquitous and often
contradictory that some fraction of the public readily dismisses
them as “damned lies.”41

The recent bandying about of the term “fuzzy math” furthers
suspicions about numbers; when used in the political context, it
seems to condemn arithmetic and “political arithmetic” alike.
Wrenched from its origins as a legitimate if esoteric mathematical
term dating from the 1960s, fuzzy math was first appropriated and
rendered perjorative by the critics of curriculum reform in the mid
1990s, most famously and nationally by then-National Endow-
ment for the Humanities (NEH) chair Lynne Cheney in a 1997
Wall Street Journal essay. It was lifted to national attention by
George W. Bush in the first presidential debate in the fall of 2000,
when Bush used it to characterize Al Gore as a number-benumbed
pedant who was, in Bush’s charge, eliding the truth with numbers.
In its most recent turnabout, the term has been slapped back on
Bush by the New York Times columnist and economist Paul Krug-
man, whose book Fuzzy Math: The Essential Guide to the Bush Tax
Plan excoriates the Bush administration’s arithmetic on tax re-
lief.42

So what is to be done? Statistics are not the perfect distillation of
truth that early nineteenth-century statesmen thought they were,
but neither are they the products of fuzzy math that can be safely
disregarded or disparaged. Statistical reasoning and the numbers it
produces are powerful tools of political and civic functioning, and
at our peril we neglect to teach the skills to understand them in our
education system. Some of this teaching needs to happen in arith-
metic and mathematics classes, but some of it must be taken up by
other parts of the curriculum, in any and every place in which
critical thinking, skepticism, and careful analysis of assumptions
and conclusions come into play.

On my campus (the University of California at Santa Barbara)
and no doubt many others, two programs developed in the last
decade or two aimed to generalize basic skills. The first, “Writing
Across the Curriculum,” devised ways to implant intensive writ-
ing experiences in courses well beyond the expected domains of
the English department or writing program—say, in engineering
and the sciences. Additionally, composition teachers taught writ-
ing courses keyed to the science and social science curricula. And
in a related fashion, language instruction and practice branched

out from the confines of courses on vocabulary and grammar to
attach themselves to relevant subject matters. A Western Civiliza-
tion course thus might have one section taught in French or Ger-
man, with a portion of the readings also in that language. The idea
was to demonstrate the utility and importance of language skills
(foreign or English) by crossing the parochial disciplinary bound-
aries that tend to structure academia. In a parallel way, quantita-
tive literacy needs to be generalized across the curriculum, not
only at the college level but in all the earlier grades as well.

The subject matter of history can no doubt play an important role
in this process. A list of ideas for units or topics in a U.S. History
course (see Appendix A) shows a few ways in which quantitative
literacy skills can be called on to deepen and enrich our under-
standing of some classic and central events in our nation’s history.
At the same time, teaching units like these would enhance stu-
dents’ quantitative skills, helping to answer that age-old question
asked in many mathematics courses, “hey, are we really ever going
to need this stuff?” Quantitative concepts are indeed embedded in
our civic culture, and quantitative literacy on the part of citizens is
greatly needed to make democratic institutions work. It is a wor-
thy goal to make those connections explicit in history and govern-
ment courses, by showing how numbers, both flawed and accu-
rate, have played a role in past debates.

Appendix A: Promoting Quantitative
Literacy in U.S. History Courses
The suggestions below illustrate ways in which typical U.S. his-
tory survey courses in high school or college can be enhanced with
quantitative ideas. These ideas all link to large events that are
routinely taken up in such courses, but rarely do instructors linger
over them, perhaps because they seem too complex or abstruse.
My suggestion is that we should deepen these stories to draw on
(and enhance) students’ skills in quantitative reasoning. By ex-
ploring the quantitative dimension of these situations, students
can better understand what the participants in these events
thought they were doing and can better evaluate options for policy
or action.

1. Teach the writing of the Constitution to emphasize the
quantitative implications and underpinnings of democracy.
Was it “one man, one vote” at the beginning? Is it now?
How does apportionment work? What does it matter what
method is chosen? And what would that mean anyway?

2. Teach a detailed unit on the 3/5 clause as a North-South
compromise. Trace it out over the next 70 years: How much
extra political clout did the South have in Congress because
of this clause? (In 1820, at the time of the Missouri Com-
promise, the South had 17 more representatives than it
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would have had if representation had been based only on the
free population.)

3. Focus on the electoral college: Why was it set up the way it
was? Does it favor the inhabitants of small or large states?
Where did the “winner take all” idea enter, and why?

4. Study the rise of popular voting for the presidency. How do
we combine a popular election for the presidency with the
electoral college?

5. Study tariff policies in the early republic. Why was there a
tariff at all? What social, economic, or political objectives
were served by tariffs, beyond the raising of revenue for the
government? Did tariff makers have adequate information
about the country’s economic circumstances to make rea-
soned tariff policy? (Recall Andrew Jackson’s politically stra-
tegic campaign promise to be in favor of “a judicious tariff.”)
Focus on the tariff of abominations of 1828, which led
directly to the nullification controversy of 1832, a major
showdown on federal versus state power.

6. Consider national land policy during the nineteenth cen-
tury with respect to the selling of the national domain. How
should government handle such a valuable resource? How
did the government, at various times, set up land sales?
What were the origins of the rectilinear survey idea? How
were the survey lines run? What were the procedures on size
of parcels? Who gained benefits and who did not?

7. How did women gain literacy and numeracy? What was at
stake in this development? How did post-emancipation
blacks gain literacy and numeracy? What was at stake? Why
had it been illegal in most southern states to teach slaves to
read? Who stood to gain from promoting numeracy for
blacks? Who stood to gain by obstructing it? How did im-
migrant groups new to America gain fluency in English,
literacy, and numeracy? Again, what factors promoted or
obstructed the gaining of this knowledge?

8. What has been the average life expectancy over our coun-
try’s history? How is that number arrived at? How has it
changed over time? How does it vary by race, by sex, by
region, and why? Who first tried to frame this question and
answer it, and why? Why was/is it worth answering?

9. What is the history of poverty in America? How has poverty
variously been defined and measured? What was at stake,
say, in enumerating paupers in nineteenth-century cen-
suses? Or idiots and the insane?

10. Ditto for the history of wealth. How has wealth been mea-

sured? What about income? How have historians talked
about or defined economic classes, and why? How legiti-
mate is it for us to impose some quantitative notion of
wealth to stratify a past population when perhaps the mem-
bers of that population did not think about their own com-
munity that way at all? (For example, compare the wealth
distribution of a Puritan village, based on land records, ver-
sus that same town’s sense of its own hierarchy as embedded
in the church seating chart, in which other factors besides
wealth, or in place of wealth, determined a person’s social
location.)

11. In the late nineteenth century and later, where did quanti-
tative knowledge come from? Who generated it? Who pro-
cessed it? Who abstracted it? Who defines the standard mea-
sures—of weight and quantity, of economic indicators—
and what difference might that make?

12. Who invented the measurement of “unemployment” and
when? What was that measure based on? This could be done
with any number of common indicators we now use. The
idea is to get students to understand the historical forces that
go into constructing numbers and measures. What were the
mechanisms and procedures for data collection? Who col-
lected data, and to what end? What kinds of data were
available? Where should we best look for dispassionate, ob-
jective data—politicians, the census bureau, university ex-
perts, journalists, media conglomerates?
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The Democratization of Mathematics
ANTHONY P. CARNEVALE
DONNA M. DESROCHERS

Mathematics has been one of the primary engines in both the intellectual and material development
of human society, especially in western civilization. Because of mathematics’ broad influence, math-
ematics education impacts societies in both profound and practical ways. The development of
mathematical and scientific knowledge that represents a reality beyond particular cultures and
political systems is a central element in the world’s shared social condition. Mathematical reasoning
is transferable to any culture without loss of effectiveness; it does not depend on subjectivity, culture,
or religion. The brute power of mathematical reasoning in human history comes from its practical
utility. In combination with scientific experimentation, technology, and market economies, math-
ematical reasoning is a taproot of our material progress, which is still the driving force in restruc-
turing the world’s economic, cultural, and political systems.

Unfortunately, neither the need to understand mathematical reasoning as a distinctive approach to
knowledge nor the practical need for applied mathematical skill is fully served by our current
education system.1 From school to college, mathematics follows an isolated trajectory of increasing
difficulty and abstraction whose implicit purpose is to select and prepare the best mathematics
students for graduate education in mathematically intensive fields. The isolation of mathematics is
part of a larger pattern of academic specialization that creates virtually impregnable barriers between
the discrete disciplinary silos of mathematics, science, and the humanities. Specialization obscures
the animating ideas in those studies that are crucial to cultural literacy and democratic pluralism in
modern societies. It discourages the development of an interdisciplinary “general curriculum” that
fosters an appreciation for the healthy tensions between the rationalist perspective of mathematics
and science and the subjective and spiritual perspectives of the humanities.2 In addition, the isolation
of the mathematics curriculum impedes broad dispersion of the practical uses of mathematics, thus
erecting artificial barriers to learning and the development of applied disciplines.3

A more accessible mathematics curriculum is critical to closing the growing gap in the opportunity
to learn and earn. Success in high school mathematics from algebra through calculus partially
determines access to selective colleges, even among students who do not intend to pursue programs
of study that require advanced mathematics. In similar fashion, higher levels of abstract mathematics
are required for access to certain professions, even when high-level mathematical procedures are
unnecessary in the day-to-day work of those professions.

Mathematics needs to become more accessible if it is to fulfill both its cultural and economic roles.
Accessibility requires curricula to move beyond coverage of discrete operations to a deeper and more
applied understanding. To fully understand mathematics as a key idea in our intellectual and
cultural history, the walls that separate the disciplinary specialties in mathematics, science, and the
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humanities need to be lowered. Moreover, to fully exploit math-
ematics as a practical tool for daily work and living, mathematics
needs to be taught in a more applied fashion and integrated into
other disciplines, especially the applied curricula that now domi-
nate postsecondary education.

Mathematics and Economic
Opportunity
Quantitative reasoning is both a key element implicit in growing
modern economies and a key asset for people who work in them.
The economic value of mathematical reasoning has increased in-
exorably since around 3000 B.C., when the priests of Sumer, in
present-day Iraq, began to use mathematical procedures to de-
velop an agricultural calendar. Over time, the subsequent im-
provements in agriculture efficiency created food surpluses that
freed up human labor for more productive pursuits (McNeil
1999). The resultant material progress stimulated increasing so-
cial complexity that, in turn, both generated and required ever-
higher levels of mathematical reasoning abilities among the gen-
eral population (Greenfield 1998; Neisser 1998; Schooler 1998).

The synergy between social complexity and reasoning ability con-
tinues. In Great Britain, scores on the Raven Progressive Matrices
test showed that score levels that included the bottom 90 percent
of the population born in 1877 included only the bottom 5 per-
cent of the population born in 1967 (Flynn 1998). These in-
creases in basic reasoning ability have occurred in spite of the fact
that the highest fertility rates persist among the lowest scorers.

The value of mathematical reasoning has surged at each of the great
economic divides: in the shift from agriculture to an industrial econ-
omy and most recently in the shift from an industrial to a knowledge
economy. In the latest economic shift, the increasing value of reason-
ing abilities has ratcheted up the educational ante for good jobs from
high school to postsecondary education. In 1959, only 19 percent of
prime-age workers (ages 30 to 59) had any college education and,
until the early 1980s, many good jobs were available for high school
graduates and even high school dropouts, especially for men looking
for blue-collar industrial jobs. Remarkably, however, since the 1980s
when the new information economy took hold, the wage advantages
of college-educated workers have continued to increase even as the
supply of those workers has continued to grow. For example, even
though the share of college-educated workers in the labor force in-
creased from 37 percent in the 1980s to almost 60 percent in 2000,
the wage premium for those with at least some college education over
those with high school or less jumped from 43 percent to a whopping
73 percent over the same time period (Carnevale and Fry 2001).

Mathematical ability is the best predictor of the growing wage
advantages of increased postsecondary educational attainment

(Murnane, Willet, and Levy 1995). Improvements in mathemat-
ical skills account for at least half of the growing wage premium
among college-educated women and is the most powerful source
of the wage advantages of people with postsecondary education
over people with high school or less. Moreover, although the wage
premium for college-educated workers has increased across all
disciplines, it has increased primarily among those who partici-
pated in curricula with stronger mathematical content, irrespec-
tive of their occupation after graduation (Grogger and Eide
1995).

Those with stronger quantitative skills thus earn more than other
workers. Data from the National Adult Literacy Survey (NALS)
show that workers with “advanced/superior” mathematical liter-
acy similar to that of the average college graduate earn more than
twice as much as workers with “minimal” quantitative skills sim-
ilar to average high school dropouts. Those with “advanced/supe-
rior” mathematical literacy earn almost twice as much as workers
with the “basic” quantitative skills typical of below-average high
school graduates. Moreover, the importance of quantitative skills
in labor markets will grow in the future. Almost two-thirds of new
jobs will require quantitative skills typical of those who currently
have some college or a bachelor’s degree (see Figure 1).

Success in the new information economy also appears to require a
new set of problem-solving and behavioral skills. These skills,
especially problem-solving skills, emphasize the flexible applica-
tion of both mathematical and verbal reasoning abilities in mul-
tifaceted work contexts across the full array of occupations and
industries. Such skills most often require the versatile use of rela-
tively basic mathematical procedures more akin to “numeracy”
and “quantitative literacy” than to higher knowledge of advanced
mathematical procedures.

Who Pays for Innumeracy?
The growing importance of college-level cognitive skills, espe-
cially mathematical skills, in allocating economic opportunity is
especially significant in the United States, where poorly educated
individuals, not employers or governments, pay the price of edu-
cational inequality. Individuals who do not acquire college-level
cognitive skills are forced into low-wage and low-benefits jobs.
This is quite different from continental European labor markets,
which have inherent incentives to educate and train all workers in
the hope that their productivity will justify the earnings and ben-
efits guaranteed by the European welfare states.

With no earnings or benefits guarantees, America is increasingly
divided into math-haves and math-have-nots. Of course, teaching
mathematics is not just about dollars and cents, but the inescap-
able reality is that ours is a society based on work and knowledge.
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Unlike many of the continental European systems, there are min-
imal earnings and benefits guarantees for the unemployed or the
underemployed in the United States. Even among those who are
fully employed, wages and benefits depend on skill. We know that
those who cannot get or keep good jobs are trapped in working
poverty, underemployed, or unemployed. Eventually many of
them drop out of the political system and withdraw from com-
munity life. In some cases, they may create alternative economies,
cultures, or political structures that are a threat to the mainstream.
If educators cannot fulfill their economic mission to help our
youth and adults achieve quantitative literacy levels that will allow
them to become successful workers, they also will fail in their
cultural and political missions to create good neighbors and good
citizens.

Higher levels of quantitative literacy increase both individual and
national income. Sweden is one of the most quantitatively literate
countries in the world. If the levels and distribution of quantita-
tive skills in the United States mirrored those of Sweden, a back-
of-the-envelope calculation suggests that we could increase GDP

by $463 billion and reap as much as $162 billion in additional
federal, state, and local tax dollars.4

Mathematics and International
Economic Competitiveness
Our ability to produce mathematically literate citizens is also crit-
ical to the performance of the American economy in global com-
petition. Although data from the National Assessment of Educa-
tional Progress (NAEP) show that American performance on
mathematics is improving, our scores on international tests are
consistently sub-par. The recent Third International Mathemat-
ics and Science Study (TIMSS) is the latest in a steady drumbeat of
reports showing that U.S. students do not measure up globally.
Among 38 nations tested in TIMSS, we are significantly behind
14, even with 6, and doing significantly better than 17. You do not
have to have the test scores of a rocket scientist to know that in the
new high-tech economic world mathematics and science educa-
tion is a key asset in global economic competition.

23The Democratization of Mathematics



But, if the United States is so bad at mathematics and science, how
can we be so successful in the new high-tech global economy? If we
are so dumb, why are we so rich?

Just look at the numbers: Japanese students are among the front-
runners in the TIMSS study, but the average purchasing power of
American families is 40 percent greater than the average purchas-
ing power of Japanese families. In general, members of the Euro-
pean Union outperform us on TIMSS. In 1998, however, the
U.S. per capita income towered over that of the European Union
nations—$32,413 versus roughly $25,000 in West Germany,
Belgium, Denmark, and the Netherlands and roughly $22,000 in
Italy, France, Sweden, and the United Kingdom (Mishel, Bern-
stein, and Schmitt 2001). During the same period, U.S. unem-
ployment has been consistently less than half the European level.

How can we reconcile our educational failures in mathematics and
science and our economic success in the high-tech global econ-
omy? The first answer is that although the United States may not
have, on average, the world’s best overall stock of mathematically
skilled graduates, because of our size we have more top students—
and our economic agility allows us to use their abilities more
effectively.

Our sheer size, therefore, allows us to be both mediocre in math-
ematics and science and number one in the world economy. The
U.S. population, for instance, is roughly four times the size of
France, Italy, or the United Kingdom and three times the size of
Germany. Our student population is only twice as large as the
Japanese school-age population but our size advantage still pre-
vails. In the TIMSS data on eighth-grade students, the Japanese
ranked fifth in mathematics and we ranked eighteenth. Sixty-four
percent of Japanese eighth-graders scored in the top quartile of
international benchmarks in mathematics compared with 28 per-
cent of U.S. students. But because our eighth-grade population is
twice as large as the eighth-grade population in Japan, there are
970,000 U.S. students in the top international quartile compared
with 928,000 Japanese eighth-graders.

Although more is not always better, in this case it often is. For
instance, we have four times as many workers as France, Italy, or
the United Kingdom. Four pretty good engineers tackling a busi-
ness problem often outperform one very good engineer working
alone. Similarly, four companies in the software business compet-
ing directly against each other in the highly competitive U.S.
product market are likely to produce better software than a single
company elsewhere.

A second advantage that allows the United States to get away with
relatively low levels of mathematical and scientific literacy is the
flexibility that allows us to make better use of what talent there is.
In the United States, minimally regulated labor markets allow

employers enormous agility in hiring, paying, and allocating
workers, and also allow workers more job flexibility. Pay varies
with performance, and there are virtually no wage, benefits, or job
guarantees. Our flexibility optimizes returns on capital invest-
ments, human and machine. With no substantial safety net, indi-
viduals, not employers or governments, pay the price of underin-
vestment or obsolescence of human capital.

America’s characteristic flexibility also means that employers do
not need to rely on the nation’s homegrown mathematics and
science talent. Immigration is a major source of talent among
technical professionals. For instance, more than 40 percent of all
engineers and almost half of all civil engineers are foreign born
(National Science Foundation 2002). In addition, U.S. compa-
nies are free to produce offshore if they cannot find the talent at
home at the right prices.

In Europe and Japan, by comparison, access to jobs and pay is
highly regulated by skill certification and seniority. Jobs are pro-
tected shelters from economic and technological change. There is
a place for everyone in the European and Japanese economies—
and everyone stays in his or her place. The results? Job security and
structural rigidity in a world of economic and technological
changes.

The problem with the current American strategy in global com-
petition is that our advantages will not last. We cannot remain a
first-rate economic power with second-rate mathematical and sci-
entific literacy. In global economies, all forms of advantage are
temporary. The European and Japanese versions of highly
planned economies surged in the 1970s but lost out to American
flexibility in the 1980s. Eventually, our competitors will narrow
our economic lead as they learn how to create their own versions of
agility and scale. At that point, the competition will really come
down to who has the best human capital—especially in a world in
which people are no longer nation-bound and in which technol-
ogy and financial capital ignore national boundaries as they hop
across borders from one entrepreneurial opportunity to the next.

The Demographic Twist
If we are to retain the lead in the global economic race and the
good jobs that go with it, we will at some point have to rely on
homegrown human capital for our competitive edge. Eventually,
we will have to close the education gap; however, because of de-
mographic shifts we face at home, that may be surprisingly diffi-
cult.

A simple thought experiment demonstrates the likelihood of a
shortage of workers with college-level quantitative literacy. We
know that retirements begin aggressively after age 55, especially
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for men, and that retirement ages have been declining steadily. By
2020, about 46 million baby boomers with at least some college
education will be over 55 years of age. Over the same period, if we
maintain current attainment rates in postsecondary education, we
will produce about 49 million new adults with at least some col-
lege education—a net gain of about three million (Carnevale and
Fry 2001).

Historical and projected increases in the share of jobs that will
require at least some college-level mathematical literacy far exceed
this small increase in the college-educated population, however.
Official projections on the share of jobs that will require at least
some college education through 2020 are unavailable, but the
U.S. Bureau of Labor Statistics projects a 22 percent increase by
2010 in such jobs. If the trend continues, we will experience a net
deficit in workers with mathematical skills at or above the “some
college” level of more than 10 million workers by 2020 (Carnevale
and Fry 2001).

The Curriculum Mismatch
One way to close the emerging gap that will arise with the retiring
baby boom is to align the secondary school curriculum more
closely with college requirements and labor market needs. The
current structure of the secondary school mathematics curriculum
creates a mismatch between college admission requirements and
what students choose to study once they enter college. College
entry requirements tend to demand at least three years of mathe-
matics—preferably geometry, algebra I, and algebra II; selective
colleges usually expect trigonometry, calculus, and statistics as
well. Advanced Placement (AP) courses in mathematics are a plus
in getting accepted at selective colleges. In 2001, there were
181,000 enrollments in AP Calculus and 41,000 in AP Statistics.
By way of comparison, there are roughly 150,000 seats for first-
year students in the nation’s top 146 colleges.

Once they enter postsecondary education, the vast majority of
students increasingly avoid the highly quantitative academic silos
of mathematics, science, and engineering in favor of less-quanti-
tative curricula with a more applied focus. Of the 1,184,000 bach-
elor’s degrees conferred in 1998, roughly 175,000 were in math-
ematics (12,000), science, and engineering. More than 200,000
were in the liberal arts, literature, social science, history, and hu-
manities. The remaining two-thirds of bachelor’s degrees were
awarded in applied majors outside traditional academic disci-
plines. For example, there were 233,000 bachelor’s degrees in
business; 17,000 in parks, recreation, leisure, and fitness studies;
50,000 in communications; 52,000 in the visual and performing
arts; 17,000 in home economics; and 25,000 in protective services
(U.S. Department of Education 2000). The same pattern is seen
in the expansion of applied associate degrees, certificates, certifi-

cations, and customized training in two-year colleges (Carnevale
and Desrochers 2001). Of the 555,000 associate degrees con-
ferred in 1996, 115,000 were awarded in the liberal arts and
sciences, general studies, and humanities and only 758 were con-
ferred in mathematics (U.S. Department of Education 2000).

The apparent mismatch between high school mathematics and
college degrees raises two natural questions about mathematics
education: Are mathematics courses creating artificial barriers to
college entry? And are the majority of college students who do not
continue their mathematics education getting enough mathemat-
ics? Perhaps these are the wrong questions. Advocates for a shift in
focus toward quantitative literacy and numeracy over the tradi-
tional abstract curriculum and teaching methods would argue that
Americans are not taking too much mathematics but are taking
the wrong kind of mathematics in high school and not enough
applied mathematics in the majority of college majors.

There also appears to be a mismatch between the mathematics
students take in high school and the mathematics used on the job.
Mathematical skills are the best general proxy for demonstrating
the increasing economic returns to reasoning ability in the new
economy. It is much less clear, however, that the content and
methods of the current mathematics curriculum are aligned with
the uses of mathematics in the world of work. Most Americans
seem to have taken too little, too much, or the wrong kind of
mathematics. Too many people do not have enough basic math-
ematical literacy to make a decent living even while many more
people take courses in high school such as geometry, algebra, and
calculus than ever will actually use the mathematical procedures
taught in these courses.

The pattern of too little, too much, or the wrong kind of mathe-
matics seems to persist in college. Most people abandon mathe-
matics after high school even though a vast majority of jobs re-
quire increasing levels of quantitative literacy. The same holds
even in mathematics and science disciplines: postsecondary insti-
tutions produce more Ph.D.s in quantitative disciplines than are
required to fill college teaching positions, but not enough to fill
K–12 mathematics and science teaching positions or enough to
meet private sector needs for technically qualified managers and
other professionals (Romer 2000).

A substantial share of Americans have too little mathematics. Al-
most 40 percent of the workforce does not have sufficient quan-
titative literacy for jobs that pay more than $26,900, on average
(see Figure 1). These people tend to be in job categories that are
growing more slowly than average and in which inflation-adjusted
wages are declining. Their quantitative literacy is similar to that of
a high school dropout or below-average high school graduate. At
best they can perform a single arithmetic operation such as addi-
tion or subtraction when the numbers are given and the operation
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described—determining the difference in price for theater tickets
to two different shows, for instance (see Table 1).

Those who get the best jobs have taken the most mathematics. We
estimate that three-fourths of those in the top-paying 25 percent
of jobs have at least one year-long high school credit in algebra II.
More than 80 percent have taken geometry. Twenty-seven per-
cent of those in the top-paying jobs have at least a semester of
pre-calculus and roughly 20 percent have taken calculus. Among
the rest of those in the top half of the pay distribution, more than
half have taken algebra II and more than two-thirds have taken
geometry in high school. In the bottom half of the distribution of
earnings in American jobs, roughly three-quarters have at least a

year-long credit in algebra I, 63 percent have geometry, and
slightly fewer than half have algebra II.

Clearly, algebra II is the threshold mathematics course taken by
people who eventually get good jobs in the top half of the earnings
distribution. And the more mathematics beyond algebra II, the
better the odds of eventually landing a job in the top 25 percent of
the earnings distribution. Yet even a casual analysis of the distri-
bution of occupations demonstrates that relatively few of us—
fewer than 5 percent—make extensive use of geometry, algebra II,
trigonometry, or calculus on the job. In the year 2000, there were
146 million people in the workforce. Roughly three million were
in “computer and mathematical occupations,” including actuaries

Table 1.
Mathematical Literacy Paradigm from the National Adult Literacy Survey

Skill
Level

Approximate
Educational Equivalence

NALS
Level

NALS Competencies (Quantitative) NALS Examples (Quantitative)

Minimal Dropout 1

Can perform a single, simple arithmetic operation
such as addition. The numbers used are
provided and the operation to be performed is
specified. —Total a bank deposit entry

Basic

Average or below-
average high school
graduate 2

Can perform a single arithmetic operation using
numbers that are given in the task or easily
located in the material. The arithmetic
operation is either described or easily
determined from the format of the materials.

—Calculate postage and fees for certified mail
—Determine the difference in price between

tickets for two shows
—Calculate the total costs of purchase from an

order form

Competent
Some postsecondary

education 3

Can perform tasks in which two or more numbers
are needed to solve the problem and they must
be found in the material. The operation(s)
needed can be determined from the arithmetic
relation terms used in the question or directive.

—Use a calculator to calculate the difference
between the regular and sale price

—Calculate miles per gallon from information
on a mileage record chart

—Use a calculator to determine the discount
from an oil bill if paid within 10 days

Advanced
Bachelor’s or advanced

degree 4

Can perform two or more operations in sequence
or a single operation in which the quantities
are found in different types of displays, or in
which the operations must be inferred from the
information given or from prior knowledge.

—Determine the correct change using
information in a menu

—Calculate how much a couple would receive
from Supplemental Security Income, using
an eligibility pamphlet

—Use information stated in a news article to
calculate the amount of money that should
go to raising a child

Superior
High-achieving, college-

educated populations 5

Can perform multiple operations sequentially, and
also can find the features of problems
embedded in text or rely on background
knowledge to determine the quantities or
operations needed.

—Use a calculator to determine the total cost
of carpet to cover a room

—Use information in a news article to
calculate the difference in time for
completing a race

—Determine shipping and total costs on an
order form for items in a catalog

Source: Carnevale, Anthony P., and Donna M. Desrochers. 1999. Getting Down to Business: Matching Welfare Recipients to Jobs that Train. Princeton, NJ: Educational
Testing Service; Barton, Paul E., and Archie LaPointe. 1995. Learning by Degrees: Indicators of Performance in Higher Education. Princeton, NJ: Educational Testing
Service.
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and statisticians. There were roughly 1.5 million engineers and
architects and 1.2 million life, physical, and social scientists. In
addition, there were 132,000 secondary school science teachers
and 180,000 secondary school mathematics teachers (Hecker
2001). In spite of these realities, in 1998, 75 percent of high
school students took geometry, 63 percent took algebra I, 62
percent took algebra II, and 18 percent took calculus (U.S. De-
partment of Education 2000).

The mismatch between high school mathematics courses and the
quantitative literacy required on the job suggests that a large share
of Americans have either too much mathematics or the wrong
kind. What mathematics skills are required for good jobs in the
new economy? The threshold appears to be the skills associated
with people who have some postsecondary education. These
workers tend to have “competent” mathematical literacy—level 3
on the NALS scale. These also are the jobs that are expected to add
the most new positions over the next decade and that tend to pay
$33,400, on average (see Figure 1). Workers whose mathematical
skills are similar to those of people with some postsecondary edu-
cation can, typically, perform quantitative tasks to solve problems
when the appropriate numbers and operations are not given di-
rectly but can be determined from the words used in the problem.
An example would be the calculation of miles per gallon using a
mileage record chart (see Table 1).

People in the most highly paid jobs tend to have the overall math-
ematical literacy skills of those who are advanced or superior (at
levels 4 and 5 in the NALS hierarchy), skills typical of college
graduates. The quantitative literacy characteristic of people with
bachelor’s degrees or better does not, on average, rise much above
independent application of basic mathematical operations in
complex situations (see Table 1). Yet people with this level of
quantitative literacy are in jobs that pay $48,000, on average, per
annum. This is the second fastest-growing set of jobs (see Fig-
ure 1).

It appears that the requirement for mathematical literacy in labor
markets (and by implication in society) is one of an ascending
ability to use basic mathematical operations with increasing inde-
pendence and in situations of increasing complexity. This suggests
that the way we teach mathematics may not be aligned with the
uses we make of mathematics in most jobs.

Does the fact that only 5 percent of us use advanced mathematics
on the job mean that we should stop teaching algebra, geometry,
trigonometry, or calculus in high schools? Not necessarily. In the
current educational curriculum, these higher-level courses are the
means by which people learn higher-level reasoning skills even if
they are not directly applicable on the job. For instance, the core
competencies of computing, measuring, and manipulating shapes
as well as the ability to solve problems by understanding factors

and their relationships and the ability to assess the likelihood of
events are consistent with the core competencies implicit in alge-
bra, geometry, trigonometry, calculus, and statistics. Too many
students, however, get bogged down in the abstract procedures
that remain the focus of much of the current mathematics curric-
ulum. Others know the formulas and procedures but do not un-
derstand what they know well enough to use mathematics outside
mathematics class. We certainly should not throw out the current
curriculum without a superior alternative in place, but ultimately
we will need a curriculum that teaches these higher-level quanti-
tative reasoning skills in a more applied and accessible context in
which the goal is both knowledge and understanding.

How Did the Mismatch Arise?
The current mismatch between the core mathematics curriculum
and our growing need for quantitative literacy is primarily an
accidental product of recent history. Prior to World War II, ele-
mentary and secondary education included both academic and
vocational tracks culminating in the “comprehensive” high school
that prepared most students for work and a few for college. The
college preparatory curriculum emphasized the traditional core
subjects of mathematics, science, and humanities. For the most
part, colleges extended studies in these disciplines beyond the
introductory core curriculum as preparation for the professions
and college teaching.

In the first few decades following World War II, this core aca-
demic curriculum experienced explosive growth. First, the Cold
War and then Sputnik made sorting the best mathematicians and
scientists an urgent priority in the K–16 system. Because the lib-
eral arts curriculum was viewed as a cultural and political bulwark
against communism, the humanities were supported along with
mathematics and science, but to a lesser degree. The federal gov-
ernment fully funded university research and development in
mathematics and science. Student aid increased massively, begin-
ning with the GI Bill of Rights and culminating in the National
Defense Education Act. The baby boom expanded the 18- to
24-year-old student population to outsized proportions. Public
funding and demography created a tidal wave of new demands for
college. The rising tide raised all the boats in the traditional college
curriculum. The government provided the financial means for
college and, in the 1960s, offered added motivation because the
Vietnam conflict gave every male a good reason to stay in school
and go to college. Unprecedented economic growth provided
funding and robust job markets for college graduates from 1946
through 1973.

As a consequence, between 1946 and the mid-1970s, a massive
education system was built around the core set of discrete disci-
plines in mathematics, science, and the humanities whose implicit
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purpose was to reproduce the college professoriate at the top of
each disciplinary hierarchy. The rapid expansion in college faculty
jobs and the growth of federally funded, university-based research
and development justified the disciplinary pipelines that ran from
middle school to graduate school.

In the 1970s, all the economic, demographic, and geopolitical
forces that created the American Golden Age, and the Golden Age
of higher education, lost momentum. The Cold War receded as
communism began to collapse under the weight of its own inher-
ent contradictions. As the Vietnam conflict wound down, young
men no longer needed college deferments. The baby boom be-
came the baby bust ending the ready supply of 18- to 24-year-old
students. The postwar economic boom gave way to stagflation. As
college-educated baby boomers flooded the job market, the wage
premium attached to traditional college degrees was cut in half.
Education became a mature industry, no longer subject to expo-
nential growth (Menand 2002). To fill the empty seats left by the
graduating baby boomers and to be more responsive to market
realities in the stagflationary 1970s, postsecondary education
moved toward vocationalism in its curriculum and toward non-
traditional adults in its student population.

Throughout the 1970s, higher education managed to maintain
enrollment levels. The college wage premium never fell below 30
percent and the demand for college-level talent, especially in vo-
cational majors, continued to grow. After the Volker recession
wrung the inflation out of the economy in the early 1980s, growth
resumed and “skill-biased technology change” accelerated eco-
nomic restructuring. With this restructuring, the college wage
premium grew rapidly both in traditional college-level jobs and
also in a growing share of jobs that previously did not require
college. The share of prime-age adult workers with at least some
college jumped from 2 in 10 in 1959 to 6 in 10 in the late 1990s.
Even more stunning is the fact that the wage premium for college-
educated workers, compared with high school educated workers,
has increased by 70 percent since the 1980s, even though the
supply of college-educated workers increased by 60 percent. As a
result, even though the number of high school graduates declined
by 700,000 between 1979 and 1991, college enrollments only
dropped by 14,000 students. In the late 1990s, the college-age
population began to surge again. Over the period between 1979
and 2000, this population declined by 250,000 students but ad-
mission standards and enrollments increased substantially and
acceptance rates declined.

Since the late 1990s, the number of college-age youth has surged
again and will not peak until 2015 (Carnevale and Fry 2000). This
demographic surge, in combination with the high college wage
premium, will create enormous pressure to align mathematics
curricula with job requirements.

Matching Curriculum to Needs
The recognition of the need for a broader and more applied math-
ematics curriculum has grown appreciably since the 1970s as a
result of new occupational skill requirements and new forms of
work organization. The vast majority of new jobs requiring post-
secondary education created since the 1970s emerged in service
occupations (e.g., management, business services, education,
health care, computer services) that did not require advanced
mathematical operations but whose incumbents did need quanti-
tative literacy at the level of people who had at least some postsec-
ondary education (see Table 1). The shift toward a high-skilled
service economy required more and better integration of quanti-
tative and verbal reasoning abilities. Problem solving in high-
skilled service jobs is embedded in complex social interactions that
mix both quantitative and verbal reasoning (Carnevale and Des-
rochers 2001; Carnevale and Rose 1998). Consequently, employ-
ers and educators began focusing on analytic, problem-solving,
and critical thinking skills in the 1970s, and national assessments
of quantitative literacy were developed in the 1970s and 1980s.

The landmark report A Nation at Risk, issued in 1983, called for
high standards for all students in mathematics as well as curricula
that would teach students to “apply mathematics in everyday sit-
uations” (U.S. Department of Education 1983). The call for more
applied and accessible curricula has been a persistent theme in
education reform, but it has proven far easier to outline more
rigorous mathematics standards for all students than to develop
and implement effective new curricula.

Ironically, with notable exceptions, the traditional mathematics
curriculum increasingly dominates secondary education and ad-
mission to postsecondary institutions. Indeed, the “back-to-ba-
sics” tone of education reform tends to strengthen the traditional
academic silos in high school. Studies show that 56 percent of
students completed at least three years of mathematics in 1998,
compared with only 14 percent in 1982 (Roey et al. 2001).

The growing share of students who complete the traditional
mathematics curriculum at least through algebra II represents
both a remarkable achievement and a new opportunity. The next
step in making the mathematics curriculum more accessible will
be to shift toward a more applied context. A stronger emphasis on
applications should improve teaching and learning for all students
and will align high school mathematics more closely with college
studies, work, daily life, and citizenship.

The sequence of abstract high school mathematics courses that
prepares students for advanced degrees in mathematics and sci-
ence is still crucial to our advanced economy, but moving the
entire school-age population through the academic hierarchy
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from arithmetic to calculus as a sorting strategy for producing elite
mathematical talent required of a small share of college majors and
fewer than 5 percent of the workforce does not match well with
our more general needs for applied reasoning abilities and practi-
cal numeracy. Even now students take more mathematics courses
in elementary and secondary school than any other subject except
English, but the narrowly focused sequence of courses from arith-
metic to calculus surely is not the only way to produce reasoning
abilities and does not necessarily lead to a more applied quantita-
tive literacy (Steen 1997; Steen 2001).

The Democratization of Mathematics
The remedy for the widening cultural, political, and economic
gulf between those who are literate in mathematics and those who
are not is the democratization of mathematics. Democratization
does not mean dumbing down. It means making mathematics
more accessible and responsive to the needs of all students, citi-
zens, and workers. The essential challenge in democratizing math-
ematics applies to the sciences and humanities as well. The challenge
is to match curricula to cultural, political, and economic goals rather
than continuing the dominance of discrete disciplinary silos.

Jacques Barzun ends his history of the last 500 years of western
civilization with a disturbing vision of the future. Barzun foresees
the globalization of western culture, with the exception of fierce
pockets of resistance both within and outside the advanced econ-
omies. He invents a fictional historian who, looking back from the
year 2300, writes:

The population was divided roughly into two groups; they
did not like the word classes. The first, less numerous, was
made up of men and women who possessed the virtually
inborn ability to handle the products of techne and master
the methods of physical science, especially mathematics—it
was to them what Latin had been to the medieval clergy. . . .
It validated their position over the masses who by then could
neither read nor count. . . . He, and more and more often she,
might be an inventor or a theorist, for the interest in hypoth-
esis about the creation of the cosmos and the origin of life
persisted, intensified, from the previous era. The sense of
being close to a final formulation lasted for over 200 hundred
years. . . . It was from this class—no group—that the gover-
nors and heads of institutions were recruited. . . . On the
workaday plane, the dictates of numerical studies guided the
consumer, the parent, the old, and the sick. (Barzun 2000,
799)

Barzun’s scenario is disturbing because it comes a little too close to
home. As we begin the twenty-first century, the juggernaut of
western science, mathematics, and technology seems to be increas-

ingly compartmentalized and closed off from the mass of citizens
at home and abroad. Many people live and work in a world that is
driven by mathematical and scientific forces beyond their under-
standing or control. When these forces are embodied in new tech-
nologies and disseminated by market economies, they often are
experienced as a threat to job security as well as to established
traditions and institutions.

The wall of ignorance between those who are mathematically and
scientifically literate and those who are not can threaten demo-
cratic cultures. The scientifically and mathematically illiterate are
outsiders in a society in which effective participation in public
dialogue presumes a grasp of basic science and mathematics. Their
refuge is a deep mistrust of technocratic elites that often leads to
passive withdrawal from public life or an aggressive and active
opposition to change. In extreme cases, withdrawal leads to alien-
ation and a retreat to various forms of secular nihilism or religious
fundamentalism that explicitly reject the mathematical and scien-
tific rationalism at the heart of western culture (Castells 1997;
Gellner 1992). Citizens who are resigned to being cogs in some
incomprehensible machine are not what the founders of the
American republic had in mind, nor does such a society put its
best foot forward in the global cultural dialogue.

From a purely economic point of view, the prospects for reform-
ing the current mathematics curriculum to encourage broader
numeracy are promising—perhaps inevitable. Expanding the
pragmatic reach of mathematics and science as a tool for work has
powerful backing. It serves our material interests in economic
growth and individual economic opportunity. It is powered by the
relentless invisible hand of market forces that increasingly disci-
plines educational investments according to their economic re-
turns. In the new economy, quantitative literacy has increasing
value. Increasing efficiency in the production and dissemination
of mathematics education is now being driven by powerful market
forces and by the authority of governments that pay the bills.

In the short haul, pragmatic economic needs and career require-
ments are probably a healthy spur to reform in mathematics edu-
cation, but the alignment of mathematics education with eco-
nomic requirements can miss the mark and go too far. The
ultimate goal in making mathematics more accessible is democra-
tization not commodification. Advances in mathematical reason-
ing abilities need to serve our individualistic culture and our par-
ticipatory politics as well as our economy. Over the long haul, we
will need to be vigilant to ensure that the economy does not hijack
mathematics education.

The advocates for quantitative literacy already are leading the way
toward a more accessible mathematics curriculum that serves both
economic and cultural purposes. We need to continue support for
their work. They offer a more engaged approach that would teach
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the ability to use mathematics seamlessly in varied social contexts
and in different communities of practice (Ewell 2001). According
to the mathematical historian Joan Richards, “When teaching
mathematics is seen as a way of teaching people how to think, it
can no longer be isolated” (Richards 2001).

Notes
1. The debate over whether mathematics should be taught as an abstract

deductive system or in a more applied fashion sets up a false choice
between purists and advocates of quantitative literacy and numeracy.
The validity of mathematics is founded on deduction but it develops,
and is most easily understood, in applied contexts. Similarly, the dis-
tinction between mathematical and verbal reasoning is also artificial.
In the real world, reasoning is a cognitive soup of words and numbers
that assumes the shape of social contexts. (Cole 1996; National Re-
search Council 2000; Scribner 1997; Scribner and Cole 1997).

2. The most powerful call for a “general curriculum” comes from a study
released in 1945, sponsored by James Conant at Harvard, officially
entitled General Education in a Free Society and unofficially known as
the “Red Book.” The report argued for interdisciplinary learning to
foster an appreciation of the pluralism of ideas—the rational, subjec-
tive, and spiritual—at the heart of western culture. The general cur-
riculum was viewed as an antidote to single-minded ideologies and
fanaticism. In 1945 that meant communism and fascism. In the
twenty-first century, it applies to the global clash of cultures. The
development of a general curriculum remains difficult in the context
of specialization in the academic disciplines and the rise of vocation-
alism.

3. Teaching and learning that takes advantage of the synergy between
applied and abstract knowledge can be deeper and more accessible, if
done properly (see Barton 1990; Berryman and Bailey 1992; National
Research Council 1998; Resnick and Wirt 1995; Schoen and Zubarth
1998; Steen 1997; Steen 2001; Wood and Sellers 1996).

4. Data from the International Study of Adult Literacy shows that work-
ers in Sweden have the following distribution of quantitative literacy:
Level 1 (lowest): 5 percent; Level 2: 17 percent; Level 3: 40 percent;
and Level 4/5 (highest): 38 percent. In contrast, the distribution of
workers’ quantitative literacy in the United States is much lower:
Level 1 (lowest): 16 percent; Level 2: 24 percent; Level 3: 33 percent;
and Level 4/5 (highest): 27 percent (OECD 1995). To estimate the
increases in GDP and taxes that would occur if we had a quantitative
literacy distribution similar to Sweden’s, we first calculated the num-
ber of workers in the United States at each literacy level and, second,
applied the distribution of literacy in Sweden to the total number of
workers in the United States to estimate how many workers would fall
at each skill level if the United States’ quantitative literacy levels re-
sembled Sweden’s. Taking both of the distributions, we multiplied
the average earnings of U.S. workers at each skill level by the number
of workers at each level and summed to get aggregate earnings. The
difference in aggregate earnings using the U.S. and Swedish distribu-

tions provided an estimate of the potential increase in GDP. We then
multiplied the estimated increase by 35 percent to capture the addi-
tional federal, state, and local taxes that would be paid by these more-
skilled workers.

References
Barton, Paul E. 1990. From School to Work. Princeton, NJ: Policy Infor-

mation Center, Educational Testing Service.

Barton, Paul E., and Archie LaPointe. 1995. Learning by Degrees: Indica-
tors of Performance in Higher Education. Princeton, NJ: Policy In-
formation Center, Educational Testing Service.

Barzun, Jacques. 2000. From Dawn to Decadence: 1500 to the Present: 500
Years of Western Cultural Life. New York: HarperCollins.

Berryman, Sue E., and Thomas R. Bailey. 1992. The Double Helix of
Education and the Economy. Institute on Education and the Econ-
omy, Teachers College. NY: Columbia University Press

Carnevale, Anthony P., and Donna M. Desrochers. 1999. Getting Down
to Business: Matching Welfare Recipients to Jobs that Train. Princeton,
NJ: Educational Testing Service.

Carnevale, Anthony P., and Donna M. Desrochers. 2001. Help Wanted
. . . Credentials Required: Community Colleges in the Knowledge Econ-
omy. Princeton, NJ: Educational Testing Service.

Carnevale, Anthony P., and Richard A. Fry. 2000. Crossing the Great
Divide: Can We Achieve Equity When Generation Y Goes to College?
Princeton, NJ: Educational Testing Service.

Carnevale, Anthony P., and Richard A. Fry. 2001. “The Economic and
Demographic Roots of Education and Training.” Washington,
DC: Manufacturing Institute, National Association of Manufactur-
ers.

Carnevale, Anthony P., and Stephen J. Rose. 1998. Education for What?
The New Office Economy. Princeton, NJ: Educational Testing Ser-
vice.

Castells, Manuel. 1997. The Information Age: Economy, Society and Cul-
ture: Volume II. The Power of Identity. Oxford, UK: Blackwell.

Cole, Michael. 1996. Cultural Psychology: A Once and Future Discipline.
Cambridge, MA: Harvard University Press.

Ewell, Peter T. 2001. “Numeracy, Mathematics and General Educa-
tion.” In Mathematics and Democracy: The Case for Quantitative
Literacy, edited by Lynn Arthur Steen, 37–48. Princeton, NJ: Na-
tional Council on Education and the Disciplines.

Flynn, James R. 1998. “IQ Gains Over Time: Toward Finding the
Causes.” In The Rising Curve: Long-Term Gains in IQ and Related
Measures, edited by Ulric Neisser, 25–66. Washington, DC: Amer-
ican Psychological Association.

Gellner, Ernest. 1992. Postmodernism, Reason and Religion. London:
Routledge.

30 Quantitative Literacy: Why Numeracy Matters for Schools and Colleges



Greenfield, Patricia M. 1998. “The Cultural Evolution of IQ.” In The
Rising Curve: Long-Term Gains in IQ and Related Measures, edited
by Ulric Neisser, 81–23. Washington, DC: American Psychological
Association.

Grogger, Jeff, and Eric Eide. 1995. “Changes in College Skills and the
Rise in the College Wage Premium.” Journal of Human Resources
30(2) (Spring): 281–310.

Hecker, Daniel E. 2001. “Occupational Employment Projections to
2010.” Monthly Labor Review 124(11) (November): 57–84.

McNeil, William H. 1999. A World History, 4th ed. New York: Oxford
University Press.

Menand, Louis. 2002. “College: The End of the Golden Age.” In New
York Review of Books 48(16): 44–47.

Mishel, Lawrence, Jared Bernstein, and John Schmitt. 2001. The State of
Working America. 2001. (Table 7.7, p. 374). Ithaca, NY: Cornell
University Press.

Murnane, Richard, John Willet, and Frank Levy. 1995. “The Growing
Importance of Cognitive Skills in Wage Determination.” Review of
Economics and Statistics (May): 251–266.

National Research Council. 1998. High School Mathematics at Work.
Washington, DC: National Academy Press.

National Research Council. 2000. How People Learn: Brain, Mind, Ex-
perience, and School. Washington, DC: National Academy Press.

National Science Foundation. 2002. “Characteristics of Doctoral Scien-
tists and Engineers” (Table 5). Retrieved January 31, 2002, at
http://www.nsf.gov/sbe/srs/srs01406/start.htm.

Neisser, Ulric, ed. 1998. The Rising Curve: Long-Term Gains in IQ and
Related Measures. Washington, DC: American Psychological Asso-
ciation.

Organization for Economic Cooperation and Development (OECD),
Centre for Educational Research and Innovation. 1995. Literacy,
Economy, and Society: Results of the First International Adult Literacy
Survey. Ottawa, Canada: Statistics Canada.

Resnick, Lauren, and John Wirt. 1995. Junking School and Work: Roles for
Standards and Assessments. San Francisco, CA: Jossey-Bass.

Richards, Joan L. 2001. “Connecting Mathematics With Reason.” In
Mathematics and Democracy: The Case for Quantitative Literacy, ed-
ited by Lynn Arthur Steen, 31–36. Princeton, NJ: National Council
on Education and the Disciplines.

Roey, Stephen, Nancy Caldwell, Keith Rust, Eyal Blumstein, Tom Kren-
zke, Stan Legum, Judy Kuhn, and Mark Waksberg. 2001. The High
School Transcript Study Tabulations: Comparative Data on Credits
Earned and Demographics for 1998, 1994, 1990, 1987, and 1982
High School Graduates. National Center for Education Statistics.
NCES 2001– 498. Washington, DC: U.S. Government Printing
Office.

Romer, Paul M. 2000. “Should the Government Subsidize Supply or
Demand in the Market for Scientists and Engineers?” NBER Work-
ing Paper 7723. Cambridge, MA: National Bureau of Economic
Research.

Schoen, H. L., and S. Zubarth. 1998. “Assessment of Students’ Mathe-
matical Performance.” Core Plus Mathematics Evaluation. Iowa
City, IA: University of Iowa.

Schooler, Carmi. 1998. “Environmental Complexity and the Flynn Ef-
fect.” In The Rising Curve: Long-Term Gains in IQ and Related
Measures, edited by Ulric Neisser, 67–79. Washington, DC: Amer-
ican Psychological Association.

Scribner, Sylvia. 1997. Mind and Social Practice: Selected Writings of
Sylvia Scribner. Cambridge, UK: Cambridge University Press.

Scribner, Sylvia, and Michael Cole. 1997. The Psychology of Literacy.
Cambridge, MA: Harvard University Press.

Steen, Lynn Arthur, ed. 1997. Why Numbers Count: Quantitative Literacy
for Tomorrow’s America. New York: College Entrance Examination
Board.

Steen, Lynn Arthur, ed. 2001. Mathematics and Democracy: The Case for
Quantitative Literacy. Princeton, NJ: National Council on Educa-
tion and the Disciplines.

U.S. Department of Education. National Center for Education Statistics.
2000. Digest of Education Statistics. Washington, DC: U.S. Govern-
ment Printing Office.

U.S. Department of Education. The National Commission on Excel-
lence in Education. 1983. A Nation at Risk: The Imperative for
Educational Reform. Washington, DC: U.S. Government Printing
Office.

Wood, T., and P. Sellers. 1996. “Assessment of a Problem-Centered
Mathematics Program: Third Grade.” Journal for Research in Math-
ematics Education 27(3): 337–53.

31The Democratization of Mathematics



What Mathematics Should “Everyone”
Know and Be Able to Do?

ARNOLD PACKER

This essay presents ideas for teaching what some people are now calling “quantitative literacy.” Some
of the ideas are old hat—project-based collaborative learning, teaching in context, and using com-
puters. Some are radical—banning the use of x and y as variable names until after college algebra. An
early step is to determine whether a “canon of empirical mathematics problems” can be defined,
doing for quantitative literacy what the canon of literature does for cultural literacy. Some will argue
that this quest departs too radically from current mathematics education to be feasible, but the
current algebra curriculum has its own canon. An amusing book, Humble Pi, sets it out: age
problems, canoe problems, planes meeting in mid-continent, and so on.1 Why not a comparable set
for quantitative literacy?

As befits an essay on empirical mathematics (a term I prefer to quantitative literacy), a table of
specific types of examples is provided. It also is appropriate to cite some data. Over the last few years,
inner-city Baltimore students were taught quantitative literacy in their algebra courses. They out-
performed traditionally taught students by a wide margin. They took and passed Algebra II at a
greater rate, received higher grades, were absent less, and were more likely to graduate and to go on
to college.2

This essay concludes that it is better to teach mathematics inductively. Let students first learn the
power of mathematics in specific examples. Later, they can appreciate mathematics’ power to
generalize. The inductive approach is more likely to succeed than the current deductive process, in
which general rules are taught first and applications—selected from the canon noted in Humble
Pi—are of secondary importance.

The Challenge
The first order of business is to demonstrate that mathematics education is inadequate to today’s
challenge. The challenge exists because of mathematics’ growing importance for both economic and
citizenship reasons. It is no accident that, along with reading, mathematics is one of the two subjects
that always are required on standardized tests. This implies that it is important for everyone, not only
for those few who “love” the subject and grow to see the beauty in it.

Two hundred years ago, only merchants, engineers, surveyors, and a few scientists were mathemat-
ically literate. Merchants had to calculate the price of cloth “2 yards 1 foot 4 inches square at 3 pence
2 farthings the square foot.”3 Military engineers had to determine the angle needed for a cannon to
project a missile over a moat. Surveyors had to lay out site lines. Isaac Newton needed to invent
calculus to solve his physics problems. How many Americans are now mathematically literate is an
arguable question. By some estimates, it is less than one-fourth: that is how many adults achieve
levels of 4 and 5 in the National Adult Literacy Survey (NALS) and International Adult Literacy

Arnold Packer is Chair of the SCANS 2000 Center at the Institute for Policy Studies, Johns Hopkins University. An
economist and engineer by training, Packer has served as Assistant Secretary for Policy, Evaluation, and Research at the U.S.
Department of Labor, as co-director of the Workforce 2000 study, and as executive director of the Secretary’s Commission
on Achieving Necessary Skills (SCANS). Currently, his work is focused on teaching, assessing and recording the SCANS
competencies.
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Survey (IALS) studies,4 levels at which they can perform two or
more sequential operations or tasks of similar complexity.

But the rigors of international competition have changed policy-
makers’ views on the issue. Ten years ago, the first President Bush
and the governors (including then-Governor Bill Clinton) met in
Charlottesville, North Carolina to set education goals. By the year
2000, U.S. students were to be first in the world in science and
mathematics. But now we are well past 2000, and by any measure
we have not met that goal. National Assessment of Educational
Progress (NAEP) scores in mathematics (for 17-year-olds) in
1996 were only 3 percent higher than in 1982. The average NAEP
score was 307, meaning that the average 17-year-old can compute
with decimals, use fractions and percentages, recognize geometric
figures, solve simple equations, and use moderately complex rea-
soning. The averages among blacks (286) and Hispanics (292)
were below 300, meaning the ability to do no more than perform
the four arithmetic operations with whole numbers and solve
one-step problems.5 Over half of the students entering the Cali-
fornia State University system need to take a “developmental”
mathematics course. Over one in four college freshmen feels a
need for tutoring or remedial work in mathematics. This com-
pares to one in 10 for English, science, and foreign language.6

Teaching is part of the problem. International comparisons of
mathematics teaching find U.S. methods to be inferior to those
used by Japanese or German teachers. The nation faces a severe
shortage of primary and secondary school mathematics teachers
and an overabundance of those trained to be college mathematics
teachers. In 1998, 18 percent of high school mathematics teachers
did not have a major or minor in the subject.7 At the same time,
only 2 percent of college freshmen expect to major in the physical
sciences. This 2 percent includes only 0.5 percent in mathemat-
ics.8 Mathematics teachers are disconnected from other faculty in
many schools and colleges.9 As a result, mathematics lacks context
and other courses lack mathematics.

Although they may not know the reasons why, generations of
American students have been convinced that something was amiss
with mathematics classes. Many a parent has heard their teenage
children complain, “I hate math; it’s boring and hard. Why do I
have to learn math, it’s so useless. . . .” Many parents are sympa-
thetic. They themselves finished their last required mathematics
course in high school or college with expressions of relief, not
commitments to take another mathematics course as an elective.10

These parents often are mathematically inadequate at their own
jobs and in other aspects of their lives. They do not understand
statistical quality processes, cannot follow political candidates
who speak of “weighted averages,”11 and cannot make sense of
alternative strategies for financing their own retirement. They
would express wonderment if by some small chance they ever met

a mathematician who spoke of mathematical beauty (although
seeing A Beautiful Mind might have an impact). Our society pays
a high cost for the general lack of mathematical competence.

What is wrong? The way middle school teachers teach fractions
provides a clue. They teach their students to add fractions by:

First finding the lowest common denominator.

Then converting all fractions to that denominator.

Then adding the numerators.

Finally, reducing the answer, if possible.

Nobody does that outside the schoolroom. Imagine a school caf-
eteria in which the selected items totaled three quarters and three
dollars and four dimes. The schoolroom method would be to
change all these in for nickels. Or go to the shop. Maybe the
problem is adding one foot and 8 and 1/16 inches to 6 and 1/4
inches. Would any carpenter change it all into sixteenths? It is a
very rare situation when anyone needs this method, say to add odd
fractions such as fifths and sevenths.

Mathematics teachers might say they want a “general solution” so
that students could add twentieths and sixteenths. A thoughtful
student might respond, “Yeah . . . like when?” We are generally
using the decimal system (for money or where the metric system
prevails) or the English system of measurement. The practical
result is not a universe of students who can solve a universe of
fraction problems. Instead, it is a great many students who learn
(about the sixth grade) that they “can’t do math” and demonstrate
that truth by being unable to solve either the cafeteria or shop
problems.12

Nor is the general abstract approach to mathematics necessarily a
big favor for those who “love” mathematics or science. “No sci-
entist thinks in equations,” Albert Einstein said. Einstein em-
ployed visual images and muscular feelings. The mathematician
S. M. Ulam said that he uses “mental images and tactile sensations
to perform calculations, replacing numerical values with the
weights and sizes of imagined objects.” Joshua Lederberg becomes
“an actor in a biological process, to know how [to] behave as if I
were a chromosome.”13

Evidence from mathematics assessments is consistent with the
theories (and data) from cognitive science: it is better to build
abstract thinking on a concrete base. Adding ethereal fractions or
solving 3x � 9 by eliminating references to concrete objects or
phenomena removes the connection to nonsymbolic ways of
thinking about mathematics. For too many, the bloodless abstrac-
tion makes it impossible to learn the subject. Others can remem-
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ber, via rote recall and long enough to pass the final, how to plug
in numbers and chug through the formula.14 Do not, however,
ask either the passing or failing students to apply the technique to
a real-life problem. Weeks after the final, they cannot even re-
member that the formula exists. They have no way to recall the
formula from long-term memory. Imagine asking most adults the
formula for solutions to the quadratic equation or, worse yet, what
real-life process is described by the equation. Nor does the prob-
lem disappear as students take higher-level courses: “. . . under-
graduates never learn how calculus relates to other disciplines,
much less the real world.”15 The situation is untenable for two
kinds of students: those who do not like mathematics and those
who do.

Thomas Berger of Colby College, former chair of the Committee
on the Undergraduate Program in Mathematics of the Mathemat-
ical Association of America, speaks of the “mathematization of
society” as symbolic models become the basic tools of engineers,
medical researchers, and business executives.16 These models,
however, simulate real-world processes and systems. They are used
to allocate resources, design technology, and improve system per-
formance. Mathematization increases the significance of higher-
level skills for most citizens. Successful workers, citizens, and con-
sumers need to know how to solve problems, analyze data, and
make written and oral presentations of quantitative results.

How does the traditional pre-calculus curriculum serve these pur-
poses? How valuable, actually, is calculus? Even mathematicians
often replace calculus with finite mathematics to take advantage of
computer technology.17 The same technology can handle both
the traditional tasks of manipulating formulas and performing
long computations. Spending too much time teaching humans to
solve problems better handled by machines is not a wise strategy
when there is so much to know.

Conceptualizing how a problem can be stated mathematically has
become (and, indeed, always was) more valuable than factoring a
polynomial or taking a derivative. The tasks most college gradu-
ates face demand quantitative literacy (a.k.a. empirical mathemat-
ics)—a way with numbers and comfort replacing concrete realities
with symbols—without forgetting the reality beyond the symbols.
In other words, banish x and y from mathematics class at least until
the completion of college algebra. Use, instead, letters (even Greek
letters) that stand for something students can understand or pic-
ture: v for velocity, d for distance, P for price, n for number, p for
profit, and so on.

This idea is not so radical. In his introduction to Why Numbers
Count, Lynn Arthur Steen referred to scientific mathematics in
which mathematical variables always stand for physical quanti-
ties—“a measurement with a unit and implicit degree of
accuracy.”18 In the same volume, F. James Rutherford said,

“ . . . citizens need to possess certain basic mathematical capabil-
ities understood in association with relevant scientific and techno-
logical knowledge.”19

Mathematicians, of course, want their students to understand
mathematics’ power to solve general problems, ones that are not
rooted in a specific problem. That point can be made and dem-
onstrated near the end of the mathematics course. Teach that the
equation for velocity can be used in many contexts relating to
change. True generality can be saved for those mathematics stu-
dents who still will be taking mathematics courses in their junior
year in college. (Indeed, there might be more such students if
mathematics were less abstract in the earlier years of school.) Make
each year of mathematics instruction worthwhile in itself, not just
preparation for the next mathematics course.

Many critics of this point of view believe it does not credit the
power of abstract mathematics to be generally applicable. But—as
guns don’t kill but people with guns do—mathematics does not
apply itself: mathematically competent individuals do. Individu-
als require enough competence and creativity to structure a prob-
lem mathematically and to know when and how to use the tools.
On that basis, the current approach to achieving widespread
mathematical competence is failing. The real issue is whether
mathematics should be taught inductively—from the concrete to
the abstract—or the other way around, as it often is today. The
answer can be found empirically, not theoretically. Which ap-
proach will meet education’s goals of productive workers, engaged
citizens, and well-rounded individuals who continue to learn after
graduation?

Quantitative Literacy:
Goals and Objectives
What mathematics should “everyone” know and be able to do?
The National Council of Teachers of Mathematics (NCTM) has
been attempting to answer this question for more than a decade as
council members developed mathematics standards. Wisely,
NCTM included the ideas of real-world problem solving and
being able to communicate in the language of mathematics. Its
report, however, is built around standard mathematical topics,
algebra, geometry, calculus, statistics, and so on. The problems
were what we might expect: Solve x2 – 2x – 7 � 0, or derive the
equation describing the motion of a Ferris wheel car. Few indi-
viduals work on either of these problems outside of a school situ-
ation. One helpful criterion is to restrict problems to those that
American workers get paid to solve, those that American citizens
should have informed opinions about, or those that American
consumers actually need to solve.
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Consider the challenge posed by Berger’s mathematization of so-
ciety. What if Berger’s problem were stated in the language of
mathematical optimization? (Surely, mathematicians should ap-
plaud using their discipline to analyze this problem.) In the work-
place, industrial psychologists analyze the frequency and critical-
ity (sometimes called importance) of tasks and the various skills
needed to carry them out. The human resources department then
either hires folk with the more important skills or trains staff in
those skills. Transfer this thinking to the school situation in which
the challenge is how best to prepare students for their life beyond
the schoolhouse walls. Think first of the student’s professional life.
The optimizing school would seek to maximize the benefit that is
a function of:

1. The frequency of having any particular job or career;

2. The probability that any particular problem will arise in that
job;

3. The criticality of having the appropriate mathematics skills to
solve the problem; and

4. The economic importance of solving the problem properly.

The mathematics curricula should seek to maximize the benefits
under the constraints of time, talent, and materials.20 The trick is
figuring out the problems that students exiting formal education
after grade 14 have a significant likelihood of having to solve in
their careers. In an earlier paper, I estimated that advanced math-
ematical content was required in about 4 percent of jobs; that is
the percentage of engineers, scientists, computer analysts, finan-
cial analysts, and accountants in the labor force.21 I also suggested
that the weighted probability of a problem arising should be 1
percent or more before it should be put in the canon of problems
that all students should be able to solve. Applying this criterion to
curricula would mean that 1.5 million persons would have to
encounter a problem in their lifetimes before it was worth includ-
ing in the canon.

As noted before (and repeated for emphasis), careers and work are
not the only economic reasons for taking mathematics. In a con-
sumer society, successful individuals make wise consumption, sav-
ing, and investment decisions. The equation needs to be supple-
mented, therefore, with the probability of making decisions in
these domains, the frequency with which the decisions will be
made over a lifetime, the criticality of mathematics for making the
decisions wisely, and the economic cost of the decisions.

Education also has responsibility for preparing students for their
roles in noneconomic domains. A democracy needs citizens who
participate with awareness and understanding; surely this is a
mandatory objective of publicly funded education. Citizens

should be able to understand the New York Times, the president’s
State of the Union speech, and the school district’s budget. Com-
prehending statistics and reading charts and tables are essential. There
are also personal reasons for knowing some mathematics. Now we
have to add the importance of encountering problems in these two
noneconomic domains to the benefit equation. Instead of only eco-
nomic costs, political and social costs need to be considered.

The challenge is to identify important, frequently encountered
problems that cannot be efficiently solved without using mathe-
matics. In other words, the challenge is to identify a canon of
mathematical problems analogous to the canon in literature.
David Denby, film editor for the New York Times, wrote a con-
troversial book about his midlife experience of returning to Co-
lumbia University to revisit the literature canon of the Western
world. He read literature from Homer and the Bible to Virginia
Woolf.22 Can anything similar to the literary canon be described
for mathematics? What problems have been, and will be, relevant
for centuries and across cultures?23

Well, some problems have been around for a while. We can imag-
ine that the Egyptian pharaohs had problems of budgeting and
scheduling construction of the pyramids. The biblical story relates
Abraham’s negotiating the price for the cave of Machpelah as a
burial place for him and Sarah. Penelope’s suitors would have
benefited from knowing something about the rate of change in the
area of the cloth she was weaving. Similar problems will be around
for the next new millennium if humans last that long.

The classes of problems also should remain fairly constant across
cultures and up and down the organizational ladder. Problems of
budgeting apply from the fourth grade to the CEO (and, of
course, to the president and Congress). The problem only be-
comes more complex as variables multiply and uncertainty enters
the equations. Of course, the way budget and schedule problems
are solved changes—King Tut did not have a spreadsheet or Har-
vard Project Planner. With computers, mathematicians may
choose linear programming rather than calculus to solve numeri-
cal optimization problems.

A Scheme
E. D. Hirsch is widely known for his educational canon. He lists
things students should know at each grade level. I will try to avoid
such laundry lists and suggest, instead, a structure in which types of
problems can be placed or developed. This structure can accommo-
date a range of difficulties for each of the problem types. Some exam-
ples in the range are suitable for different school grades. A second
grader may, for example, be taught something about schedules while
mathematics post-docs may struggle with variations of the traveling
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salesman problem. The particular examples we put forth are suitable
for grades 11 to 14 in school and for college.

The structure builds on the SCANS taxonomy, a set of competencies
developed in 1991 by the Secretary’s Commission on Achieving Nec-
essary Skills (SCANS).24 These competencies—a better term is prob-
lem domains—are quite broad and were intended to accommodate a
full range of situations from entry-level to CEO. The five SCANS
domains and the subdomains that require quantitative literacy are:

● Planning problems. Allocating money (budgeting), time
(scheduling), space, and staff.

● Systems and processes problems. Understanding, monitoring,
and designing social, physical, or business systems.

● Interpersonal problems. Working in teams, negotiating, teach-
ing, and learning.

● Information problems. Gathering and organizing data, evalu-
ating data, and communicating, both in written and oral
form.

● Technology problems. Using, choosing, and maintaining
equipment of any type.

Solving problems in any domain requires a foundation of basic
(reading, writing, listening, speaking) and higher-order (problem-
solving, decision-making, creativity, and mathematical) skills and
personal qualities such as integrity, sociability, and self-manage-
ment. Performing in a real situation often demands solving prob-
lems in more than a single domain.

The SCANS categorization must be approached with care and
common sense. It is an abstract structure imposed on an endlessly
complex reality to help organize examples. The categories are only
reasonably comprehensive and relatively disjointed. In the table at
the end of this essay, many problems could easily fall into different
box from the one into which they were put.

Other structures can be, and have been, devised. The U.S. De-
partment of Labor developed O*Net, the New Standards group
developed Applied Academics, and a number of states and occu-
pational groups developed their own standards. The manufactur-
ing and sales and service sectors developed standards under the
guidance of the National Skills Standards Board. Equip for the
Future (EFF), a project of the National Institute for Literacy, has
extended similar standards to define the literacy needs for work,
citizenship, and parenting. Basically, all these standards are varia-
tions on the same theme and crosswalks have been developed to
link them. All the good ones strike a balance between an endless
unstructured list of examples and an almost equally endless list of

narrow categories. The best structures acknowledge that human
memories are generally limited to recalling a list of five to seven items.

I chose the SCANS taxonomy for the following four reasons:

1. It is the best-known and most widely used structure avail-
able.25

2. It is one of the only structures that have widespread recogni-
tion across the academic and occupational standards that
have been developed in the United States and other countries.

3. It is easily modified to suit standards developed under other
structures, such as state standards for mathematics.

4. It is easily extended to roles other than career and work.26

Four “roles” are used to fill out the structure. For most students
and policymakers, the role of work and careers is of foremost
concern. If not for this role, mathematics departments would be
competing for students with literature and art departments, not
with computer sciences. Unlike most school-based problems, real
work-based problems usually cannot be solved in a few minutes
but take hours of sustained effort. Preparation for this role re-
quires that students engage in long-term projects. The ability to
carry out such tasks has been noted by a recent National Academy
of Sciences effort to define computer literacy and fluency.27 Acad-
emy member Phillip Griffiths, director of the Institute for Ad-
vanced Studies in Princeton, speaks to the need for the mathemat-
ically competent to function in various SCANS domains. “We
asked . . . [about] . . . science and engineering PhD’s. The em-
ployers told us that . . . they find shortcomings: . . . communica-
tions skills . . . appreciation for applied problems . . . and team-
work. . . . Skills like project management, leadership . . .
interpersonal skills . . . computer knowledge.” Students will have
to work in teams, use computers to solve problems, and make oral
and written presentations if Griffith’s requirements are to be met.

Many mathematics teachers may decry my emphasis on work and
careers, so I want to acknowledge, once again, the importance of
other domains (without relinquishing the idea that the primary
force behind the nation’s emphasis on mathematics is economic).
Individuals also require mathematics to succeed in their second
important role as consumer. Some buying problems can and must
be solved quickly and on the spot. Comparing the price per ounce
for similar products sold in differently sized bottles, understand-
ing discounts, approximating a large restaurant or hotel bill are
examples. Other problems, such as comparing retirement or
health plans or comparing mortgage rates may take more time
(although the Internet can speed things up).
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Citizenship, the third role, is a noneconomic role, one that is
mandatory if public funds are to be used for education. Informed
discussions about the adequacy of Social Security, the growth rates
of spending and taxing, health policy, science policy, and a host of
other topics are impossible for the mathematically illiterate.

Finally, mathematics can provide personal pleasure. This is the
personal role. Pleasure can take the form of appreciating pure
mathematics itself, reading about a variety of subjects that require
mathematical or computer literacy for full understanding, or em-
ploying mathematics for leisure activities from astronomy to sail-
ing to carpentry.28 In this domain, mathematics educators will
have to compete with music, arts, and physical education.

Thoughts on Breadth Versus Depth
and Pedagogy
Some believe that students, after learning all the mathematical
topics in the current curriculum, can put them together for appli-
cations such as those contained in the Appendix. That belief is not
based on empirical data. Students—and, unfortunately, many
mathematics teachers—simply cannot do it. People learn how to
put together budgets by making a budget. Projects are necessary.
This raises the hoary problem of coverage. It brings up the opti-
mization problem stated earlier: how to provide the most value to
the student and society under constraints of time and resources.

Massachusetts Institute of Technology mathematics professor
Arthur Mattuck pointed out that teaching through modeling is
difficult. Models must be sophisticated to capture interest. The
more time spent building and understanding the model the less
time for coverage. “In the end,” he said, “very little mathematics
gets done.”29 One response to Mattuck is this: “What if covering
Taylor’s expansion rather than a more interesting modeling
project means that fewer students will take the next mathematics
course?”30 This clearly illustrates the trade-off.

Brain research has shown again and again that retention of infor-
mation requires context. Unless a student can provide a mental
map, developed by making connections, memory of facts or skills
will soon dissipate. This holds true whether people are trying to re-
member names, formulas, or how to solve a differential equation.

The dilemma of coverage was highlighted in the Third Interna-
tional Mathematics and Science Study (TIMSS) international
comparison of mathematics teaching and learning. American text-
books are thick, Japanese thin. We cover more topics lightly and
they cover fewer topics in depth. Japanese students surpass those
of most other countries in international mathematics assessments.
We are in about the middle of the pack.31

The lessons of TIMSS apply as well to empirical mathematics.
Learning how to solve the problems shown in the Appendix will
take more time and is unlikely to be done well unless certain other
topics are eliminated or at least postponed until higher college
levels when career choices are clearer. Recall, yet again, that we are
trying to maximize usefulness under constraints of time, money,
and talent.

Even if the curriculum is revised to fit, pedagogy will have to
change. Managing groups of students working collaboratively on
a project is different from lecturing. Computers and the Internet
will probably be part of the instructional materials. Teachers who
offer these sorts of classes find it to be more work but more re-
warding than using traditional methods. Creating projects is time
consuming. Most mathematics teachers do not have the time or
inclination (or talent) to create realistic projects. Electronic and
paper libraries (such as the Harvard Case Studies) have and can be
created.32

Coverage of mathematics topics will also have to be reduced if the
culture of mathematics is to fit into the limited time that can be
devoted to the subject. If all students are going to understand math-
ematicians’ discovery processes,33 there will be less time to under-
stand the discoveries themselves. Consider, for example, the fifth-
grade lesson C��D. It is much less interesting than C/D � �. With
the latter, students learn that someone discovered � by showing that
the ratio C/D is invariant with different-sized circles. It maybe worth
dropping the definition of a rhombus to teach the lesson of �.

Finally, assessment will have to change. Multiple-choice, fill-in-the-
blank, and even 10-minute problems still will have a place but other
assessments will be required. Some of these will be formative assess-
ments that teachers provide as students work through the project or
make presentations. As in writing with word processors, multiple
drafts will be required. Each will have to be assessed and returned for
improvement. That is quite a difference from “you got it wrong, let’s
move on.”

Each of the above will take resources, from political leadership to
money. Imbuing all students with quantitative literacy cannot
take place without additional instructional materials, substantial
teacher training, and new assessment instruments. Why is this
investment justified? Because current approaches are failing too
many students. Their careers and our society will suffer from it.
Teachers in technical college programs complain that students
cannot do mathematics. We have enough history to know that
students are not going to change. We must, therefore, change
what and how we teach mathematics.
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Appendix: Empirical Mathematics
Computers take derivatives and integrals, invert matrices for lin-
ear programming, and perform other algorithms much better
than humans. I have written elsewhere about the end of algorith-
mic work as a means of making a livelihood in the United States.34

American workers cannot accept a wage low enough to compete
with a computer. Workers do, however, require enough mathematics
and creativity to structure a problem so that mathematics can be used.
They also need sufficient quantitative capacity to know when tools
are not working right or have been improperly used.

This appendix, whose structure is shown in the accompanying
table, offers a first stab at a canon of empirical mathematical
problems. The table lists mathematical tools for each of the five
SCANS competencies and each of the four adult roles. Some of
the entries in the table do not include all the tools needed because
they have been noted frequently in other boxes. For example, the
four arithmetic functions are needed to solve many problems that
an American will face, so they are not listed repeatedly. When the
phrase “concept of . . . ” is used in the table, it means just that—
knowing the concept of rate of change and change in the rate of
change (acceleration) does not require knowing how to take the
second derivative. The same thought applies to linear program-
ming and to the idea that minimums and maximums occur when
the derivative is zero or inflection when the second derivative is
zero or that an integral takes the sum over an interval.

The main part of the appendix consists of examples of important
tasks arranged according to the SCANS taxonomy. The mathe-
matical models described are expected to be developed and ex-
pressed in spreadsheets, graphics packages, etc. Students would be
asked to estimate “rough numbers” to ensure that the models have
been properly specified and the numbers properly entered.

Planning
BUDGET:

Worker: Using a spreadsheet with algebraic formulas, develop a
budget for a retail store, construction project, manufacturing
operation, or personal services (e.g., dental) office. The bud-
get should include wages, benefits, material (or inventory),
rent, and interest costs on borrowed funds.

Consumer: Using pencil and paper (with a calculator) and given a
set of criteria and prices, develop a monthly budget for a
family of four. Develop a budget for a party.

Citizen: Given an agency or organization budget for the past five
years, write a two-page letter explaining and criticizing it.

Include information on the growth or decline of the budget
components themselves and as shares of the total. Relate to
other variables, such as inflation and population growth.

Personal: Be able to understand the effects of budgets on historical
events. Was the Athenian budget for itsnavyan excessive burden?

SCHEDULE:

Worker: Using a spreadsheet (or other software) with algebraic
formulas, develop a schedule for a construction project, ad-
vertising campaign, conference, medical regime, or software
project. Require conversions from hours to workweeks. Un-
derstand the difference between activities done in sequence
and simultaneously. Understand PERT and Gantt charts.

Consumer: Using pencil and paper without a calculator, plan a
party or a meal. Convert hours to minutes.

Citizen: Understand why it takes so long to build a road or school.

Personal: Appreciate why Napoleon was beaten by the weather
and Russia.

SPACE:

Worker: Using a computer graphics package, lay out a storeroom or
office space in three dimensions. Develop a graphic for a bro-
chure. Lay out material for a garment or a steel product. Lay out
a restaurant or hotel space. Place paintings in a gallery.

Consumer: Look at a builder’s plans and modify them. Under-
stand your own living space.

Citizen: Understand plans for a public building.

Personal: Appreciate good design in products and buildings.
Hang paintings in your house.

STAFF:

Worker: Using a matrix and database, assign staff to functions. In
unusual situations, you may use linear programming to
match skills and requirements matrices.

Consumer: Contract out a renovation project for your house.

Citizen: Understand a school’s staffing requirements.

Personal: Understand staffing requirements in a historical setting.
Assign players in a Little League baseball game or in the local
orchestra.
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Systems and Processes
UNDERSTAND:
Worker: Read and understand a flowchart for a production or

paperwork process. Read organization charts. Read diagrams
explaining how technology functions.

Consumer: Read a flowchart and follow the directions to install a
new piece of software or an exercise machine.

Citizen: Read government organization charts. Understand a
flowchart for legislation as it passes through Congress.

Personal: Grasp the organization of a military campaign. Under-
stand a diagram explaining how technology functions or a
scientific process unfolds. Understand the culture of mathe-
matics and the process of mathematical discovery.

MONITOR:
Worker: Use techniques of statistical process control to monitor a

manufacturing process or patient or customer complaints.

Consumer: Understand statements about the quality of the prod-
ucts or services purchased.

Citizen: Understand environmental safeguards.

Personal: Monitor changes in a local garden.

DESIGN:
Worker: Develop an information (or other) system flowchart and

build a mathematical model to simulate its operation. De-
velop a statistical process-control system.

Consumer: Design a system for keeping the pipes in a summer
house from freezing.

Citizen: Help a local school district design a school safety system.

Personal: Design a system for maintaining a diet and exercise regime.

Interpersonal
NEGOTIATE:
Worker: Negotiate the price of a product or project and be able to

think on your feet, including manipulating numbers men-
tally. Participate in a labor-management negotiation.

Consumer: Be able to understand a construction contractor’s or
mechanic’s proposal and negotiate a fair agreement.

Citizen: Understand a government negotiation.

Personal: Understand a historically important negotiation.

TEACH AND LEARN:

Worker: For teachers, help students do quantitative work in non-
mathematical subjects.35 For workers, teach co-workers or cus-
tomers the mathematics needed to carry out a task or use a
product. Should know enough mathematics to absorb training.

Consumer: Should know enough mathematics to learn how to use
a product when taught by a salesperson. Should be able to
teach a spouse how to use a product.

Citizen: Should be able to explain and debate policy issues when
quantitative issues are involved.

Personal: Should be able to discuss topics when quantitative is-
sues are involved.

Information
GATHER AND ORGANIZE:

Worker: Create a filing system for parts or customer information.
Build a database.

Consumer: Create a filing system for tax information. Use a data-
base. Organize an on-line checking system.

Citizen: Use a file to find out about government services in your
district. Organize a file for a school’s PTA.

Personal: Use a Dewey decimal and an on-line library system to
find a book and information.

EVALUATE:

Worker: Use a statistical package to evaluate data. Read relevant
statistical studies and come to a judgment.

Consumer: Evaluate advertising claims. Read an annual report
from a firm whose stock you hold.

Citizen: Evaluate political claims.

Personal: Judge the likelihood of an event or story (UFO) being true.

COMMUNICATE:

Worker: Write a report about a quantitative issue, including ta-
bles and charts. Make a presentation on the material to more
senior colleagues.

Consumer: Read and listen to such reports critically and be able to
ask intelligent questions.
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Citizen: Make a presentation or write a report for the school board.

Personal: Carry out a conversation about a quantitative issue. En-
gage in a chat room about a quantitative issue of interest such
as astronomy.

Technology
USE:

Worker: Use equipment, such as a numerically controlled ma-
chine tool, to produce a part.

Consumer: Use a computer.

Citizen: Use a county’s Internet address to find tax data.

Personal: Use a chat room to engage in discussion.

CHOOSE:

Worker: Analyze alternative medical, construction, manufactur-
ing, or computer equipment and recommend a purchase.

Consumer: Analyze alternatives for video on demand, home secu-
rity systems, or computers.

Citizen: Analyze a county’s or school board’s decision to purchase
technology, from fire engines to computer systems. Be able to
judge whether the antimissile system makes sense.

Personal: Analyze a historic technology decision, from the long-
bow to atomic energy.

MAINTAIN:

Worker: Follow maintenance instructions for a piece of industrial
equipment.

Consumer: Follow maintenance instructions for a consumer
product.

Citizen: Participate, as part of a volunteer fire department, in
maintenance of the fire engines.

Personal: Maintain rare books or valuable paintings when tem-
perature and humidity must be controlled.

Mathematics Required to Solve Frequently Occurring Problems in Four Roles and Five SCANS Competencies36

Problem
Domains

Planning
● Budget
● Schedule
● Space
● Staff

Systems and Processes
● Understand
● Monitor
● Design

Interpersonal
● Negotiate
● Teach and

learn

Information
● Gather and organize
● Evaluate
● Communicate

Technology
● Use
● Choose
● Maintain

Worker
Role

Four arithmetic operations,
estimation, geometry,
algebra, exponential
functions, spreadsheets,
conversions. Concept of
trade-offs. Awareness of
tools such as linear
programs and calculus
for making trade-off
decisions.

Model-building. Concept of
first and second
derivative and of
integral, average, and
standard deviation.

Mental arithmetic,
fractions,
percentages.

Create and read graphs,
tables, and
explanatory text.

Read graphs, tables, and
explanatory text,
Concept of trade-offs.
Geometry.

Consumer
Role

Four arithmetic operations,
geometry, exponential
functions, spreadsheets.
Concept of trade-offs.

Concept of first and second
derivative and of
integral, average, and
standard deviation.

Mental arithmetic,
fractions,
percentages.

Read graphs, tables,
and explanatory text.

Read graphs, tables, and
explanatory text.
Geometry.

Citizen
Role

Four arithmetic operations,
geometry, concept of
trade-offs.

Concept of first and second
derivative and of
integral, average, and
standard deviation.

Mental arithmetic,
fractions,
percentages.

Read graphs, tables,
and explanatory text.

Read graphs, tables, and
explanatory text.
Geometry.

Personal
Role

Geometry, concept of
trade-offs.

Concepts of calculus and
statistics. History of
mathematical discovery.

Read graphs, tables,
and explanatory text.

Geometry.

41What Mathematics Should “Everyone” Know and Be Able to Do?



Notes
1. Michael K. Smith. Humble Pi: The Role Mathematics Should Play in

American Education (Amherst, NY: Prometheus Books, 1994).

2. John Faithful Hamer and Anna-Liisa Aunio, “The Technology Lit-
eracy Challenge and the Baltimore Initiative: Integrating School and
Work on the Information Highway Final Evaluation Report”
(2001).

3. Theodore M. Porter, “The Triumph of Numbers: Civic Implica-
tions of Quantitative Literacy,” in Why Numbers Count, Lynn Arthur
Steen, ed. (New York, NY: College Entrance Examination Board,
1997), 1–10.

4. John Dossey, “National Indicators of Quantitative Literacy,” in
Steen, Why Numbers Count, 45–59.

5. “Do You Know the Good News About American Education?”
(Washington, DC: Center on Education Policy, 2000): 13.

6. “This Year’s Freshmen: A Statistical Profile,” Chronicle of Higher
Education, 28 January 2000, A50.

7. “Do You Know the Good News About American Education?”
(Washington, DC: Center on Education Policy, 2000): 27.

8. “This Year’s Freshmen: A Statistical Profile,” Chronicle of Higher
Education, 28 January 2000, A50.

9. See http://www.stolaf.edu/other/ql/intv.html.

10. Ibid.

11. As arose in the Bradley-Gore debates in the discussion of rival health
insurance premiums.

12. Lynn Arthur Steen pointed out that adding odd fractions is prepa-
ration for adding mixed algebraic fractions. The preparation can, in
my judgment, wait until students reach such algebra problems (if
ever). The cost, in students who become convinced that “mathemat-
ics is not for them” is too high to justify the benefit.

13. Robert S. Bernstein and Michele Root-Bernstein, “Learning to
Think With Emotion,” Chronicle of Higher Education, 14 January
2000, A64.

14. An anecdote from Steve Childress of New York University: I just
finished grading an exam I gave to graduate students seeking admis-
sion to our Ph.D. program. One of the questions I asked (the subject
was complex variables) was of a standard kind requiring the calcula-
tion of a “residue.” Now there are various ways of doing this, certain
formulas that are useful in individual cases, but the heart of the
matter is that you are seeking a certain coefficient in a series and this
can usually be obtained directly by expanding the series for a few
terms. My problem could be solved in several lines by this direct
approach. I was astounded to see that almost everyone applied a
certain formula that, in this problem, led to impossibly complicated
mathematics. I asked around about this and learned that we had just
instituted a kind of prep course for the exams, and that the instructor
had given them a problem of this type and solved it with that special

formula (in a case where it worked easily)! This is the crux of the
problem I see from day to day, from freshmen on up.

15. Robin Williams, “The Remaking of Math,” Chronicle of Higher Ed-
ucation, 7 January 2000, A14.

16. Ibid.

17. http://www.stolaf.edu/other/ql/intv.html.

18. Lynn Arthur Steen, “Preface: The New Literacy.” In Why Numbers
Count, Lynn Arthur Steen, ed. (New York, NY: College Entrance
Examination Board, 1997), xv–xxviii.

19. F. James Rutherford, “Thinking Quantitatively about Science.” In
Steen, Why Numbers Count, 60–74. Italics in the original.

20. Arnold Packer, “Mathematical Competencies that Employers Ex-
pect,” In Steen, Why Numbers Count, 137-–54.

21. Ibid.

22. David Denby, Great Books: My Adventures with Homer, Rousseau,
Woolf, and Other Indestructible Writers of the Western World (New
York, NY: Simon and Schuster, 1996).

23. We hope that the mathematics canon will be less controversial that
Denby’s literature canon. On the other hand, that may be an unrea-
sonable hope.

24. See “What Work Requires of School (1991) and Learning a Living
(1992) (Washington, DC: U.S. Department of Labor).

25. http://www.stolaf.edu/other/ql/intv.html.

26. The author of this essay was executive director of SCANS.

27. National Academy of Sciences, Being Fluent with Information Tech-
nology (Washington, DC: National Academy Press, 1999).

28. I recall my quantitatively literate mother using her skills to figure out
when important events—such as births, marriages, and deaths—
occurred.

29. Arthur Mattuck, “The Remaking of Math,” Chronicle of Higher Ed-
ucation, 7 January 2000, A15.

30. I heard one engineering dean wonder if his course in electronics was
not the best recruiting tool the School of Business had for transfers to
its program.

31. That is, we do not shine even on the disaggregated topics. As to real
problem solving, it is not even tested.

32. I, and many others, have been involved in creating CD-ROMs to
relieve teachers of the task of project construction.

33. Something advocated by NCTM and emphasized to me by Ivar
Stakgold in a private telephone conversation.

34. Hudson Institute, “The End of Routine Work and the Need for a
Career Transcript,” Hudson Institute Workforce Conference (Indi-
anapolis, IN: September 23–24, 1998).

35. Mathematics teachers would presumably have taken mathematics
courses beyond this level.

36. See Appendix for examples of the entries in this table.
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Quantitative Literacy in the Workplace:
Making It a Reality

LINDA P. ROSEN
with LINDSAY WEIL

and CLAUS VON ZASTROW

Business cares deeply about education because the United States can thrive only with a well-educated
populace. Indeed, business is deeply invested in improving education for all young people, especially
in helping them acquire the increased knowledge and skills required to meet twenty-first-century
demands. In this agenda, business is not alone—educators, policymakers, and the general public
share the same goal. Despite their concerted effort, however, student achievement remains inade-
quate. Rather than dwell on disappointment, business leaders and others continue efforts to revital-
ize education. This essay explores one vital component of the goals for education in the twenty-first
century—that of quantitative literacy for all.

Although there is no firm consensus on the meaning of quantitative literacy, there is at least growing
agreement that existing practices in mathematics education do not adequately address this compe-
tency as it is required in the workplace. Many new jobs demand highly developed computational
skills coupled with strong skills in critical thinking, problem solving, and logical reasoning. More-
over, given the increasing pace of technological progress, future jobs will require greater adaptability
to new systems and processes: employees must be prepared to apply quantitative principles in
unforeseeable contexts. Although the level of sophistication may differ from job to job, the need for
adaptability will characterize low-skill as well as high-skill jobs. There is a growing awareness,
therefore, that our nation’s young people must master something more complex than the mathe-
matics curriculum as it is now frequently taught.

Absent a widespread understanding of the steps needed to achieve this mastery, however, businesses
are unlikely to include any systemic attempts to achieve quantitative literacy. The challenge, then, is
how to bring quantitative literacy into the business agenda for education reform.

The Changing World
The competitive pressures of today’s global economy are forcing U.S. firms to restructure the work
they do and how they do it. These changes in the workplace frequently demand more from employ-
ees than ever before; workers not only must be able to read, write, and use mathematics but they also
must have strong problem-formulation and problem-solving skills. In 1950, for example, 80 percent
of jobs were classified as “unskilled,” whereas an estimated 85 percent of jobs today are classified as
“skilled.”1 Decisions once reserved for management—including how to organize responsibilities,

Linda P. Rosen is an educational policy consultant. Previously, she was Senior Vice President for programs at the National
Alliance of Business. Prior to that she served as mathematics and science advisor to Education Secretary Richard Riley and
as executive director of the “Glenn Commission” on mathematics and science teaching, whose report, Before It’s Too Late,
was issued in September 2000. Earlier, Rosen served as executive director of the National Council of Teachers of Mathe-
matics (NCTM) and associate executive director of the Mathematical Sciences Education Board (MSEB).
Claus von Zastrow is Director of Institutional Advancement at the Council for Basic Education. Previously, he was Director
of Post-secondary Learning at the National Alliance of Business.
Lindsay Weil is Education and Marketing Manager at the Character Education Partnership. Previously, she was Program
Manager at the National Alliance of Business.
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how to improve procedures and increase profitability, how to
maintain quality control—are now also routinely expected of
nearly all employees.

Unfortunately, the U.S. labor force is not always poised to meet
these changing expectations. An annual survey by the American
Management Association, released in May 2001, indicated that
41 percent of the responding companies require basic skills tests of
job applicants, with slightly more testing in mathematics than in
reading. Eighty-five percent of these companies indicated that
they do not hire skills-deficient applicants. The 2001 results
showed that more than one-third of job applicants tested in read-
ing and mathematics lacked the necessary skills to perform even
entry-level jobs. In particular, the assessment of spreadsheet and
database management skills—attributes of quantitative literacy—
identified 26 percent of the applicants as lacking the necessary
knowledge and skills.2

The corporate community has reacted to these findings in an
effort to develop a workforce qualified for jobs along the skill
spectrum:

● Business leaders have made significant investments in training
programs. Training Magazine reported that in 1999, nearly
$62.5 billion was spent on training.3 Although exact alloca-
tions are difficult to document, anecdotal information sug-
gests that a substantial portion was spent helping employees
master basic skills that they should have acquired in high
school, thus effectively forcing business to pay for our schools’
failure to educate some members of the workforce.

● Despite challenging political odds, the business community
successfully lobbied Congress to enact H-1B visa bills en-
abling the entry of nearly a million temporary, nonimmi-
grant, highly skilled computer workers between 1998 and
2004. Lawmakers were persuaded that jobs would otherwise
go unfilled by an American workforce lacking the necessary
expertise, thus endangering U.S. competitiveness in the
global economy.

Projections about future needs only heighten corporate concern.
An estimate that 60 percent of all new jobs in the early twenty-first
century will require skills possessed by only 20 percent of the
current workforce is one such cause for alarm.4 Similarly, projec-
tions that 20 million jobs will be added to the U.S. economy by
2008 have raised questions about the vitality of the educational
pipeline to support such growth.5 Although the full impact and
length of the current economic downturn are not yet clear, the
business community is paving the way for future growth even as it
takes steps to deal with existing challenges.

Corporate Involvement in Education
These signs have persuaded the business community to adopt a
proactive, rather than reactive, stance on education. Instead of
relying only on remediation or recruitment abroad, business lead-
ers are increasingly committing themselves to improving U.S.
education: that is, to raising the knowledge and skill levels of all
young people prior to their entry into the workforce. Business
leaders do not expect the need for specialized training to diminish,
given the technology-driven workplace in which the only constant
is change. But they do expect that adult workers no longer will be
impeded in their acquisition of new knowledge by lapses in their
understanding and mastery of prior knowledge. Here are five ex-
amples of major business-led reform efforts.

STATE REFORM

Advocacy: In collaboration with the nation’s governors, over the
past five years several CEOs6 have served as members of Achieve,
Inc., including participation in four national education summits.
These corporate leaders have committed themselves and their
companies to improving student achievement, increasing invest-
ments in and accountability for teachers, and promoting regular
assessments that are comparable across schools and districts.

Implementation: The business community—through state and lo-
cal business coalitions—plans to work with state education offi-
cials to implement No Child Left Behind, the reauthorized Ele-
mentary and Secondary Education Act (ESEA). These efforts may
include dissemination of information about the legislation, mo-
bilization of business leaders to participate in strategic planning,
identification of effective practices for business involvement, and
providing public officials with the business perspective on road-
blocks and implementation successes.

INFLUENCING FEDERAL POLICY

K–12 Education: In January 2001, over 70 leading U.S. corporations
and business organizations from across the economy formed the ad
hoc Business Coalition for Excellence in Education (BCEE) to work
with the president and Congress on the reauthorization of the ESEA.
Guided by a set of 10 policy principles, leading CEOs presented a
unified business voice on recommended legislative language to help
ensure that an effective bipartisan bill was signed into law. These
principles offer a road map of the educational issues that are most
important to the business community. (See the Appendix for a com-
plete list of the principles.)

Postsecondary Education: With the reauthorization of the Higher
Education Act, the Workforce Investment Act, and the Carl D.
Perkins Vocational and Applied Technology Education Act
scheduled for the next session of Congress, the business commu-
nity will likely again coalesce around a set of principles to guide its
recommendations for shaping the legislation.
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ENHANCING THE TEACHING PROFESSION

In 2001, four business organizations—the Business Roundtable,
the National Alliance of Business, the National Association of
Manufacturers, and the U.S. Chamber of Commerce—released a
report entitled Investing in Teaching.7 Calling for a renaissance in
teaching, the report describes:

● A new model of teacher preparation and professional devel-
opment;

● A new model of teacher pay tied to performance and a new
employment compact; and

● A new school environment that provides teachers with the
freedom and flexibility to achieve results.

The business community is now partnering with educational lead-
ers, policymakers, and other stakeholders to bring these models to
fruition.

INDIVIDUAL COMPANY INITIATIVES

Individual companies invest significant resources and staff to pro-
vide grants, scholarships and fellowships, and executives-on-loan,
among other options, to programs at the national, state, and local
level. To name just a few:

● The Johnson & Johnson Bridge to Employment program
provides mentoring opportunities, internships, job shadow-
ing, teacher externships, guest lecturers for high school sci-
ence classes, and curriculum development in eight communi-
ties across the country.

● Micron Technology devotes considerable staff time and en-
ergy to K–12 programs that demonstrate the importance of
mathematics to twenty-first-century careers.

● Charles Schwaab offers conferences for student attendees to
learn about quantitative literacy in the finance industry. A
keynote speaker and various professionals typically describe
their jobs and what is takes to be successful in their careers.

SETTING BENCHMARKS

The American Diploma Project (ADP), recently launched by
Achieve, the National Alliance of Business, the Fordham Foun-
dation, and the Education Trust, has three goals:

1. To develop and solidify demand—from higher education
and employers—for standards-based high school assessment
data in admissions and hiring processes;

2. To assist states in revising and/or strengthening their current
standards-based systems; and

3. To develop national high school graduation benchmarks in
English language arts and mathematics that all states may use
to calibrate the quality and rigor of their standards and assess-
ments.

Through this project, the business community seeks to identify,
among other skills, the quantitative literacy that is fundamental to
success in the workplace. The intent is to define benchmarks in
terms of academic skills and courses that must be mastered in
secondary school.

IMPLICATIONS

These business initiatives all address education, yet only the last
one overtly addresses quantitative literacy, and then only in the
context of school mathematics. Although the business community
has demonstrated its sincere and long-standing commitment to
education reform, the issue of quantitative literacy is almost ab-
sent from its education agenda. Furthermore, business leaders are
not looking for new issues to champion, especially when substan-
tial progress on existing issues remains elusive. Advocates for
greater quantitative literacy, therefore, cannot expect business to
take any position on the issue—much less to promote it in its
principles for education reform—unless they themselves raise
business awareness of the issue’s importance. To do so, they first
have to formulate a useful definition of quantitative literacy, one
that clearly addresses the business demand for necessary knowl-
edge and skills and one that is widely understood.

What Is Quantitative Literacy?
THE BUSINESS PERSPECTIVE

What does the phrase “the business perspective” mean? Clearly,
the business community is not monolithic and we must always use
caution with generalizations—perhaps even more caution when
describing an issue such as quantitative literacy, which has yet to
receive widespread attention from the business community.

When asked to describe quantitative literacy, a quality manager
from General Electric characterized it as “the ability to conceptu-
alize work, identify metrics for gathering data, and understand
how to utilize data to take action to improve performance.” By
contrast, the head of organizational development at Quaker State
Penzoil characterized it simply as the ability to apply “basic addi-
tion, subtraction, multiplication, and division skills to various
situations on the job.” A study of the skills and competencies
needed in the environmental technologies industry contained as-
pects of both these characterizations:
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Mathematics as applied in the workplace, and mathematics as
taught in schools and colleges, can be very different. Most
mathematics problems in the workplace involve applications
of what is typically referred to as “basic arithmetic,” i.e.,
addition, subtraction, multiplication, and division. How-
ever, these problems can vary considerably in their complex-
ity and associated levels of mathematical reasoning. Many
jobs require complex, high levels of mathematical reasoning,
even though they do not require high level mathematical
concepts found in geometry, trigonometry, or calculus. For
example, adding production figures is very straightforward,
but knowing when and how to calculate the average produc-
tion for the day is more difficult; it is a two-step mathematical
calculation and requires knowing both what an average is as
well as how it is calculated. Even more complicated is under-
standing how and when to take into consideration scrap or
waste, in order to calculate “net” production. . . .8

Are these conceptions necessarily different? While GE emphasized
reasoning, Penzoil emphasized computation, two facets of current
workplace responsibilities and of quantitative literacy. And, al-
though the environmental technologies illustration unites reason-
ing and computation, it employs the word “mathematics” rather
than quantitative literacy.

This is not to argue that the representatives of GE, Penzoil, or the
environmental technologies industry agree or disagree about
quantitative literacy. Indeed, the assertion of active agreement or
disagreement implies far more awareness and discussion of quan-
titative literacy than currently exists in the business community.
There is, in fact, no shared business-wide vocabulary about the
issue, or a consensus on what constitutes quantitative literacy. Yet,
progress in building a more quantitatively literate workforce de-
pends on such consensus. Many businesses successfully “rein-
vented” themselves over the past decade by a deliberate process of
change management motivated by a clear vision of new goals.
Without such a clear, quantifiable vision, many business leaders
hesitate to pursue change.

Although the business community has thus far shown little inter-
est in developing a widely shared understanding of quantitative
literacy, there are admittedly workplace efforts underway that
could yield a common definition, perhaps by inference, perhaps as
an unintended by-product.

Assessing Skills for Employment Readiness: The American College
Testing (ACT) WorkKeys® program9 offers a set of scales devel-
oped so that:

● Employers can identify and develop workers for a wide range
of skilled jobs;

● Students and workers can document and advance their em-
ployability skills; and

● Educators can tailor instructional programs to help students
acquire the skills employers need.

Yet the WorkKeys “Applied Mathematics” scale is primarily arith-
metic, with virtually no reference to the reasoning skills sought by
the GE quality manager. Although this scale might be appropriate
for some entry-level jobs in some industries, its usefulness across
the economy has not yet been demonstrated. Thus, its utility as
the basis for a workplace definition of quantitative literacy is ques-
tionable at best.

Skills Standards: The National Skills Standards Board (NSSB) was
created in 1994 to “build a voluntary national system of skill
standards, assessment and certification systems to enhance the
ability of the U.S. workforce to compete effectively in a global
economy.”10 These standards were intended to define the work to
be performed, how well the work must be done, and the level of
knowledge and skill required. Although a description of quanti-
tative literacy in the workplace might emerge from this initiative,
this potential is far from being realized, because:

● The rate of change in the workplace has outpaced the devel-
opment of the standards, rendering them almost obsolete by
the time of release.

● The “least common denominator” often emerged from the
process of developing standards, with the corresponding re-
sult of scant buy-in from different constituencies in the work-
place.

THE EDUCATION PERSPECTIVE

In contrast to the business community, education groups offer
more concrete definitions of quantitative literacy, even though
they sometimes refer to these definitions under the rubric of
“mathematical literacy.”

One important definition serves as a foundation for the Pro-
gramme for International Student Assessment (PISA), a first-of-
its-kind international study of 15-year-old students’ ability to ap-
ply reading, mathematics, and science literacy in real-world
contexts. PISA characterizes mathematics literacy as “an individ-
ual’s capacity to identify and understand the role that mathemat-
ics plays in the world, to make well-founded mathematical judge-
ments and to engage in mathematics, in ways that meet the needs
of that individual’s current and future life as a constructive, con-
cerned, and reflective citizen.”11
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In Mathematics and Democracy: The Case for Quantitative Literacy,12

the National Council on Education and the Disciplines outlines
several elements of quantitative literacy:

● Having facility with simple mental arithmetic; estimating
arithmetic calculations; reasoning with proportions; counting
by indirection;

● Using information conveyed as data, graphs, and charts;
drawing inferences from that data; recognizing disaggregation
as a factor in interpreting data;

● Formulating problems, seeking patterns, and drawing conclu-
sions; recognizing interactions in complex systems; understand-
ing linear, exponential, multivariate, and simulation models; un-
derstanding the impact of different rates of growth;

● Understanding the importance of variability; recognizing the
difference between correlation and causation;

● Recognizing that seemingly improbable coincidences are not
uncommon; and

● Using logical thinking; recognizing levels of rigor in methods
of inference; checking hypotheses; exercising caution in mak-
ing generalizations.

IMPLICATIONS

Attainment of quantitative literacy requires the ability to reason,
to make sense of real-world situations, and to make judgments
grounded in data. The description of lifelong literacy—“learning
to read” and “reading to learn”—could provide a good model for
the development of a similarly effective characterization of quan-
titative literacy. This model must capture the notion that people
who acquire quantitative literacy gain a foundation for future
learning, one that enables them to adapt to the demands of an
increasingly technological world.

Still, the business and education communities have yet to close
ranks around a single, well-known conception of quantitative lit-
eracy that could motivate a reform agenda advocated by both
parties. What is emerging, however, is a consensus that there is
something new needed by an educated adult, something more than
arithmetic proficiency. Business leaders are seeing the problem;
they have not yet seen the solution.

Who Needs Quantitative Literacy?
Rapid technological change has dramatically altered the American
business landscape. The invention of the microprocessor, with its
ability to move vast amounts of information, has prompted a

technological explosion. Innovations stemming from more ad-
vanced technology, remote satellite communication systems, fiber
optic cables, encryption, biotechnology and genomic discoveries,
laser scanners, and the Internet have launched the marketplace in
multiple, often uncharted, directions. As a result, a company’s
competitive advantage rests with its workers’ ability to interpret
data, make decisions, and use available technology. This is true, to
some degree, of almost all jobs along the skill continuum, even
though each calls for different levels of quantitative literacy.

Although some jobs are becoming more complex, computers and
related technologies are simultaneously eliminating many tradi-
tional jobs. With the assistance of technology, one person, in
dramatically less time, now can accomplish tasks that once were
carried out by a team of people. ATMs have replaced bank tellers,
on-line databases have replaced travel agents, and computer-op-
erated machines have replaced factory laborers.

JOB GROWTH AND DECLINE

Projections from the Bureau of Labor Statistics for 1995–200813

confirm that the majority of shrinking occupations are those that
are being replaced by technologies. Jobs performed by installers or
operators are in the greatest decline: typesetting machine opera-
tors, railroad brake and signal machine operators, peripheral
equipment operators, sewing machine operators, machine tool
cutting operators, woodworking operators, and switchboard op-
erators. Office automation and the increased use of word process-
ing equipment by professionals and managerial employees also
have led to a decline in individually paid word processors and
typists, proofreaders and copy markers, payroll and time clerks,
bank tellers, and bookkeeping and auditing clerks.

The four fastest growing occupations—computer engineers,
computer support specialists, systems analysts, and database ad-
ministrators—demand strong mathematical skills, complex prob-
lem solving, a facility with the use of technology, and the ability to
evaluate data to anticipate future challenges. In other words, they
require quantitative literacy.

Desktop publishing specialists and legal assistants, the next two
fastest growing occupations, also follow this pattern. Incumbents
in such jobs must have the ability to use technology to record and
represent data and the ability to think logically and implement
multilevel solutions to problems.

Other projected high-growth occupations require quantitative lit-
eracy. Home health aides, medical assistants, social and human
service assistants, and physician assistants—often thought of as
low-skill workers requiring a minimum of formal education—
need to think logically and devise multilevel solutions to complex
problems. Such skills, especially in health care, require significant
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quantitative skills as a frame of reference for administering correct
dosages of medicine, gauging physical reactions, and judging the
interaction of various treatments.

IMPLICATIONS

Although gainful employment is not the sole purpose of educa-
tion, it is a necessary and expected outcome. Education therefore
must be influenced by changes in the workplace. That some types
of jobs disappear and new ones emerge is certainly not a new
phenomenon; neither is the fact that education evolves to reflect
the changing employment market.

The accelerating rate of change in the workplace, however, height-
ens the challenge. Mathematics education reform in the late 1980s
criticized the lingering vestiges in school mathematics of a “shop-
keeper curriculum” left over from the previous century for a na-
tion no longer dominated by shopkeepers. We cannot afford the
luxury of such a slow response, if we ever could.

The pervasiveness of quantitative literacy among jobs showing the
greatest growth—and the reasonable assumption that the trend
will continue—requires the education system to respond accord-
ingly by incorporating quantitative literacy into schooling. In its
frequent calls for “critical thinking” abilities or “real-world” skills,
the business community has long been moving toward something
resembling a conception of quantitative literacy. Still, a vast gulf
separates this intuitive sense of new skill requirements from the
advocacy of education reforms that can actually result in a quan-
titatively literate citizenry.

What Is Business Doing to Address
Quantitative Literacy?
The answer is simple—not enough.

IN EDUCATION

Business involvement in education, as described earlier, is focused
on policy. Calls for higher student achievement are often accom-
panied by calls for rigorous course work. What should comprise
that rigorous course work—in mathematics or any subject—is not
discussed in detail. Instead of addressing specific pedagogical or
curricular questions in which it has little expertise, the business
community focuses on broader issues in terms of outcomes:

● Algebra for all students;

● A world-class secondary school curriculum, as defined by the
Third International Mathematics and Science Study
(TIMSS); and

● A widening of the pipeline for scientists and engineers.

Although laudable, these recent business-led efforts to improve
student achievement in mathematics do not necessarily advance
the cause of quantitative literacy. Certainly, the business commu-
nity’s long-standing call to align curriculum, assessments, and
teacher preparation with high-quality, rigorous academic stan-
dards promises to bring about much-needed gains in student
achievement. Real progress toward widespread quantitative liter-
acy, however, will require even more fundamental changes.

IN BUSINESS

Even in their own employee training programs, businesses do little
to encourage quantitative literacy.

Effectiveness: Reports from the American Society of Training and
Development, The Work in Northeast Ohio Council, and the
National Association of Manufacturers indicate that training pro-
grams are effective—up to a point.14 These studies provide evi-
dence that corporate training programs can improve employee
performance, firm productivity, product quality, and even com-
pany profitability. Indeed, such evaluations help business justify
the expenditure. Over the long term, however, such gains in pro-
ductivity and profitability will inevitably remain limited as long as
the training is restricted to narrowly defined skill areas.

Course Content: Two types of corporate training programs—re-
medial and computer-based—could, but apparently do not, in-
clude quantitative literacy. Remedial programs tend to teach basic
arithmetic and fail-safe formulas with little emphasis on problem
solving. Employees are rarely taught to identify quantitative rela-
tionships in a range of contexts and settings, to consider a variety
of approaches to manipulate those quantitative relationships, or to
make data-based decisions on the job. As a result, few employees
acquire even rudimentary quantitative literacy on successful com-
pletion of such a program.

With businesses incorporating more technology into their daily
operations, the majority of workplace training–both formal and
informal seminars–is computer related. Indeed, according to
Training Magazine, nearly 40 percent of all workers receive formal
training from their current employers.15 These classes run the
gamut from the use of spreadsheets to the use of advanced statis-
tical analysis software such as SPSS.

Despite this universal access to computer training, such classes
apparently have little impact on quantitative literacy. Existing
computer training programs may fail to build strong quantitative
literacy because they devote scant attention to the connection
between computer applications and real-world scenarios. Because
accessing technology does not necessarily depend on a person’s
ability to reason with the inputs or results, very few computer-
related training courses are contextualized. Consequently, train-
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ing providers focus their instruction on algorithmic usage at the
expense of exploring the power of technology and the ways in
which it can be applied in a variety of situations. The end result:
workers gain only rudimentary knowledge of quantitative literacy
through use of computer technology.

IMPLICATIONS

The candid answer to the question—What is business doing to
address quantitative literacy?—remains: apparently very little, at
least little that consciously addresses the challenge.

We could attribute this inaction to uncertainty about effective
ways to broaden training or to participate meaningfully in educa-
tional discussions about curriculum. There could be a reluctance
to invest the time and money without a clear means of measuring
results. Business might be dismayed by the lack of a clear course of
study that leads to quantitative literacy, or by many other training
issues competing for attention and support in the business world.

Moreover, there is no clear leverage point to rally around. When
students are not yet achieving at acceptable levels in traditional
course work, the prospect of fighting for a new, somewhat amor-
phous concept with far-reaching curricular implications is daunt-
ing.

Most important, business leaders routinely measure investments
of time, resources, and commitments against the potential “return
on the investment.” Without a clear understanding of the means
and ends of quantitative literacy—the ways in which young and
adult learners acquire the knowledge and skills, and the payoff for
such acquisition—business will not likely make any serious in-
vestment.

This is not cause for discouragement but rather a window of
opportunity.

Setting Greater Expectations
There is no better way to improve business’ chance for success
than by developing well-prepared, job-ready workers who think
on their feet, learn on the job, and take on new challenges. Al-
though these qualities may be commonplace among the highest
tier of employees in innovative industries, they do not characterize
the workforce writ large.

Our failure to produce a more quantitatively literate workforce
presents our nation with an important civic and economic chal-
lenge. The business community has a critical role to play in assist-
ing educators and the public in restructuring education in re-
sponse to the needs of the modern workplace and the
requirements of today’s society. If we want to promote a palpable

increase in quantitative literacy, we must adopt an aggressive strat-
egy designed to improve the knowledge and skills of the current
and future workforce.

The following six action steps provide corporate America with a
blueprint for meeting this challenge:

1. Participate with education and workplace researchers to
better document the existing level of and anticipated need for
quantitative literacy in the workplace.
The vibrancy of the U.S. economy—despite the recent down-
turn—and the high level of innovation throughout history sug-
gests that there has always been a cadre of people with the neces-
sary skills and verve. Yet, a greater proportion of the workforce
needs quantitative literacy to sustain and grow business in the
twenty-first century.

There seems to be little readily available data that could inform
new policies to support broader acquisition of quantitative liter-
acy. This is ironic, because in such a data-driven field, experts who
promote quantitative literacy apparently have not gathered the
ammunition to support the need expressed in their rhetoric.

Without data, questions pivotal to policy decision making end up
unanswered. For example: What proportion of the population
lacks quantitative literacy skills? What proportion of jobs requires
quantitative literacy? What can business expect as a return on
investment for implementing quantitative programs? Is it more
cost effective to achieve quantitative literacy through the educa-
tional pipeline or through workplace training or through both?
What are the educational characteristics of programs that would
yield quantitative literacy?

The inability to answer such questions has impeded, and will
continue to impede, progress in developing realistic options and
programs that demonstrate results.

2. Work with schools and colleges and among companies to
raise general awareness about the importance of quantitative
literacy in today’s workplace.
Most businesses do not recognize quantitative literacy in the
workplace, making it difficult to design and support efforts to
increase it. Because many use computational capabilities as a
proxy for quantitative skills, they often develop and support edu-
cational programs that may rest on faulty assumptions. Quantita-
tive literacy may even manifest itself differently from industry to
industry, from occupation to occupation, from task to task, fur-
ther complicating the situation.

As more data about quantitative literacy are gathered, and busi-
nesses analyze the demand for quantitative literacy in the work-
place, they will be better equipped to formulate a cogent message
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to students, employees, educators, policymakers, and peer com-
panies about the true implications of quantitative literacy in to-
day’s workplace. Such a public information campaign is needed to
institutionalize quantitative literacy as a fundamental goal of the
educational pipeline.

Because some information about workplace skills is proprietary
and may bear on a company’s competitive advantage in the mar-
ketplace, impartial business organizations and researchers may be
best positioned to aggregate data on quantitative literacy and share
it among interested stakeholders. A broad group of stakeholders,
however, should work together to raise the level of awareness and
understanding of quantitative literacy.

3. Provide leadership and support to achieve quantitative lit-
eracy among elementary and high school students.
A specific and workable conception of quantitative literacy should
provide a foundation for long-term initiatives to improve U.S.
secondary school education.

Ultimately, the typical business manager has a right to be per-
turbed when he or she pays twice to educate an employee—first
through taxes for public education that did not fully succeed, and
again through direct expenditures for that employee. While rec-
ognizing the need to shore up the skills of the current workforce,
business must promote improvement in public schools as a means
of increasing the skills of future generations.

Indeed, this need to promote improvement must extend beyond
mere advocacy for higher standards to include a call for funda-
mental reforms to the way we teach mathematics. Business leaders
regularly argue that even students who perform well in mathemat-
ics courses are often not prepared to function effectively in today’s
workplace because they lack versatility and flexibility in dealing
with real-world obstacles. They become stymied by challenges for
which there are no prescribed textbook solutions. Young people
must learn this versatility and flexibility in school, long before they
enter the workforce.

Business is particularly well equipped to make a powerful case for
quantitative literacy in elementary and secondary schools, but first
it must acknowledge that widespread quantitative literacy will not
necessarily result from requirements that students take more
mathematics courses. To effect more meaningful changes over the
long term, business must become more fully engaged with the
content and delivery of those courses.

4. Engage education and training partners to help upgrade the
quantitative literacy of the workforce based on identified
quantitative needs.
Although efforts to create a new generation of quantitatively lit-
erate Americans will promote a stronger economic future, the

business and education communities cannot simply write off the
current generation of workers. Businesses should capitalize on and
modify existing training infrastructures to produce a more quan-
titatively literate workforce.

Large corporations are centralizing their education and training func-
tions under a “Chief Learning Officer” (CLO) to bring a sense of
strategy, purpose, and efficiency to far-flung educational and profes-
sional development functions. In such corporations, economies of
scale allow this specialization of the CLO. Of course, the vast majority
of U.S. companies are small and do not have the resources to conduct
detailed job task analyses nor the expertise to choose the right mix of
course work for their employees. There is no shortage of vendors and
salespeople plying their wares to the small-business owner or human
resources director. Unless there is a clear, functional skill needed by
employees, however, a harried manager is likely to avoid the subject of
education and training altogether.

Yet a small company may be able to gain access to external exper-
tise by tapping the resources of a local small-business resources
center, community college career development center, or continu-
ing education division of a local college or university. These orga-
nizations not only offer specific training courses but they also can
link a small business to planning and assessment tools, and possi-
bly management consultants, who can help map out a company-
wide employee development plan, which should include a focus
on the range of quantitative literacy needed by employees. No
matter what means they use, businesses must ensure that the
planned curriculum is consonant with something more than
arithmetic proficiency.

5. Invest Money Wisely and Measure Return on Investment.
Business needs to know that the money it invests is providing the
skills that workers need. Whether this investment targets young peo-
ple prior to employment or broadens and deepens their knowledge
thereafter, business will rightfully insist on frequent measures of suc-
cess. Increasing global competition and mounting educational chal-
lenges demand wise corporate investments that demonstrate educa-
tional achievement and workforce quality. Thus, employers must
engage in regular, meaningful evaluation of their efforts.

6. Develop a Road Map for Continuous Improvement.
To create a mechanism for gauging the return on its investment,
business requires an ambitious yet reasonable plan for improve-
ment. If it simply strains after lofty goals, it will certainly fail. And
it will—just as certainly—abandon the effort.

Rather, business leaders and educators must establish a succession
of clear and attainable objectives, all of which must lead to the
ultimate goal of ensuring that every U.S. citizen achieves a high
level of quantitative literacy. Piecemeal success does not necessar-
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ily add up to a measurable national improvement—every local-
ized initiative must support a much larger vision.

As Intel CEO and President Craig Barrett argues, the processes of
continuous improvement common in the business world also can
promote successful education reforms. To advance the cause of
quantitative literacy, such processes must ultimately incorporate
all the action steps described above into what Barrett, quoting W.
Edwards Deming, calls a “plan-do-check-act” cycle.16

Advocates for quantitative literacy must first plan: define and mea-
sure the problem and then formulate a plan for addressing it.
Then they must do: implement the plan in both schools and
workforce training programs. Next, they must check: monitor the
plan’s results according to preestablished criteria for success. Fi-
nally, they must act: on the basis of these results they must enact
targeted changes to the original plan. Then the process begins
again, at a higher level. By learning from their mistakes while
capitalizing on their achievements, reformers can make incremen-
tal but significant progress toward the goal of quantitative literacy
for all Americans.

Unless business leaders and educators work together to develop a road
map for achieving this goal that is at once visionary and practical, the
cause of quantitative literacy will not move forward with the speed
and resolve required in a competitive global economy.

Conclusion
The jobs of the twenty-first century are more complex than ever
before. Technologies such as computers, e-mail, faxes, and the
Internet have created a world awash in data. To succeed in this
data-drenched society, employees need to have tools to make sense
of information in faster and cheaper ways than heretofore. The
notion of quantitative literacy promises to offer a mechanism for
making sense of this world.

The principles advanced in this essay cannot provide any imme-
diate or easily implemented solutions to the shortage of quantita-
tively literate citizens. Rather, they call for a committed and sus-
tained effort to specify emerging needs for new quantitative skills,
and then to rally stakeholders around carefully targeted programs
addressing these needs. Although such an effort presents great
challenges, it promises even greater rewards. If they work together
toward clearly articulated goals, the business and education com-
munities will have an unprecedented opportunity to prepare every
U.S. citizen for success in a constantly changing world.

Appendix

Business Coalition for Excellence
in Education:

Principles for K–12 Education Legislation
In a world of global competition and rapid technological advances,
U.S. schools must prepare all students for the challenges and oppor-
tunities of the twenty-first century. To achieve this goal, our school
systems must adopt higher standards, use high-quality assessments aligned
to these standards, and hold schools accountable for results, so that all
students have the opportunity to succeed. Federal investments must help
each state implement a standards-based, performance-driven educa-
tion system that is carefully aligned to the goal of higher student
achievement. The Business Coalition for Excellence in Education*
urges Congress to enact bipartisan legislation that embodies the fol-
lowing principles:

Achieving Systemic Reforms
● Standards: All states should have high-quality, rigorous aca-

demic standards that reflect the levels of student achievement
necessary to succeed in society, higher education, and the work-
place. The federal government should provide all states with the
information and resources to develop, continuously improve,
and benchmark rigorous academic standards that can be used to
raise individual student performance to world-class levels.

● Assessments: All students should be tested annually with
high-quality assessments aligned to state standards. The pur-
pose must be to measure the progress of school, teacher, and
student achievement against standards and to identify where
additional support is needed for students to reach them.

● Student Achievement: Assessments should be used as diag-
nostic tools to ensure that all students, particularly those iden-
tified as under-performing, receive the assistance they need to
succeed in reaching high academic standards. Similarly, fed-
eral leadership should ensure that preschool aid focuses on
helping prepare children to enter school ready to learn.

● Accountability: States, districts, and principals should en-
sure that all students, including disadvantaged and under-
performing students, meet high academic standards. States
should have policies of rewards and sanctions to hold systems
accountable for improving the performance of students,
teachers, and principals. Such policies should be based on
performance, including student achievement.

* An ad hoc coalition of leading U.S. corporations and business organi-
zations that support these principles in the reauthorization of the Elemen-
tary and Secondary Education Act
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● Flexibility: States, localities, and schools should have flexibility
for their educational organization, innovation, and instruction
while being held accountable for raising student achievement.

● Alignment: States must ensure that high-quality assessments,
accountability systems, teacher preparation and training, and
curriculum are aligned with high state standards so that students,
teachers, parents, and administrators can measure progress
against common expectations for student achievement.

● Data, Research, and Best Practices: Student achievement
data should be collected regularly, and made public in formats
that can guide the decision-making of teachers, parents, and
students to improve performance. Research must be pertinent
to standards-based education systems to enable teachers to
apply proven findings in the classroom.

Areas of Special Focus

● Math and Science Excellence: Efforts must be undertaken to
increase significantly the number of skilled math and science
teachers in K–12 by substantially improving the quality of their
preparation and professional development and by expanding re-
cruitment incentives. Investments must focus on raising student
achievement in math and science by encouraging the use of
world-class educational materials and instructional practice.

● Teacher Preparation and Training: It should be a national
priority to increase significantly the quality, professionalism, and
career opportunities within teaching. States should ensure that
teachers have the necessary skills and expertise in the content
areas in which they teach. They should ensure that teacher prep-
aration and professional development programs include training
to integrate relevant technologies into the classroom. Profes-
sional development programs should include principals.

● Technology: Technology and the Internet must be inte-
grated into all appropriate aspects of teaching and learning to
improve students’ twenty-first century skills as well as educa-
tional accountability and administrative effectiveness. Aid
should be provided to states and districts to help identify,
acquire, and utilize the best available technology and to help
teachers integrate it into the curriculum.
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Data, Shapes, Symbols:
Achieving Balance in School Mathematics

LYNN ARTHUR STEEN

Mathematics is our “invisible culture” (Hammond 1978). Few people have any idea how much
mathematics lies behind the artifacts and accoutrements of modern life. Nothing we use on a daily
basis—houses, automobiles, bicycles, furniture, not to mention cell phones, computers, and Palm
Pilots—would be possible without mathematics. Neither would our economy nor our democracy:
national defense, Social Security, disaster relief, as well as political campaigns and voting, all depend
on mathematical models and quantitative habits of mind.

Mathematics is certainly not invisible in education, however. Ten years of mathematics is required
in every school and is part of every state graduation test. In the late 1980s, mathematics teachers led
the national campaign for high, publicly visible standards in K-12 education. Nonetheless, mathe-
matics is the subject that parents most often recall with anxiety and frustration from their own school
experiences. Indeed, mathematics is the subject most often responsible for students’ failure to attain
their educational goals. Recently, mathematics curricula have become the subject of ferocious
debates in school districts across the country.

My intention in writing this essay is to make visible to curious and uncommitted outsiders some of
the forces that are currently shaping (and distorting) mathematics education. My focus is on the
second half of the school curriculum, grades 6 to 12, where the major part of most students’
mathematics education takes place. Although mathematics is an abstract science, mathematics
education is very much a social endeavor. Improving mathematics education requires, among many
other things, thorough understanding of the pressures that shape current educational practice. Thus
I begin by unpacking some of the arguments and relevant literature on several issues—tracking,
employment, technology, testing, algebra, data, and achievement—that are responsible for much of
the discord in current public discussion about mathematics education.

Following discussion of these external forces, I examine the changing world of mathematics itself and
its role in society. This leads to questions of context and setting, of purposes and goals, and quickly
points in the direction of broader mathematical sciences such as statistics and numeracy. By blending
the goals of mathematics, statistics, and numeracy, I suggest—in the final section of the essay—a
structure for mathematics education in grades 6 to 12 that can help more students leave school
equipped with the mathematical tools they will need for life and career.

External Forces
Beginning with A Nation at Risk (National Commission on Excellence in Education 1983) and
continuing through Before It’s Too Late, the report of the Glenn Commission (National Commission
on Mathematics and Science Teaching for the 21st Century 2000), countless hand-wringing reports
have documented deficiencies in mathematics education. Professional societies (American Mathe-

Lynn Arthur Steen is Professor of Mathematics at St. Olaf College, and an advisor to the Mathematics Achievement
Partnership (MAP) of Achieve, Inc. Earlier, Steen served as executive director of the Mathematical Sciences Education
Board and as president of the Mathematical Association of America. Steen is the editor or author of many books and articles,
including Mathematics and Democracy (2001), Why Numbers Count (1997), On the Shoulders of Giants (1991), and
Everybody Counts (1989).
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matical Association of Two-Year Colleges 1995; National Coun-
cil of Teachers of Mathematics 1989, 2000) have responded with
reform-oriented recommendations while states (e.g., California,
Virginia, Minnesota, Texas, and dozens of others) have created
standards and frameworks suited to their local traditions. Analysis
of these proposals, much of it critical, has come from a wide
variety of sources (e.g., Cheney 1997; Kilpatrick 1997; Wu 1997;
Raimi and Braden 1998; Gavosto, et al. 1999; Stotsky 2000). In
some regions of the country, these debates have escalated into
what the press calls “math wars” (Jackson 1997).

Nearly one-hundred years ago, Eliakim Hastings Moore, presi-
dent of the young American Mathematical Society, argued that
the momentum generated by a more practical education in school
would better prepare students to proceed “rapidly and deeply”
with theoretical studies in higher education (Moore 1903). In the
century that followed, mathematics flowered in both its practical
and theoretical aspects, but school mathematics bifurcated: one
stream emphasized mental exercises with little obvious practical
value; the other stream stressed manual skills with no theoretical
value. Few schools ever seriously followed Moore’s advice of using
practical education as a stepping-stone to theoretical studies.

Now, following a century of steady growth based on rising de-
mand and a relatively stable curricular foundation, a new presi-
dent of the American Mathematical Society has warned his col-
leagues that the mathematical sciences are undergoing a “phase
transition” from which some parts might emerge smaller and oth-
ers dispersed (Bass 1997). The forces creating this transition are
varied and powerful, rarely under much control from educators or
academics. I have selected only a few to discuss here, but I believe
these few will suffice to illustrate the nuances that too often are
overlooked in simplistic analyses of editorials, op-ed columns, and
school board debate. I begin with the contentious issue of track-
ing.

TRACKING

Until quite recently, mathematics was never seen as a subject to be
studied by all students. For most of our nation’s history, and in
most other nations, the majority of students completed their
school study of mathematics with advanced arithmetic—prices,
interest, percentages, areas, and other topics needed for simple
commerce. Only students exhibiting special academic interest
studied elementary algebra and high school geometry; even fewer
students, those exhibiting particular mathematical talent, took
advanced algebra and trigonometry. For many generations, the
majority of students studied only commercial or vocational math-
ematics, which contained little if any of what we now think of as
high school mathematics.

In recent decades, as higher education became both more impor-
tant and more available, the percentage of students electing the
academic track increased substantially. In the 1970s, only about
40 percent of U.S. students took two years of mathematics (alge-
bra and geometry) in secondary school; 25 years later that percent-
age has nearly doubled. The percentage of high school students
taking three years of mathematics has climbed similarly, from
approximately 30 percent to nearly 60 percent (National Science
Board 1996; Dossey and Usiskin 2000).

This shift in the presumption of mathematics as a subject for an
academic elite to mathematics as a core subject for all students
represents the most radical transformation in the philosophy of
mathematics education in the last century. In 1800, Harvard Uni-
versity expected of entering students only what was then called
“vulgar” arithmetic. One century later, Harvard expected a year of
Euclid; two centuries later—in 2000—Harvard expects that most
entering students have studied calculus. In no other subject has
the expected level of accomplishment of college-bound students
increased so substantially. These changes signal a profound shift in
public expectations for the mathematical performance of high
school graduates, a change that is sweeping the globe as nations
race to keep up with rapidly advancing information technology.
Secondary school mathematics is no longer a subject for the few,
but for everyone.

In response to the increasing need for mathematical competence
in both higher education and the high-performance workplace,
the National Council of Teachers of Mathematics (NCTM) ini-
tiated the 1990s movement for national standards by recom-
mending that all students learn a common core of high-quality
mathematics including algebra, geometry, and data analysis
(NCTM 1989). Dividing students into academic and nonaca-
demic tracks, NCTM argued, no longer makes the sense it once
did when the United States was primarily an agrarian and assem-
bly line economy. In this old system—remnants of which have not
yet entirely disappeared—college-bound students were intro-
duced to algebra and geometry while those in vocational tracks
were expected only to master arithmetic. Because algebra was not
needed in yesterday’s world of work, it was not taught to students
in the lower tracks. This vocational tradition of low expectations
(and low prestige) is precisely what NCTM intended to remedy
with its call for a single core curriculum for all students.

Yet even as “mathematics for all” has become the mantra of re-
form, schools still operate, especially in mathematics, with sepa-
rate tracks as the primary strategy for delivery of curriculum. They
are reinforced in this habit by teachers who find it easier to teach
students with similar mathematical backgrounds and by parents
who worry not that all children learn but that their own children
learn. Indeed, parents’ anxiety about ensuring their own chil-
dren’s success has rapidly transformed an academic debate about
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tracking into one of the more contentious issues in education
(e.g., Oakes 1985; Oakes 1990; Sheffield 1999). Thus, the most
common critique of the NCTM standards is that by advocating
the same mathematics for all they fail to provide mathematically
talented students with the stimulation they need and deserve
(Jackson 1997; Wu 1996).

As the world of work has become increasingly quantitative, even
the historic reasons for tracking have come under scrutiny. From
advanced manufacturing to precision agriculture, from medical
imaging to supermarket management, competitive industries now
depend not just on arithmetic and percentages but also on such
tools as quantitative models, statistical quality control, and com-
puter-controlled machines. Effective vocational programs must
now set demanding mathematics standards that reflect the same
kinds of higher-order thinking heretofore found only in the aca-
demic track (Steen and Forman 1995). Although details of con-
tent differ, expectations for rigorous logical thinking are very sim-
ilar.

Indeed, mathematics in the workplace offers students opportuni-
ties to grapple with authentic, open-ended problems that involve
messy numbers, intricate chains of reasoning, and lengthy multi-
step solutions—opportunities that rarely are found in traditional
college-preparatory mathematics curricula. By deploying elemen-
tary mathematics in sophisticated settings, modern work-based
tasks can give students not only motivation and context but also a
concrete foundation from which they can later abstract and gen-
eralize.

Both traditional tracks—academic and vocational—have been
pushed by their clienteles to increase significantly the level of
mathematical performance expected of students. To be sure, not
every school or program has responded equally to these height-
ened expectations. There are still large numbers of students who
complete a vocational program (and sometimes an academic pro-
gram) without really mastering any significant part of secondary
school mathematics. But the direction of change is clear and the
movement to eliminate dead-end courses is gaining momentum.

EMPLOYMENT

During the last decade of the twentieth century, just as the move-
ment for academic standards began, business and industry
launched a parallel effort to articulate entry-level skill standards
for a broad range of industries (NSSB 1998) as well as to suggest
better means of linking academic preparation with the needs of
employers (Bailey 1997; Forman and Steen 1998).

Although preparing students for work has always been one pur-
pose of education, teachers generally adopt broader goals and
more specifically academic purposes. Mathematics educators are

no exception. The canonical curriculum of school mathematics—
arithmetic, algebra, geometry, trigonometry, calculus—is de-
signed primarily to introduce students to the discipline of math-
ematics and only incidentally to provide tools useful for jobs and
careers. Were schools to design mathematics programs expressly
for work and careers, the selection of topics, the order in which
they are taken up, and the kinds of examples employed would be
substantially different.

The contrast between these two perspectives—mathematics in
school versus mathematics at work—is especially striking (For-
man and Steen 1999). Mathematics in the workplace makes so-
phisticated use of elementary mathematics rather than, as in the
classroom, elementary use of sophisticated mathematics. Work-
related mathematics is rich in data, interspersed with conjecture,
dependent on technology, and tied to useful applications. Work
contexts often require multistep solutions to open-ended prob-
lems, a high degree of accuracy, and proper regard for required
tolerances. None of these features is found in typical classroom
exercises.

Even core subjects within mathematics change when viewed from
an employment perspective. Numbers in the workplace are em-
bedded in context, used with appropriate units of measurement,
and supported by computer graphics. They are used not just to
represent quantities but also to calculate tolerances and limit er-
rors. Algebra is used not so much to solve equations as to represent
complex relationships in symbolic form. Geometry is used not so
much to prove results as for modeling and measuring, especially in
three dimensions.

It should come as no surprise, therefore, to discover that employ-
ers are distressed by the weak mathematical and quantitative skills
of high school graduates. It is not uncommon for employers in
high-performance industries such as Motorola, Siemens, and
Michelin to find that only 1 in 20 job applicants has the skills
necessary to join their training programs, and that only 1 in 50 can
satisfactorily complete job training. (This employment situation is
the industrial face of the immense remediation problem facing
colleges and universities.)

It turns out that what current and prospective employees lack is
not calculus or college algebra, but a plethora of more basic quan-
titative skills that could be taught in high school but are not
(Murnane and Levy 1996; Packer 1997). Employees need statis-
tics and three-dimensional geometry, systems thinking and esti-
mation skills. Even more important, they need the disposition to
think through problems that blend quantitative data with verbal,
visual, and mechanical information; the capacity to interpret and
present technical information; and the ability to deal with situa-
tions when something goes wrong (MSEB 1995). Although many
jobs in the new economy require advanced training in mathemat-
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ics, most do not. Nonetheless, all require a degree of numeracy
unheard of a generation earlier as computers, data, and numbers
intrude into the language of ordinary work.

This broader perspective of employers is well expressed in an
influential government report entitled What Work Requires of
Schools (Secretary’s Commission on Achieving Necessary Skills
1991). Instead of calling for subjects such as mathematics, physics,
and history, this so-called SCANS report asks for competencies
built on a foundation of basic skills (reading, writing, listening,
speaking, arithmetic), thinking skills (creative thinking, reason-
ing, problem solving, decision making, processing symbols, ac-
quiring and applying new knowledge), and personal qualities (re-
sponsibility, self-esteem, sociability, self-management, integrity).
These competencies, similar to what in other countries are some-
times called “key skills,” are:

● Resources: Time, money, material, facilities, and human re-
sources

● Interpersonal: Teamwork, teaching, service, leadership, nego-
tiation, and diversity

● Information: Acquire, evaluate, organize, maintain, interpret,
communicate, and transform

● Systems: Understand, monitor, and improve social, organiza-
tional, and technological systems

● Technology: Select, apply, and maintain technology

Mathematical thinking is embedded throughout these competen-
cies, not just in the set of basic skills but as an essential component
of virtually every competency. Reasoning, making decisions, solv-
ing problems, managing resources, interpreting information, un-
derstanding systems, applying technology — all these and more
build on quantitative and mathematical acumen. But they do not
necessarily require fluency in factoring polynomials, deriving trig-
onometric identities, or other arcana of school mathematics
(Packer, see pp. 39–41).

TECHNOLOGY

The extraordinary ability of computers to generate and organize
data has opened up an entire new world to mathematical analysis.
Mathematics is the science of patterns (Steen 1988; Devlin 1994)
and technology enables mathematicians (and students) to study
patterns as they never could before. In so doing, technology offers
mathematics what laboratories offer science: an endless source of
evidence, ideas, and conjectures. Technology also offers both the
arts and sciences a new entrée into the power of mathematics:
fields as diverse as cinema, finance, and genetics now deploy com-

puter-based mathematical tools to discover, create, and explore
patterns.

Modern computers manipulate data in quantities that overwhelm
traditional mathematical tools. Computer chips now finally have
achieved sufficient speed and power to create visual displays that
make sense to the human eye and mind. Already visualization has
been used to create new mathematics (fractals), to develop new
proofs (of minimal surfaces), to provide tools for new inferences
(in statistics), and to improve instruction (geometer’s sketchpad).
Indeed, the computer-enhanced symbiosis of eye and image is
fundamentally changing what it means to understand mathe-
matics.

Computers also are changing profoundly how mathematics is
practiced. The use of spreadsheets for storing, analyzing, and dis-
playing data is ubiquitous in all trades and crafts. So too are
computer tools of geometry that enable projection, rotation, in-
versions, and other fundamental operations to be carried out with
a few keystrokes. Scientists and engineers report that, for students
in these fields, facility with spreadsheets (as well as other mathe-
matical software) is as important as conceptual understanding of
mathematics and more valuable than fluency in manual compu-
tation (Barker 2000). With rare exceptions (primarily theoretical
scientists and mathematicians) mathematics in practice means
mathematics mediated by a computer.

As the forces unleashed by the revolution in technology change
the character of mathematics, so they also impact mathematics
education. It has been clear for many years that technology alters
priorities for mathematics education (e.g., MSEB 1990). Much of
traditional mathematics (from long division to integration by
parts) was created not to enhance understanding but to provide a
means of calculating results. This mathematics is now embedded
in silicon, so training people to implement these methods with
facility and accuracy is no longer as important as it once was. At
the same time, technology has increased significantly the impor-
tance of other parts of mathematics (e.g., statistics, number the-
ory, discrete mathematics) that are widely used in information-
based industries.

Calculators and computers also have had enormous—and contro-
versial—impact on mathematics pedagogy. Wisely used, they can
help students explore patterns and learn mathematics by direct
experience (Hembree and Dessart 1992; Askew and William
1995; Waits and Demana 2000), processes heretofore only possi-
ble through tedious and error-prone manual methods. Unwisely
used, they become an impediment to students’ mastery of basic
skills or, even worse, a device that misleads students about the true
nature of mathematics. Students who rely inappropriately on cal-
culators often confuse approximations with exact answers, thereby
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depriving themselves of any possibility of recognizing or appreci-
ating the unique certainty of mathematical deduction.

In the long run, technology’s impact on mathematics education
may be much broader than merely influencing changes in content
or pedagogy. The rapid growth of a technology-driven economy
that creates wealth as much from information and ideas as from
labor and capital magnifies enormously the importance of intel-
lectual skills such as mathematics. It also increases the social costs
of differential accomplishment in school mathematics. Because of
technology, it matters much more now than previously if a stu-
dent leaves school with weak mathematical skills.

At the same time, computers and calculators are increasing dra-
matically the number of people who use mathematics, many of
whom are not well educated in mathematics. Previously, only
those who learned mathematics used it. Today many people use
mathematical tools for routine work with spreadsheets, calcula-
tors, and financial systems, tools that are built on mathematics
they have never studied and do not understand. This is a new
experience in human history, with problematic consequences that
we are only gradually discovering.

Finally, as the technology-driven uses of mathematics multiply,
pressure will mount on schools to teach both information tech-
nology and more and different mathematics (ITEA 2000; NRC
1999). At the same time, and for the same reasons, increasing
pressure will be applied on teachers and schools to ensure that no
child is left behind. Alarms about the “digital divide” already have
sounded and will continue to ring loudly in the body politic
(Compaigne 2001; Norris 2001; Pearlman 2002). The pressure
on mathematics to form a bipartisan alliance with technology in
the school curriculum will be enormous. This easily could lead to
a new type of tracking—one track offering the minimal skills
needed to operate the new technology with little if any under-
standing, the other offering mathematical understanding as the
surest route to control of technology. Evidence of the emergence
of these two new cultures is not hard to find.

TESTING

Largely because of its strong tradition of dispersed authority and
local control, the United States has no system to ensure smooth
articulation between high school and college mathematics pro-
grams. Instead, students encounter a chaotic mixture of tradi-
tional and standards-based high school curricula; Advanced Place-
ment (AP) examinations in Calculus, Statistics, and Computer
Science; very different SAT and ACT college entrance examina-
tions; diverse university admissions policies; skills-based mathe-
matics placement examinations; and widely diverse first-year cur-
ricula in college, including several levels of high school algebra

(elementary, intermediate, and “college”) and of calculus (“hard”
(mainstream), “soft,” and “reformed”).

This cacophony of tests and courses is not only confusing and
inefficient but also devastating for students who lack the support
of experienced adult advocates. Following the rules and passing
the tests does not necessarily prepare students either for employ-
ment or for continuing education. As a consequence, many new
graduates find that they “can’t get there from here.” For some
students, mathematics education turns out to be a “hoax” (Edu-
cation Trust 1999).

The negative consequences of this incoherent transition have been
magnified greatly in recent years as states began, for the first time,
to institute meaningful (high-stakes) exit examinations that stu-
dents must pass to receive a high school diploma (Gardner 1999;
Sacks 2000; Shrag 2000). Many states have been shocked by the
low passing rates on such examinations, and have had to retrench
on their graduation requirements (Groves 2000). At the same
time, parents and politicians have increased their emphasis on
tests such as the SAT, ACT, and AP that have significant influence
in college admissions even as university officials (led by University
of California President Richard Atkinson) have called into ques-
tion the appropriateness of these tests as a gateway to college
(Atkinson 2001).

Despite all this testing, once students arrive in college, hundreds
of thousands find themselves placed in remedial courses such as
intermediate algebra in which they are required to master arcane
skills that rarely are encountered in adult life. As more students
pursue postsecondary study—both before and while working—
and as these students bring to their studies increasingly diverse
backgrounds and career intentions, incoherent and arbitrary test-
ing in the transition from school to college becomes increasingly
untenable.

A rational system of mathematics education should provide clear
and consistent messages about what knowledge and skills are ex-
pected at each educational level. Ideally, graduation examinations
from secondary school also would certify, based on different
scores, admission to college without remediation. Such a system
would require that everyone involved in the transition from high
school to college concur on the expected outcomes of high school
mathematics and that these goals be reflected in the tests. To be
politically acceptable, transition tests must be within reach of
most students graduating from today’s high schools, yet to be
educationally useful, they must ensure levels of performance ap-
propriate to life, work, and study after high school. No state has
yet figured out how to meet both these objectives.
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ALGEBRA

In the Middle Ages, algebra meant calculating by rules (algo-
rithms). During the Renaissance, it came to mean calculation with
signs and symbols—using x’s and y’s instead of numbers. (Even
today, laypersons tend to judge algebra books by the symbols they
contain: they believe that more symbols mean more algebra, more
words, less.) In subsequent centuries, algebra came to be primarily
about solving equations and determining unknowns. School alge-
bra still focuses on these three aspects: following procedures, em-
ploying letters, and solving equations.

In the twentieth century, algebra moved rapidly and powerfully
beyond its historical roots. First it became what we might call the
science of arithmetic—the abstract study of the operations of
arithmetic. As the power of this “abstract algebra” became evident
in such diverse fields as economics and quantum mechanics, alge-
bra evolved into the study of all operations, not just the four found
in arithmetic. Thus did it become truly the language of mathe-
matics and, for that reason, the key to access in our technological
society (Usiskin 1995).

Indeed, algebra is now, in Robert Moses’ apt phrase, “the new civil
right” (Moses 1995). In today’s society, algebra means access. It
unlocks doors to productive careers and democratizes access to big
ideas. As an alternative to dead-end courses in general and com-
mercial mathematics, algebra serves as an invaluable engine of
equity. The notion that by identifying relationships we can dis-
cover things that are unknown—“that we can find out what we
want to know”—is a very powerful and liberating idea (Malcolm
1997).

Not so long ago, high school algebra served as the primary filter to
separate college-bound students from their work-bound class-
mates. Advocates for educational standards then began demand-
ing “algebra for all,” a significant challenge for a nation accus-
tomed to the notion that only some could learn algebra (Steen
1992; Chambers 1994; Lacampagne et al. 1995; Silver 1997;
NCTM and MSEB 1998). More recently, this clamor has esca-
lated to a demand that every student complete algebra by the end
of eighth grade (Steen 1999; Achieve 2001).

The recent emphasis on eighth-grade algebra for all has had the
unfortunate side effect of intensifying distortions that algebra al-
ready imposes on school mathematics. One key distortion is an
overemphasis on algebraic formulas and manipulations. Students
quickly get the impression from algebra class that mathematics is
manipulating formulas. Few students make much progress toward
the broad goals of mathematics in the face of a curriculum dom-
inated by the need to become fluent in algebraic manipulation.
Indeed, overemphasis on algebra drives many students away from
mathematics: most students who leave mathematics do so because

they cannot see any value in manipulating strings of meaningless
symbols.

What is worse, the focus on formulas as the preferred methodol-
ogy of school mathematics distorts the treatment of other impor-
tant parts of mathematics. For example, despite the complexity of
its algebraic formula, the bell-shaped normal distribution is as
ubiquitous in daily life as are linear and exponential functions and
far more common than quadratic equations. As citizens, it is very
helpful to understand that repeated measurements of the same
thing (length of a table) as well as multiple measurements of
different although similar things (heights of students) tend to
follow the normal distribution. Knowing why some distributions
(e.g., salaries, sizes of cities) do not follow this pattern is equally
important, as is understanding something about the tails of the
normal distribution—which can be very helpful in thinking about
risks (or SAT scores).

Yet despite its obvious value to society, the normal distribution is
all but ignored in high school mathematics, whereas quadratic and
periodic functions are studied extensively. Many reasons can be
advanced to explain this imbalance, e.g., that mathematicians fa-
vor models of the physical over the behavioral sciences. But surely
one of the most important is that the algebraic formula for the
normal distribution is quite complex and cannot be fully under-
stood without techniques of calculus. The bias in favor of alge-
braic formulas as the preferred style of understanding mathemat-
ics—instead of graphs, tables, computers, or verbal descriptions—
causes mathematics teachers to omit from the high school
curriculum what is surely one of the most important and most
widely used tools of modern mathematics.

That a subject that for many amounts to little more than rote
fluency in manipulating meaningless symbols came to occupy
such a privileged place in the school curriculum is something of a
mystery, especially since so many parents, when they were stu-
dents, found it unbearable. Perhaps more surprising is algebra’s
strong support among those many successful professionals who,
having mastered algebra in school, found no use for it in their
adult lives. Why is it that we insist on visiting on eighth graders a
subject that, more than any other, has created generations of
math-anxious and math-avoiding adults?

Many argue on the simple, pragmatic “civil right” ground that
algebra is, wisely or unwisely, of central importance to the current
system of tests that govern the school-to-college transition (not to
mention providing essential preparation for calculus, which itself
has taken on exaggerated significance in this same transition). But
this is just a circular argument. We need to study algebra to pass
tests that focus on algebra. And why do the tests focus on algebra?
Because it is the part of mathematics that virtually all students
study.
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Others may cite, as grounds for emphasizing algebra, the wide-
spread use of formulas in many different fields of work; however,
this use is only a tiny part of what makes up the school subject of
algebra. Moreover, most business people give much higher prior-
ity to statistics than to algebra. Some mathematicians and scien-
tists assert that algebra is the gateway to higher mathematics, but
this is so only because our curriculum makes it so. Much of math-
ematics can be learned and understood via geometry, or data, or
spreadsheets, or software packages. Which subjects we emphasize
early and which later is a choice, not an inevitability.

Lurking behind the resurgent emphasis on algebra is a two-edged
argument concerning students who are most likely to be poorly
educated in mathematics—poor, urban, first generation, and mi-
nority. Many believe that such students, whose only route to
upward mobility is through school, are disproportionately disad-
vantaged if they are denied the benefits that in our current system
only early mastery of algebra can confer. Others worry that em-
phasis on mastering a subject that is difficult to learn and not well
taught in many schools will only exacerbate existing class differ-
ences by establishing algebra as a filter that will block anyone who
does not have access to a very strong educational environment.
Paradoxically, and unfortunately, both sides in this argument ap-
pear to be correct.

DATA

Although algebra and calculus may be the dominant goals of
school mathematics, in the real world mathematical activity usu-
ally begins not with formulas but with data. Measurements taken
at regular intervals—be they monthly sales records, hourly atmo-
spheric pressure readings, or millisecond samples of musical
tones—form the source data for mathematical practice. Rarely if
ever does nature present us with an algebraic formula to be fac-
tored or differentiated. Although the continuous model of reality
encapsulated by algebra and calculus is a powerful tool for devel-
oping theoretical models, real work yielding real results must be-
gin and end in real data.

In past eras, mathematics relied on continuous models because
working with real data was too cumbersome. An algebraic or
differential equation with three or four parameters could describe
reasonably well the behavior of phenomena with millions of po-
tential data points, but now computers have brought digital data
into the heart of mathematics. They enable practitioners of math-
ematics to work directly with data rather than with the simplified
continuous approximations that functions provide. Moreover,
they have stimulated whole new fields of mathematics going un-
der names such as combinatorics, discrete mathematics, and ex-
ploratory data analysis.

Thus as school mathematics has become increasingly preoccupied
with the role of algebra, many users of mathematics have discov-
ered that combinatorial and computer methods are of far greater
utility. Whereas school algebra deals primarily with models and
continuous functions, combinatorics and data analysis deal with
measurements and discrete data. The one reflects a Platonic world
of ideal objects, the other the realism of measured quantities. In
the Platonic world, theorems are eternal; in the real world, com-
putations are contingent. This contrast between the ideal and the
utilitarian can be seen from many different perspectives ranging
from philosophical to pedagogical.

One such domain is education. The competition for curricular
time between functions and data reflects fundamental disagree-
ments about the nature of mathematics as a discipline and as a
school subject. Traditionally, and philosophically, mathematics
has been thought of as a science of ideal objects—numbers, quan-
tities, and shapes that are precisely defined and thus amenable to
logically precise relations known as theorems. In practice, math-
ematics presents a more rough-and-ready image: it is about solv-
ing problems in the real world that involve measured quantities
that are never perfectly precise. Tension between these two views
of mathematics has a long history. But now, with the advent of
computers, this tension has resurfaced with even greater force and
significance. At its core, the debate is about the definition of
mathematics as a discipline.

ACHIEVEMENT

Strained by a growing number of forces and pressures (only some
of which are discussed here), U.S. mathematics educators have
found it very difficult to improve student achievement—educa-
tion’s bottom line. For at least the last half-century, graduates of
U.S. secondary schools have lagged behind their peers in other
nations, especially those of the industrial world and the former
Communist bloc. Documentation of this deficiency has been
most consistent in mathematics and science, subjects that are rel-
atively common in the curricula of other nations and that are
examined internationally at regular intervals. Some U.S. analysts
seek to explain (or excuse) poor U.S. performance by hypothesiz-
ing a negative impact of our relatively heterogeneous population,
or conjecturing that a larger percentage of U.S. students complete
secondary school, or arguing that other nations (or the United
States) did not test a truly random sample. But despite these
exculpatory claims, a central stubborn fact remains: on interna-
tional tests administered over several decades to similarly educated
students, the mathematics performance of U.S. eighth- and
twelfth-grade students has always been well below international
norms.

The most recent headlines came from TIMSS, the Third Interna-
tional Mathematics and Science Study, and its repeat, TIMSS-R.
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The TIMSS results, confirmed by TIMSS-R, document a decline
in the performance of U.S. students, as compared with their peers
in other nations, as they progress through school (IEA 2000).
Fourth graders in the United States have command of basic arith-
metic on a par with students in most other nations, but the longer
U.S. students study mathematics, the worse they become at it,
comparatively speaking (Beaton et al. 1996; Schmidt et al. 1996).
Middle school mathematics, especially, exhibits “a pervasive and
intolerable mediocrity” (Silver 1998) that sends students into a
downward glide that leaves them in twelfth grade with a mathe-
matical performance that is virtually at the bottom of all industri-
alized nations. Even the best U.S. twelfth-grade students who are
enrolled in advanced mathematics courses perform substantially
below the average twelfth-grade students in most other nations
(National Center for Education Statistics 1998).

The TIMSS findings are consistent with other analyses of U.S.
student achievement from an international perspective (Mc-
Knight et al. 1987; Lapointe et al. 1989). They document the
consequences of a leisurely curriculum in the last half of elemen-
tary school when textbooks fail to introduce much that has not
already been covered (Flanders 1987). What makes matters even
worse is the long-standing performance differences among white,
black, and Hispanic students at all grade levels (Campbell et al.
1996; National Center for Education Statistics 2000). Although
this performance gap has been narrowing on tasks that assess
procedural knowledge and skills, substantial differences remain
on tasks that assess conceptual understanding, mathematical rea-
soning, and problem solving (Secada 1992; Kenney and Silver
1996). Thus at a time of increasing integration of a global econ-
omy, large numbers of U.S. students, disproportionately minor-
ity, leave school significantly behind world norms in the language
of the information age—mathematics.

Not surprisingly, more detailed examination of the TIMSS results
reveals that U.S. students perform relatively better on some math-
ematical topics and worse on others. For example, relative to their
international peers, our eighth-grade students are especially weak
in geometry, measurement, and proportional reasoning, although
closer to average in arithmetic and algebra. A similar profile
emerged from the Second International Mathematics Study
(SIMS) conducted in 1981–82 (Crosswhite et al. 1986; Mc-
Knight et al. 1987). Interestingly, the topics on which our stu-
dents lag behind international norms (for example, measurement,
geometry, and proportional thinking) are precisely the areas cited
by noneducators as most important for adult life.

Quantitative Practices
The forces created by differential tracking, needs of employment,
impacts of technology, misaligned testing, overemphasis on alge-

bra, underemphasis on data, and student underachievement exert
profound influence on schools, teachers, and students. These
forces shape and often distort the educational process, constrain-
ing teachers and enticing students in directions that are rarely well
aligned with sound educational goals. To have a significant and
lasting effect, changes proposed for school mathematics must take
these external forces into account, seeking wherever possible to use
them for advantageous leverage.

School mathematics also needs to be responsive to changes in
mathematics itself—its scope, practice, methods, and roles in so-
ciety. Most people think of mathematics as unchanging, as a col-
lection of formulas and facts passed down like ancient texts from
earlier generations. Nothing could be further from the truth.
Mathematical discovery has grown at an amazing rate throughout
the past century, accelerating in recent decades as computers pro-
vide both new problems to solve and new tools with which to solve
old problems (Odom 1998). At the same time, and for much the
same reason, the roles played by mathematics in society have
expanded at a phenomenal rate. No longer confined to specialized
fields such as engineering or accounting, mathematical methods
permeate work and life in the information age.

As mathematics has expanded rapidly to provide models for com-
puter-based applications, so too has statistics, the science of data.
Statistics is a hybrid discipline with some roots in mathematics but
even more in social science, agriculture, government records, eco-
nomic policy, and medical research. Especially since 1989, when
NCTM called for greater emphasis on statistics and data analysis
in the school curriculum, statistics has become part of the agenda
for school mathematics. Arguably, for most students it may be the
most important part.

As mathematical ideas increasingly permeate public policy, those
concerned with citizenship and democracy have begun to see a real
need for quantitative practices not readily subsumed by either
mathematics or statistics. These practices, called “numeracy” else-
where, are relatively new in the U.S. educational context. Indeed,
the explicit parallels between numeracy and literacy as marks of an
educated person are really no more than 10 or 15 years old (Paulos
1988; Steen 1990). As the disciplines of mathematics and statistics
have expanded in scope and influence, their impact on public life
has created a rising demand for the interdisciplinary (or cross-
cutting) capacity we call numeracy. Mathematics and numeracy
are two sides of the same coin—the one Platonic, the other prag-
matic, the one abstract, the other contextual.

As all three forms of quantitative practice—mathematics, statis-
tics, and numeracy—evolve under the selective pressures of infor-
mation technology and a global economy, schools must find ways
to teach all three. Before exploring how this might be done, we
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first elaborate on the nature of these three domains of quantitative
practice.

MATHEMATICS

During the last half-century, as mathematics in school grew from
an elite to a mass subject, mathematics expanded into a portfolio
of mathematical sciences that now includes, in addition to tradi-
tional pure and applied mathematics, subjects such as statistics,
financial mathematics, theoretical computer science, operations
research (the science of optimization) and, more recently, finan-
cial mathematics and bioinformatics. (It is a little-appreciated fact
that most of the advances—and fortunes—being made in invest-
ments, genetics, and technology all derive from clever applications
of sophisticated mathematics.) Although each of these specialties
has its own distinctive character, methodologies, standards, and
accomplishments, they all build on the same foundation of school
and college mathematics.

Mathematics is far more than just a tool for research. In fact, its
most common uses—and the reason for its prominent place in
school curricula—are routine applications that are now part of all
kinds of jobs. Examples include:

● Testing products without destroying them

● Managing investments to minimize risks while maximizing
returns

● Creating terrain maps for farmers that reflect soil chemistry
and moisture levels

● Processing photographic images to transform, clarify, and
combine

● Detecting disease by monitoring changes in medical images
and data

● Creating special cinematic effects such as moving clouds and
rushing water

● Anticipating changes in production processes

● Controlling risks by managing distribution of hazardous ma-
terials

● Designing products to minimize costs of construction, main-
tenance, and operation

● Interpreting vital signs displayed as dynamic graphs of bio-
logical data

● Minimizing total costs of materials, inventory, time, ship-
ments, and waste

If we look at these common uses of mathematics from the per-
spective of the school curriculum, we see that mathematics at
work is very different from mathematics in school:

● Arithmetic is not just about adding, subtracting, multiplying,
and dividing but about units and conversions, measurements
and tolerances, spreadsheets and calculators, and estimates
and accuracy.

● Numbers are not just about place value and digits but about
notation and coding, index numbers and stock market aver-
ages, and employment indexes and SAT scores.

● Geometry is not just about the properties of circles, triangles,
areas, and volumes but about shapes and measurements in
three dimensions, reading maps and calculating latitude and
longitude, using dimensions to organize data, and modern
tools such as global positioning systems (GPS) and geo-
graphic information systems (GIS).

● Statistics is not just about means, medians, and standard de-
viations but about visual displays of quantitative ideas (for
example, scatter plots and quality control charts) as well as
random trials and confidence intervals.

● Logic is not just about mathematical rigor and deductive
proof but about hypotheses and conjectures, causality and
correlation, and random trials and inference in the face of
incomplete information.

● Probability is not just about calculating combinations but
about estimating and comparing risks (for example, of acci-
dents, diseases, or lotteries) as well as about chance and ran-
domness (in coincidences or analyses of bias claims).

● Applications are not just about solving word problems but
about collecting, organizing, and interpreting data; allocating
resources and negotiating differences; and understanding an-
nuities and balancing investments.

● Proof is not just about logical deduction but about conjec-
tures and counterexamples, scientific reasoning and statistical
inference, and legal standards such as preponderance of evi-
dence or beyond reasonable doubt.

● Technology is not just about doing arithmetic, performing
algebra, or creating graphs but about facility with spread-
sheets, statistical packages, presentation software, and Inter-
net resources.
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Mathematics in practice is far subtler than mathematics in school.
Elementary mathematical ideas applied in sophisticated settings
are amazingly powerful but rarely appreciated. An important con-
clusion from this examination of mathematics in practice is that
topics common to school mathematics have surprising depth and
power in their own right, quite apart from their role in providing
prerequisites for college mathematics. Indeed, one could produc-
tively pursue applications of school topics for several years without
ever taking up the more abstract concepts of calculus (or even
so-called “college” algebra). But no one does this, preferring in-
stead to rush students as quickly as possible to the abstractions of
calculus.

STATISTICS

The age of information is an age of numbers. We are surrounded
by data that both enrich and confuse our lives. Numbers provide
descriptions of daily events, from medical reports to political
trends and social policy. News reports are filled with charts and
graphs, while politicians debate quantitatively based proposals
that shape public policy in education, health, and government.

The study of numbers is usually associated with statistics. In
schools, the term “quantitative literacy” is often employed as an
informal synonym for “elementary statistics.” Although statistics
is today a science of numbers and data, historically (and etymo-
logically) it is the science of the state that developed in the Napo-
leonic era when central governments used data about population,
trade, and taxes to assert control over distant territory. The value
of systematic interpretation of data quickly spread to agriculture,
medicine, economics, and politics. Statistics now underlies not
only every economic report and census but also every clinical trial
and opinion survey in modern society.

However valuable statistics may be, it seems never to have shared
the curricular privilege accorded to mathematics. Indeed, high
school mathematics devotes relatively little emphasis to topics
designed to build a numbers-based bridge from the arithmetic of
the elementary grades to the subtle and fascinating world of data
and statistics. Computers have significantly transformed the po-
tential, power, and pedagogy of statistics (Hoaglin and Moore
1992) and this evolution has profoundly changed the relation
between mathematics, statistics, and their many client disciplines
(Moore and Cobb 2000). It is past time for statistics to claim its
proper place in the school mathematics curriculum.

One impediment statistics faces is a public perception that it is not
as rigorous as calculus. This perception is no doubt due to its
association with the “soft” sciences of psychology and economics,
in contrast with the “hard” calculus-based disciplines of physics
and engineering. Evidence from the new and rapidly growing AP
Statistics course, however, confirms what many teachers have long

known—that the subtle reasoning involved in data-based statisti-
cal inference is harder for students to grasp and explain than the
comparable symbol-based problems and proofs in a typical calcu-
lus course. Properly taught, statistics is probably a better vehicle
than algebra and calculus for developing students’ capacity to
reason logically and express complex arguments clearly.

Statistics is also very practical; far more so than any part of the
algebra-trigonometry-calculus sequence that dominates school
mathematics. Every issue in the daily newspaper, every debate that
citizens encounter in their local communities, every exhortation
from advertisers invites analysis from a statistical perspective. Sta-
tistical reasoning is subtle and strewn with counterintuitive para-
doxes. It takes a lot of experience to make statistical reasoning a
natural habit of mind (Nisbett et al. 1987; Hoffrage et al. 2000).
That is why it is important to start early and to reinforce at every
opportunity.

NUMERACY

The special skills required to interpret numbers—what we call
numeracy or quantitative literacy—are rarely mentioned in na-
tional education standards or state frameworks. Nonetheless,
these skills nourish the entire school curriculum, including not
only the natural, social, and applied sciences but also language,
history, and fine arts (Steen 1990). They parallel and enhance the
skills of literacy—of reading and writing—by adding to words
the power of numbers.

Numeracy lies at the intersection of statistics, mathematics, and
democracy. Like statistics, numeracy is centered on interpretation
of data; like mathematics, numeracy builds on arithmetic and
logic. But the unique niche filled by numeracy is to support citi-
zens in making decisions informed by evidence. Virtually every
major public issue—from health care to Social Security, from
international economics to welfare reform—depends on data,
projections, inferences, and the kind of systematic thinking that is
at the heart of quantitative literacy. So too do many aspects of
daily life, from selecting telephone services to buying a car, from
managing household expenses to planning for retirement. For
centuries, verbal literacy has been recognized as a free citizen’s best
insurance against ignorance and society’s best bulwark against
demagoguery. Today, in the age of data, numeracy joins literacy as
the guarantor of liberty, both individual and societal (Steen 1998,
2000).

Numeracy is largely an approach to thinking about issues that
employs and enhances both statistics (the science of data) and
mathematics (the science of patterns). Yet unlike statistics, which
is primarily about uncertainty, numeracy is often about the logic
of certainty. And unlike mathematics, which is primarily about a
Platonic realm of abstract structures, numeracy often is anchored
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in data derived from and attached to the empirical world. Surpris-
ingly to some, this inextricable link to reality makes quantitative
reasoning every bit as challenging and rigorous as mathematical
reasoning.

Mathematics teachers often resist emphasizing data because the
subject they are trying to teach is about Platonic ideals—numbers
and functions, circles and triangles, sets and relationships. Em-
ployers and parents, however, often are frustrated by this stance
because school graduates so frequently seem inexperienced in
dealing with data, and the real world presents itself more often in
terms of data than in the Platonic idealizations of mathematics.

Although numeracy depends on familiar mathematical topics
from arithmetic, algebra, and geometry, its natural framework is
commonly described in broader terms (Steen 2001). Some are
foundational, focused on learned skills and procedures:

● Practical Skills: Using elementary mathematics in a wide va-
riety of common situations

● Confidence with Mathematics: Being comfortable with num-
bers and at ease in applying quantitative methods

● Number Sense: Estimating with confidence; employing com-
mon sense about numbers; exhibiting accurate intuition
about measurements

● Mathematics in Context: Using mathematical tools in settings
in which the context provides both meaning and performance
expectations

● Prerequisite Knowledge: Using a wide range of algebraic, geo-
metric, and statistical tools that are required for many fields of
postsecondary education

Other elements of numeracy live on a higher cognitive plateau and
represent capacities as useful and ingrained as reading and speak-
ing:

● Interpreting Data: Reasoning with data, reading graphs, draw-
ing inferences, and recognizing sources of error

● Making Decisions: Using logical and quantitative methods to
solve problems and make decisions in everyday life

● Symbol Sense: Employing, reading, and interpreting mathe-
matical symbols with ease; exhibiting good sense about their
syntax and grammar

● Thinking Logically: Analyzing evidence, reasoning carefully,
understanding arguments, questioning assumptions, detect-
ing fallacies, and evaluating risks

● Cultural Appreciation: Understanding the nature and history
of mathematics, its role in scientific inquiry and technological
progress, and its importance for comprehending issues in the
public realm

Whereas the mathematics curriculum historically has focused on
school-based knowledge, numeracy involves mathematics acting
in the world. Typical numeracy challenges involve real data and
uncertain procedures but require primarily elementary mathemat-
ics. In contrast, typical school mathematics problems involve sim-
plified numbers and straightforward procedures but require so-
phisticated abstract concepts. The test of numeracy, as of any
literacy, is whether a person naturally uses appropriate skills in
many different contexts.

School Mathematics
For various reasons having to do with a mixture of classical tradi-
tion and colonial influence, the school curriculum in mathematics
is virtually the same all over the world. Fifteen years ago, the
secretary of the International Commission on Mathematics In-
struction reported that apart from local examples, there were few
significant differences to be found in the mathematics textbooks
used by different nations around the world (Howson and Wilson
1986). Even a country as culturally separate as Japan follows a
canonical “western” curriculum with only minor variations
(Nohda et al. 2000). Detailed review of U.S. practice in the mid-
1980s showed little significant change from the practice of previ-
ous decades (Hirsch and Zweng 1985). At the end of the twenti-
eth century, therefore, a bird’s-eye view of school mathematics
reveals little substantive variation in either time or space.

Not surprisingly, however, a more refined analysis prepared in
advance of the TIMSS study reveals subtle differences in scope,
sequence, and depth (Howson 1991). The TIMSS study itself
included an extensive analysis of curricula (and of teaching prac-
tices) in participating nations. This analysis showed significant
variation in the number of topics covered at different grade levels,
a variation that appears to be inversely correlated with student
performance (Schmidt et al. 1997). In the case of mathematics
education, it seems, more really is less: too many topics covered
superficially lead to less student learning. The consensus of experts
who have studied both domestic and international assessments is
that neither the mathematics curriculum nor the classroom in-
struction is as challenging in the United States as it is in many
other countries (e.g., Stevenson 1998).
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This tradition of mathematics programs that are a “mile wide and
an inch deep” is not easy to change. In contrast with most nations
whose central ministries of education prescribe the goals and cur-
riculum of school mathematics, the United States has no legally
binding national standards. That is not to say, however, that we
do not have a national curriculum. Textbooks, traditions, and
standardized tests do as much to constrain mathematics teaching
in the United States as national curricula do in other nations. All
too often, these constraints produce what analysts of SIMS called
an “underachieving” curriculum (McKnight et al. 1987).

In response to SIMS, NCTM prepared an innovative set of stan-
dards for school mathematics—a “banner” for teachers to rally
behind in a national crusade to raise classroom expectations and
student performance (NCTM 1989). Ten years later, NCTM
revised these standards, producing a more tightly focused set of
goals to guide states and districts as they developed their own
frameworks and curriculum guides (NCTM 2000). This revised
document, entitled Principles and Standards for School Mathemat-
ics (PSSM), is organized around five so-called “content” standards
(number and operations, algebra, geometry, measurement, and
data analysis and probability) and five “process” standards (prob-
lem solving, reasoning and proof, communication, connections,
and representation).

The first five PSSM standards (see Appendix I) correspond to
topics and chapter titles found in most mathematics textbooks.
They represent the traditional content of mathematics: numbers,
symbols, functions, shapes, measurements, probability, and the
like. The second five, interestingly, fit better with the skills em-
ployers seek or the numeracy that citizenship requires—e.g., eval-
uating arguments, communicating quantitative ideas, interpret-
ing real-world phenomena in mathematical terms. This
distinction resonates with what we often hear from users of math-
ematics: it is not so much the specific content of mathematics that
is valuable as the process of thinking that this content represents.
Only mathematicians and mathematics teachers really worry
much about the specifics of content.

Were all ten NCTM standards stressed equally in each grade from
6 to 12, and enriched with significant real-world examples, many
more students would emerge from high school well prepared in
mathematics, statistics, and numeracy. But this is far from true of
today’s curricula. As assessment data show, the content goals of
arithmetic and algebra are stressed at the expense of geometry,
measurement, data analysis, and probability. In terms of the pro-
cess goals, only problem solving is consistently stressed; the oth-
ers—reasoning and proof, communication, connections, and rep-
resentation—are barely visible in the curriculum and totally
absent from common standardized tests. Some of this imbalance
reflects differences in the cost of assessment: we test not what is
most important but what is easiest and cheapest to test. The pre-

occupation with algebraic symbol manipulation is one result of
this approach, because scoring mindless exercises is so much
cheaper than judging thoughtful and unpredictable responses.

CHALLENGES

Fixing school mathematics requires attention to many significant
(and overwhelming) issues such as teacher competence, recruit-
ment, salaries, and performance; class size and classroom condi-
tions; alignment of standards with textbooks and tests; and con-
sistent support by parents, professionals, and politicians. Here I
merely acknowledge these issues but do not deal with any of them.

Instead, my primary purpose in this essay is to think through the
goals of mathematics in grades 6 to 12 in light of the significant
forces that are shaping the environment of school mathematics.
These include:

● Underperformance of U.S. students, especially in areas of
mathematics that are seriously neglected in school instruc-
tion;

● Continued support for tracking in an environment in which
all students need high-quality mathematical experiences;

● Employers’ demand for performance competencies that cut
across academic areas;

● Changes in curricular priorities, pedagogical strategies, and
career options due to the increasing mathematical power of
technology;

● Inconsistent expectations and misaligned tests that confront
students as they finish high school and move on to postsec-
ondary education;

● Unprecedented increases in routine uses of mathematics and
in the types of mathematics being used;

● Extraordinary expansion in sophisticated applications of ele-
mentary mathematics;

● Increasing reliance on inferences from numerical evidence in
business decisions, analyses, and political debates;

● Rapid growth in the use of computer-generated data, graphs,
charts, and tables to present information; and

● Confusion about the relative importance of algebra as one
among many mathematical subjects that students must learn.
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These environmental forces are not hidden. Everyone who is con-
cerned about the quality of mathematics education is aware of
them. Nonetheless, school mathematics continues to serve pri-
marily as a conveyor belt to calculus that educates well only a
minority of students. Many individuals and organizations have
developed proposals for change (e.g., California Academic Stan-
dards Commission 1997; MSEB 1998; NCTM 2000; Achieve
2001; Steen 2001), but these proposals represent contrasting
rather than consensus visions of school mathematics.

The traditional curriculum in grades 6 to 12 is organized like a
nine-layer cake: advanced arithmetic, percentages and ratios, ele-
mentary algebra, geometry, intermediate algebra, trigonometry,
advanced algebra, pre-calculus, and (finally) calculus. Each sub-
ject builds on topics that precede it, and each topic serves as a
foundation for something that follows. Although this sequence
has the benefit of ensuring (at least on paper) that students are
prepared for each topic by virtue of what has come before, the
sequence does this at the expense of conveying a biased view of
mathematics (because topics are stressed or ignored primarily on
the basis of their utility as a tool in calculus) and creating a fragile
educational environment (because each topic depends on mastery
of most preceding material). The inevitable result can be seen all
around us: most students drop out of mathematics after they
encounter a first or second roadblock, while many of those who
survive emerge with a distorted (and often negative) view of the
subject.

The intense verticality of the current mathematics curriculum not
only encourages marginal students to drop out but also creates
significant dissonance as states begin to introduce high-stakes
graduation tests. Inevitably, student performance spreads out as
students move through a vertical curriculum because any weak-
ness generates a cascading series of problems in subsequent
courses. The result is an enormous gap between curricular goals
and a politically acceptable minimum requirement for high school
graduation. Consequently, in most states, the only enforced
mathematics performance level for high school graduation is an
eighth- or ninth-grade standard. This large discrepancy between
goals and achievement discredits mathematics education in the
eyes of both parents and students.

BREADTH AND CONNECTEDNESS

I suggest that the way to resolve these conflicts—and to address
many of the environmental factors mentioned above—is to struc-
ture mathematics in grades 6 to 12 to stress breadth and connect-
edness rather than depth and dependency. Instead of selecting
topics for their future utility, as prerequisites for something to
follow that most students will never see, select topics for their
current value in building linkages both within mathematics and
between mathematics and the outside world. Instead of selecting

topics for their contribution to the foundation of calculus, only
one among many important parts of advanced mathematics, select
topics for their contribution to a balanced repertoire of all the
mathematical sciences. And in each grade, but especially in middle
school, stress topics that contribute simultaneously to mathemat-
ics, statistics, and numeracy.

A good place to start is with the revised NCTM standards (Ap-
pendix I). These ten standards, if treated with equal seriousness
and supplemented with significant connections to the real world,
would provide a very strong framework for mathematics in grades
6 to 12. Unfortunately, “equal seriousness” is rare. Geometry,
measurement, data analysis, and probability need as strong a pres-
ence in the curriculum as algebra and number. Similarly, reason-
ing, communication, and connections need as much emphasis as
problem solving and representation.

There is an ever-present danger that these NCTM goals will be
viewed as mere rhetoric and that not much will change in the
actual priorities of teachers or in the tests that districts and states
use to monitor student performance. Taking all the standards
seriously means that students need to work with data as much as
with equations, with measurements and units as much as with
abstract numbers. To learn to communicate quantitatively, stu-
dents need as much experience reading texts that use quantitative
or logical arguments as they have with literary or historical texts.
And they need experience not only with the self-contained exer-
cises in mathematics textbooks but also with realistic problems
that require a combination of estimation, assumption, and anal-
ysis.

To some, these broad goals may seem to move well beyond the
security zone of objective, Platonic mathematics in which proof
and precision matter most and transformation of symbols replaces
narrative explanations as a means of expressing thought. They do
indeed move well beyond this protected arena, into the pragmatic
world of mathematical practice broadly conceived. Yet it is only in
this broad domain, not in the more restricted sphere of symbolic
thinking, that mathematics can assert its warrant to special status
in the school curriculum. (If it makes purists feel better, perhaps
this curriculum should be identified, as the profession is, by the
term “mathematical sciences.”)

To accomplish such a transformation, mathematics teachers must
become diplomats, recruiting allies from teachers in other fields
who will stress the role of mathematics in the subjects they teach.
Mathematics can be seen both as a service subject (Howson et al.
1988) and as a subject served. Art abounds with geometry; history
with data and probability; music with ratios and series; science
with measurement and algebra; economics with data and graphs.
Every subject relies on, and teaches, the NCTM process standards
such as reasoning, communication, and problem solving. To
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build breadth and secure connections, the mathematical sciences
must be taught both in the mathematics classroom and in class-
rooms across the entire curriculum (Steen 1997; Wallace 1999).

MIDDLE GRADES

For several reasons, it is helpful to think of the seven years of
grades 6 to 12 in three parts: the middle grades 6 to 8; the core
high school grades 9 to 11; and the transition grade 12. To over-
simplify (but not by much), the goal for grades 6 to 8 would be
numeracy, for grades 9 to 11, mathematical sciences, and for grade
12, options. Data analysis, geometry, and algebra would consti-
tute three equal content components in grades 6 to 8 and in grades
9 to 11. (In this simplified synopsis, measurement and probability
can be viewed as part of data analysis, while number and opera-
tions can be viewed as part of algebra; discrete mathematics and
combinatorics are embedded in every topic.) The five NCTM
process standards cut across all topics and grade levels, but rather
than being left to chance, they do need to be covered intentionally
and systematically.

Careful planning can ensure that the foundational parts of school
mathematics are covered in grades 6 to 8, without tracking but
with multiple points of entry and many opportunities for mutual
reinforcement. There are many different ways to do this, one of
which is being developed by a dozen or so states belonging to the
Mathematics Achievement Partnership (Achieve 2001). In a cur-
riculum designed for breadth and connections, anything not
learned the first time will appear again in a different context in
which it may be easier to learn. For example, graphing data gath-
ered through measurement activities provides review of, or intro-
duction to, algebra and geometry; finding lengths and angles via
indirect measurements involves solving equations; and virtually
every task in data analysis as well as many in algebra and geometry
reinforces and extends skills involving number and calculation.

Used this way, with intention and planning, linkages among parts
of mathematics can be reinforcing rather than life-threatening.
Instead of leading to frustration and withdrawal, a missing link
can lead to exploration of alternative routes through different
parts of mathematics. If middle school teachers give priority to
topics and applications that form the core of quantitative literacy,
students will encounter early in their school careers those parts of
mathematics that are most widely used, most important for most
people, and most likely to be of interest. More specialized topics
can and should be postponed to grades 9 to 11.

SECONDARY SCHOOL

In high school, all students should take three additional years of
mathematics in grades 9 to 11, equally divided between data anal-
ysis, geometry, and algebra but not sequentially organized. Parallel
development is essential to build interconnections both within the

mathematical sciences and with the many other subjects that stu-
dents are studying at the same time. Parallel does not necessarily
mean integrated, although there certainly could be integration in
particular curricula. It does mean that in each grade, students
advance significantly in their understanding of each component of
the triad of data analysis, geometry, and algebra. Parallel develop-
ment reduces the many disadvantages of the intense and unnec-
essary verticality.

The content of this curriculum would not differ very much from
the recommendations in the NCTM standards. The core of math-
ematics—data analysis, geometry, and algebra—is what it is and
can be neither significantly changed nor totally avoided. There is,
however, considerable room for variation in the implementation
of specific curricula, notably in the examples that are used to
motivate and illuminate the core. Appendix II, adapted from a
report of the National Center for Research in Vocational Educa-
tion (Forman and Steen 1999), offers some examples of important
but neglected topics that can simultaneously reinforce mathemat-
ical concepts in the core and connect mathematics to ideas and
topics in the world in which students live. Some recent textbooks
(e.g., Pierce et al. 1997) build on similar ideas.

But perhaps even more important than an enriched variety of
examples and topics would be a powerful emphasis on aspects of
what NCTM calls process standards. As the practice of medicine
involves far more than just diagnosing and prescribing, so the
practice of mathematics involves far more than just deducing the-
orems or solving problems. It involves wide-ranging expertise that
brings number and inference to bear on problems of everyday life.
Part of learning mathematics is to experience the wide scope of its
practice, which is what the process standards are all about.

Some aspects of mathematical practice are entirely pragmatic,
dealing with real systems and situations of considerable complex-
ity. A mathematics education should prepare students to deal with
the kinds of common situations in which a mathematical perspec-
tive is most helpful. Common examples include scheduling, mod-
eling, allocating resources, and preparing budgets. In this com-
puter age, students also need to learn to use the tools of modern
technology (e.g., spreadsheets, statistical packages, Internet re-
sources) to collect and organize data, to represent data visually,
and to convert data from one form and system to another. Perfor-
mance standards for mathematics in the age of computers means
performance with computer tools.

Other aspects of mathematics are anchored more in logic than in
practice, in drawing inferences rather than working with data.
Ever since Euclid, mathematics has been defined by its reliance on
deductive reasoning, but there are many other kinds of reasoning
in which mathematical thinking plays an important role. Students
finishing high school should have enough experience with differ-
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ent kinds of reasoning to understand the differences between
them and the appropriate role for each. Some examples include:

● Scientific Inference: Gathering data; detecting patterns, mak-
ing conjectures; testing conjectures; drawing inferences; ver-
ifying versus falsifying theories

● Legal Inference: Levels of convincing argument; persuasion
and counterexamples; informal inference (suspicion, experi-
ence, likelihood); legal standards (beyond reasonable doubt
versus preponderance of evidence); logical trees in court de-
cisions

● Mathematical Inference: Logical reasoning and deduction; as-
sumptions and conclusions; axiomatic systems; theorems and
proofs; proof by direct deduction, by indirect argument, and
by “mathematical induction”; classical proofs (e.g., isosceles
triangle, infinitude of primes, Pythagorean theorem)

● Statistical Inference: Rationale for random samples; double-
blind experiments; surveys and polls; confidence intervals;
causality versus correlation; multiple and hidden factors, in-
teraction effects; judging validity of statistical claims in media
reports.

Both in practical situations of planning and modeling and in the
more intellectual sphere of reasoning and inference, these aspects
of high school mathematics are well suited to reinforcement in
other subjects. As previously noted, to build mathematical
breadth and ensure lasting connections, mathematics must be
taught, to some degree, in every subject and every classroom.

I have argued for parallel development of the three legs of the
mathematical stool—data analysis, geometry, and algebra—to
maximize interconnections that are essential for long-term learn-
ing. But in grades 9 to 11 there is yet another very practical reason:
the increasing number of state-mandated tests that are often set at
the tenth-grade level. These tests, if they are aligned with the goals
of instruction, should treat all standards in a balanced manner. In
particular, data analysis, geometry, and algebra should be equally
present on tenth-grade tests; they therefore must be equally
present in ninth- and tenth-grade courses. If high school courses
remain layered as they are now, state examinations will continue
to concentrate only on algebra and geometry, leaving data analysis
out of the picture.

OPTIONS

Ideally, every student should study the same mathematics through
grade 8, with only minor variation in examples to support differ-
ent student interests and abilities. Accommodation to student
differences in middle school should reflect student needs, not

variations in anticipated career plans or college requirements.
More instruction should be provided for students who need more
support, more extensions for students who need greater chal-
lenges. Most students who are able to move rapidly through the
core curriculum would be much better served with extensions that
provide additional depth and variety than with acceleration, espe-
cially with examples that open their minds to the many connec-
tions among mathematical topics and with diverse applications.
(Acceleration may be appropriate for a very few exceptionally
talented students—fewer than one in a hundred—but only if they
are able to pursue the entire curriculum at its deepest level. Accel-
eration of the core curriculum alone, without extensions, is point-
less.)

In high school, student interests emerge with greater strength and
legitimacy and both students and parents expect schools to pro-
vide some options. Historically, schools have tried to do this by a
combination of two strategies: tracking and filtering. Both strate-
gies amount to an abdication of educational responsibility.
Weaker students were placed in commercial or general tracks that
avoided algebra, thus barring them from further work in any
quantitatively based field. Stronger students were immersed in a
form of algebra that was designed to filter out students who did
not appear capable of later success in calculus. The consequences
of this strategy are well known: large numbers of students leave
school both ignorant of and anxious about mathematics.

It is possible to offer options without foreclosing students’ futures.
Three types of very successful programs can be found in today’s
schools: career, academic, and scientific. The first provides rigor-
ous preparation for the high-performance workplace, the second
offers thorough preparation for college, the third offers advanced
preparation for scientific careers. These programs vary in mathe-
matical intensity and depth, but all provide students with substan-
tial experience in data analysis, geometry, and algebra. Each leaves
students prepared for work and postsecondary education but at
different mathematical levels, separated by approximately one
year of mathematical study.

Many educators argue vehemently against any tracks on the
ground that they magnify inequities in educational advantage at a
time when all students need to be equally prepared (rather than
unequally prepared) for postsecondary education. Others argue
that mathematically able students need a separate track to enable
them to maintain their interest and fulfill their potential (Gavosto
et al. 1999; Sheffield 1999). Still others argue, for similar reasons,
that many students will thrive better in a career-oriented track—
especially one that stresses skills required for new high-perfor-
mance, technologically intensive industries (Bottoms 1993;
Hoachlander 1997).
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Research and practice show definitively that students learn better
when they can fit new ideas into meaningful contexts (Askew and
William 1995; Bransford et al. 1999). Because high school stu-
dents have quite different interests, it makes sense to provide some
choices in the context and setting of their mathematics courses.
Moreover, given the variety of programs in higher education—
ranging from technical certificates offered by community colleges
to bachelor’s degrees offered by liberal arts colleges, from majors
in philosophy or art to hotel management and hazardous waste
disposal—it is clear that student preparation can legitimately be
varied.

Thus we can imagine different settings for mathematics in grades
9 to 11, each achieving the same general goals but with rather
different details. If rigorously delivered, a variety of substantive
programs can prepare students for postsecondary education with-
out remediation—an important practical and political point.
Whether the equations studied in algebra come from physics or
automobile mechanics, or the data from economics or computer
repair, what students learn about handling equations and data
would be approximately the same. Differences among programs
become weaknesses only if some programs leave students ill pre-
pared for their future—either for work or for study. But options
that differ primarily in specifics rather than in broad goals can
serve all students well.

Providing options in grades 9 to 11 does mean that students will
finish the eleventh grade at different mathematical levels—some
much more advanced than others. Especially in a subject like
mathematics, wide variation in achievement is inevitable. By en-
couraging students to relate mathematics to their personal inter-
ests, all students’ learning will be enhanced, but so will variability.
Success in mathematics education is not determined by the quan-
tity of mathematics learned but by the ability and disposition to
use a variety of mathematical tools in further work or study. It is
far better for students to finish the required core of school math-
ematics willing and eager to learn more than to have mastered
skills that they hope never to have to use again.

Student options become fully realized in grade 12 when mathe-
matics itself becomes optional. Ideally, schools should offer a wide
choice of further mathematics—for example, calculus-readiness,
computer graphics, mathematical modeling, computer science,
statistics, or biomathematics—in part to show students how per-
vasive mathematics really is and how many options there are for
continued study. These elective courses need not be offered every

year because none is uniquely necessary for students’ further study
and none is likely to be part of the testing associated with the
school-college transition. Calculus itself can easily be left for col-
lege (except for the few students who can legitimately cover this
entire program one year ahead of the others). One measure of
success of a school’s mathematics program would be the percent-
age of students who elect mathematics in twelfth grade.

SYNOPSIS

To summarize, all middle school students (grades 6 to 8) would
study a three-year, non-tracked curriculum that provides equal
and tightly linked introductions to data analysis, geometry, and
algebra. When students enter high school, they would move into
a second three-year mathematics curriculum that may provide
some options based on student interests. No matter the emphasis,
however, each high school program would advance equally the
three main themes (data analysis, geometry, algebra) without let-
ting any lag behind. Different programs may emphasize different
contexts, different tools, and different depths, but each would
leave students prepared both for the world of work and for post-
secondary education.

In this plan, minimum high school graduation requirements (cer-
tified, for example, by high-stakes state tests that are typically set at
tenth-grade competence) would represent citizen-level quantita-
tive literacy, one year behind mathematics preparation for college
admission (eleventh grade), which would be one year behind qual-
ification for mathematically intensive college programs. Aiming
for this three-step outcome of high school mathematics is more
logical and more achievable than the imagined (but never
achieved) ideal of having every student leave high school equally
educated in mathematics and equally prepared for college admis-
sion.

By studying a balanced curriculum, students would leave school
better prepared for employment, more competitive with their
international peers, and well positioned for a variety of postsec-
ondary programs. By experiencing breadth and connectedness
rather than depth and verticality, students would have repeated
opportunities to engage mathematics afresh as their own interests
and attitudes evolve. By focusing on the symbiosis of computers
and mathematics, students would experience how mathematics is
practiced. And by studying a blend of mathematics, statistics, and
numeracy, students would be flexibly prepared for life and work in
the twenty-first century.
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Appendix I: Standards for School
Mathematics

(Adapted from Principles and Standards for
School Mathematics, National Council of

Teachers of Mathematics 2000)

Content Standards:
Instructional programs should enable all students,

in number and operations, to

● understand numbers, ways of representing numbers, relation-
ships among numbers, and number systems;

● understand meanings of operations and how they relate to
one another;

● compute fluently and make reasonable estimates;

in algebra, to

● understand patterns, relations, and functions;

● represent and analyze mathematical situations and structures
using algebraic symbols;

● use mathematical models to represent and understand quan-
titative relationships;

● analyze change in various contexts;

in geometry, to

● analyze characteristics and properties of two- and three-di-
mensional geometric shapes and develop mathematical argu-
ments about geometric relationships;

● specify locations and describe spatial relationships using co-
ordinate geometry and other representational systems;

● apply transformations and use symmetry to analyze mathe-
matical situations;

● use visualization, spatial reasoning, and geometric modeling
to solve problems;

in measurement, to

● understand measurable attributes of objects and the units,
systems, and processes of measurement;

● apply appropriate techniques, tools, and formulas to deter-
mine measurements;

in data analysis and probability, to

● formulate questions that can be addressed with data and col-
lect, organize, and display relevant data to answer them;

● select and use appropriate statistical methods to analyze data;

● develop and evaluate inferences and predictions that are based
on data;

● understand and apply basic concepts of probability.

Process Standards:
Instructional programs should enable all students,

in problem solving, to

● build new mathematical knowledge through problem solving;

● solve problems that arise in mathematics and in other con-
texts;

● apply and adapt a variety of appropriate strategies to solve
problems;

● monitor and reflect on the process of mathematical problem
solving;

in reasoning and proof, to

● recognize reasoning and proof as fundamental aspects of
mathematics;

● make and investigate mathematical conjectures;

● develop and evaluate mathematical arguments and proofs;

● select and use various types of reasoning and methods of
proof;

in communication, to

● organize and consolidate their mathematical thinking
through communication;

● communicate their mathematical thinking coherently and
clearly to peers, teachers, and others;

● analyze and evaluate the mathematical thinking and strategies
of others;

● use the language of mathematics to express mathematical
ideas precisely;

in connections, to

● recognize and use connections among mathematical ideas;
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● understand how mathematical ideas interconnect and build
on one another to produce a coherent whole;

● recognize and apply mathematics in contexts outside of
mathematics;

in representation, to

● create and use representations to organize, record, and com-
municate mathematical ideas;

● select, apply, and translate among mathematical representa-
tions to solve problems;

● use representations to model and interpret physical, social,
and mathematical phenomena.

Appendix II: Selected Topics for
School Mathematics

(Adapted from Beyond Eighth Grade: Functional
Mathematics for Life and Work, published

by the National Center for Research
in Vocational Education 1999)

Geometry: In addition to standard topics (e.g., measurement of
figures in two- and three-dimensions, congruence and similarity,
reflections and rotations, triangle trigonometry, classical proofs
and constructions), students should be introduced to:

● Dimensions: Coordinate notation; dimension as factor in
multivariable phenomena. Geometric dimensions (linear,
square, and cubic) versus coordinate dimensions in multiva-
riable phenomena. Proper versus improper analogies. Dis-
crete versus continuous dimensions.

● Dimensional Scaling: Linear, square, and cubic growth of
length, area, and volume; physical and biological conse-
quences. Fractal dimensions.

● Spatial Geometry: Calculating angles in three dimensions
(e.g., meeting of roof trusses); building three-dimensional
objects and drawing two-dimensional diagrams. Interpreting
construction diagrams; nominal versus true dimensions (e.g.,
of 2 x 4s); tolerances and perturbations in constructing three-
dimensional objects.

● Global Positioning: Map projections, latitude and longitude,
global positioning systems (GPS); local, regional, and global
coordinate systems.

Data: In addition to standard topics (e.g., ratios, percentages,
averages, probabilities) students should be introduced to:

● Measurement: Estimating weights, lengths, and areas. Direct
and indirect measurement. Use of appropriate instruments
(rulers, tapes, micrometers, pacing, electronic gauges, plumb
lines). Squaring corners in construction. Estimating toler-
ances. Detecting and correcting misalignments.

● Calculation: Accurate paper-and-pencil methods for simple
arithmetic and percentage calculations; calculator use for
complex calculations; spreadsheet methods for problems with
a lot of data. Use of mixed methods (mental, pencil, calcula-
tor). Strategies for checking reasonableness and accuracy. Sig-
nificant digits; interval arithmetic; errors and tolerances. Ac-
curacy of calculated measurements.

● Mental Estimation: Quick, routine mental estimates of costs, dis-
tances, times. Estimating orders of magnitude. Reasoning with
ratios and proportions. Mental checking of calculator and com-
puter results. Estimating unknown quantities (e.g., number of
high school students in a state or number of gas stations in a city).

● Numbers: Whole numbers (integers), fractions (rational num-
bers), and irrational numbers (�, �2). Number line; mixed
numbers; decimals; percentages. Prime numbers, factors;
simple number theory; fundamental theorem of arithmetic.
Binary numbers and simple binary arithmetic. Scientific no-
tation; units and conversions. Number sense, including intu-
ition about extreme numbers (lottery chances, national debt,
astronomical distances).

● Coding: Number representations (decimal, binary, octal, and
hex coding). ASCII coding; check digits. Patterns in credit
card, Social Security, telephone, license plate numbers. Pass-
words and PINS.

● Index Numbers: Weighted averages. Definitions and abuses.
Examples in the news: stock market averages; consumer price
index; unemployment rate; SAT scores; college rankings.

● Data Analysis: Measures of central tendency (average, median,
mode) and of spread (range, standard deviation, mid-range,
quartiles, percentiles). Visual displays of data (pie charts, scat-
ter plots, bar graphs, box and whisker charts). Quality control
charts. Recognizing and dealing with outliers.

● Probability: Chance and randomness. Calculating odds in
common situations (dice, coin tosses, card games); expected
value. Random numbers; hot streaks. Binomial probability;
binomial approximation of normal distribution. Computer
simulations; estimating area by Monte Carlo methods. Two-
way contingency tables; bias paradoxes.

● Risk Analysis: Estimates of common risks (e.g., accidents, dis-
eases, causes of death, lotteries). Confounding factors. Com-
municating and interpreting risk.
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Algebra: In addition to standard topics (e.g., variables, symbols,
equations, relations, graphs, functions, slope, inequalities), stu-
dents should be introduced to:

● Algorithms: Alternative arithmetic algorithms; flow charts;
loops; constructing algorithms; maximum time versus aver-
age time comparisons.

● Graphs: Sketching and interpreting graphs; translating between
words and graphs (and vice versa) without intervening formulas.

● Growth and Variation: Linear, exponential, quadratic, har-
monic, and normal curve patterns. Examples of situations
that fit these patterns (bacterial growth, length of day) and of
those that do not (e.g., height versus weight; income distri-
bution).

● Financial Mathematics: Personal finance; loans, annuities, in-
surance. Investment instruments (stocks, mortgages, bonds).

● Exponential Growth: Examples (population growth, radioac-
tivity, compound interest) in which rate of change is propor-
tional to size; doubling time and half-life as characteristics of
exponential phenomena; ordinary and log-scaled graphs.

● Normal Curve: Examples (e.g., distribution of heights, re-
peated measurements, production tolerances) of phenomena
that distribute in a bell-shaped curve and examples that do
not (e.g., income, grades, typographical errors, life spans).
Area as measure of probability. Meaning of 1-, 2-, and 3�.

● Parabolic Patterns: Examples (falling bodies, optimization, ac-
celeration) that generate quadratic phenomena; relation to
parabolic curves.

● Cyclic functions: Examples (time of sunrise, sound waves, bi-
ological rhythms) that exhibit cyclic behavior. Graphs of sin
and cos; consequences of sin2 � � cos2 � � 1.
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Mathematics for Literacy
JAN DE LANGE

(In)numeracy
In 1990, a newspaper reported:

Yesterday, Monday October 9, AVRO Television paid attention to analphabetism in The
Netherlands. From data collected for the transmission, it appeared that no fewer than 1 out of
25 people cannot read or write, that is, cannot read or write a shopping list, cannot follow
subtitles on TV, cannot read newspapers, cannot write a letter.

Just imagine, 1 out of 25 people, in a country that sends helpers to developing countries in order
to teach their folks reading and writing! 1 out of 25, which means 25% of our citizens.

How many citizens does The Netherlands have? 14 million? That means that in our highly
developed country no less than three and a half million cannot read or write.

Aren’t you speechless?

Speechless, indeed. Errors such as the one above often are not noticed by our literate, educated
citizens. Innumeracy, or the inability to handle numbers and data correctly and to evaluate state-
ments regarding problems and situations that invite mental processing and estimating, is a greater
problem than our society generally recognizes. According to Treffers (1991), this level of innu-
meracy might not be the result of content taught (or not taught) but rather the result, at least in part,
of the structural design of teaching practices. “Fixing” this problem, however, requires dealing with
several issues: From a mathematical perspective, how do we define literacy? Does literacy relate to
mathematics (and what kind of mathematics)? What kind of competencies are we looking for? Are
these competencies teachable?

Introduction
Before trying to answer the question “What knowledge of mathematics is important?”, it seems wise
first to look at a “comfortable” definition of quantitative literacy (QL). Lynn Arthur Steen (2001)
pointed out that there are small but important differences in the several existing definitions and,
although he did not suggest the phrase as a definition, referred to QL as the “capacity to deal
effectively with the quantitative aspects of life.” Indeed, most existing definitions Steen mentioned
give explicit attention to number, arithmetic, and quantitative situations, either in a rather narrow
way as in the National Adult Literacy Survey (NCES 1993):

The knowledge and skills required in applying arithmetic operations, either alone or sequen-
tially, using numbers embedded in printed material (e.g., balancing a checkbook, completing
an order form).

Jan de Lange is Director of the Freudenthal Institute at Utrecht University in The Netherlands. A member of the
Mathematical Sciences Education Board (MSEB), de Lange’s work focuses on modeling and applications in mathematics
education, implementation of mathematics curriculum reform, and assessing student learning in mathematics. De Lange is
chair of the Expert Group for Mathematics of OECD’s new Program for International Student Assessment (PISA).
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or more broadly as in the International Life Skills Survey (ILSS
2000):

An aggregate of skills, knowledge, beliefs, dispositions, habits
of mind, communication capabilities, and problem solving
skills that people need in order to engage effectively in quan-
titative situations arising in life and work.

The problem we have with these definitions is their apparent
emphasis on quantity. Mathematical literacy is not restricted to
the ability to apply quantitative aspects of mathematics but in-
volves knowledge of mathematics in the broadest sense. As an
example, being a foreigner who travels a great deal in the United
States, I often ask directions of total strangers. What strikes me in
their replies is that people are generally very poor in what I call
navigation skills: a realization of where you are, both in a relative
and absolute sense. Such skills include map reading and interpre-
tation, spatial awareness, “grasping space” (Freudenthal 1973),
understanding great circle routes, understanding plans of a new
house, and so on. All kinds of visualization belong as well to the
literacy aspect of mathematics and constitute an absolutely essen-
tial component for literacy, as the three books of Tufte (1983,
1990, 1997) have shown in a very convincing way.

We believe that describing what constitutes mathematical literacy
necessitates not only this broader definition but also attention to
changes within other school disciplines. The Organization for
Economic Cooperation and Development (OECD) publication
Measuring Student Knowledge and Skills (OECD 1999) presents as
part of reading literacy a list of types of texts, the understanding of
which in part determines what constitutes literacy. This list comes
close, in the narrower sense, to describing many aspects of quan-
titative literacy. The publication mentions, as examples, texts in
various formats:

● Forms: tax forms, immigration forms, visa forms, application
forms, questionnaires

● Information sheets: timetables, price lists, catalogues, pro-
grams

● Vouchers: tickets, invoices, etc.

● Certificates: diplomas, contracts, etc.

● Calls and advertisements

● Charts and graphs; iconic representations of data

● Diagrams

● Tables and matrices

● Lists

● Maps

The definition Steen used in Mathematics and Democracy: The
Case for Quantitative Literacy (2001) refers to these as “document
literacy,” following a definition adopted by the National Center
for Education Statistics (NCES).

Against this background of varying perspectives, I chose for
“mathematical literacy” a definition that is broad but also rather
“mathematical”:

Mathematical literacy is an individual’s capacity to identify
and understand the role that mathematics plays in the world,
to make well-founded judgments, and to engage in mathe-
matics in ways that meet the needs of that individual’s current
and future life as a constructive, concerned and reflective
citizen (OECD 1999).

This definition was developed by the Expert Group for Mathe-
matics of the Programme for International Student Assessment
(PISA), of which I am chair. (I will refer to this document repeat-
edly below.) Later in this essay I further discriminate between the
concepts of numeracy, spatial literacy (SL), quantitative literacy
(QL), and mathematical literacy (ML). I also try to build an ar-
gument that there is a need for consensus on what constitutes basic
mathematical literacy as distinct from advanced mathematical lit-
eracy.

“What Mathematics?” Not Yet the
Right Question
In an interview in Mathematics and Democracy, Peter T. Ewell
(2001) was asked: “‘The Case for Quantitative Literacy’ argues
that quantitative literacy (QL) is not merely a euphemism for
mathematics but is something significantly different—less formal
and more intuitive, less abstract and more contextual, less sym-
bolic and more concrete. Is this a legitimate and helpful distinc-
tion?” Ewell answered that indeed this distinction is meaningful
and powerful.

The answer to this question depends in large part on the interpre-
tation of what constitutes good mathematics. We can guess that in
Ewell’s perception, mathematics is formal, abstract, and sym-
bolic—a picture of mathematics still widely held. Ewell continued
to say that literacy implies an integrated ability to function seam-
lessly within a given community of practice. Functionality is
surely a key point, both in itself and in relation to a community of
practice, which includes the community of mathematicians. Fo-
cusing on functionality gives us better opportunity to bridge gaps
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or identify overlaps. In the same volume, Alan H. Schoenfeld
(2001) observed that in the past, literacy and what is learned in
mathematics classes were largely disjointed. Now, however, they
should be thought of as largely overlapping and taught as largely
overlapping. In this approach, which takes into consideration the
changing perception of what constitutes mathematics, mathemat-
ics and mathematical literacy are positively not disjointed.

For Schoenfeld, the distinction most likely lies in the fact that as a
student he never encountered problem-solving situations, that he
studied only “pure” mathematics and, finally, that he never saw or
worked with real data. Each of these is absolutely essential for
literate citizenship, but none even hints at defining what mathe-
matics is needed for ML, at least not in the traditional school
mathematics curricula descriptions of arithmetic, algebra, geom-
etry, and so on.

Again, in Mathematics and Democracy, Wade Ellis, Jr. (2001) ob-
serves that many algebra teachers provide instruction that con-
stricts rather than expands student thinking. He discovered that
students leaving an elementary algebra course could solve fewer
real-world problems after the course than before it: after complet-
ing the course, they thought that they had to use symbols to solve
problems they had previously solved using only simple reasoning
and arithmetic. It may come as no surprise that Ellis promotes a
new kind of common sense—a quantitative common sense based
on mathematical concepts, skills, and know-how. Despite their
differences, however, Schoenfeld and Ellis seem to share Treffers’
observation that innumeracy might be caused by a flaw in the
structural design of instruction.

These several observers seem to agree that in comparison with
traditional school mathematics, ML is less formal and more intu-
itive, less abstract and more contextual, less symbolic and more
concrete. ML also focuses more attention and emphasis on rea-
soning, thinking, and interpreting as well as on other very math-
ematical competencies. To get a better picture of what is involved
in this distinction, we first need to describe what Steen (2001)
called the “elements” needed for ML. With a working definition
of ML and an understanding of the elements (or “competencies,”
as they are described in the PISA framework) needed for ML, we
might come closer to answering our original question—what
mathematics is important?—or formulating a better one.

Competencies Needed for ML
The competencies that form the heart of the ML description in
PISA seem, for the most part, well in line with the elements in
Steen (2001). The competencies rely on the work of Niss (1999)
and his Danish colleagues, but similar formulations can be found

in the work of many others representing many countries (as indi-
cated by Neubrand et al. 2001):

1. Mathematical thinking and reasoning. Posing questions char-
acteristic of mathematics; knowing the kind of answers that
mathematics offers, distinguishing among different kinds of
statements; understanding and handling the extent and limits
of mathematical concepts.

2. Mathematical argumentation. Knowing what proofs are;
knowing how proofs differ from other forms of mathematical
reasoning; following and assessing chains of arguments; hav-
ing a feel for heuristics; creating and expressing mathematical
arguments.

3. Mathematical communication. Expressing oneself in a variety
of ways in oral, written, and other visual form; understanding
someone else’s work.

4. Modeling. Structuring the field to be modeled; translating
reality into mathematical structures; interpreting mathemat-
ical models in terms of context or reality; working with mod-
els; validating models; reflecting, analyzing, and offering cri-
tiques of models or solutions; reflecting on the modeling
process.

5. Problem posing and solving. Posing, formulating, defining,
and solving problems in a variety of ways.

6. Representation. Decoding, encoding, translating, distinguish-
ing between, and interpreting different forms of representa-
tions of mathematical objects and situations as well as under-
standing the relationship among different representations.

7. Symbols. Using symbolic, formal, and technical language and
operations.

8. Tools and technology. Using aids and tools, including technol-
ogy when appropriate.

To be mathematically literate, individuals need all these compe-
tencies to varying degrees, but they also need confidence in their
own ability to use mathematics and comfort with quantitative
ideas. An appreciation of mathematics from historical, philosoph-
ical, and societal points of view is also desirable.

It should be clear from this description why we have included
functionality within the mathematician’s practice. We also note
that to function well as a mathematician, a person needs to be
literate. It is not uncommon that someone familiar with a math-
ematical tool fails to recognize its usefulness in a real-life situation
(Steen 2001, 17). Neither is it uncommon for a mathematician to
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be unable to use common-sense reasoning (as distinct from the
reasoning involved in a mathematical proof).

As Deborah Hughes Hallett (2001) made clear in her contribu-
tion to Mathematics and Democracy, one of the reasons that ML is
hard to acquire and hard to teach is that it involves insight as well
as algorithms. Some algorithms are of course necessary: it is diffi-
cult to do much analysis without knowing arithmetic, for exam-
ple. But learning (or memorizing) algorithms is not enough: in-
sight is an essential component of mathematical understanding.
Such insight, Hughes Hallett noted, connotes an understanding
of quantitative relationships and the ability to identify those rela-
tionships in an unfamiliar context; its acquisition involves reflec-
tion, judgment, and above all, experience. Yet current school cur-
ricula seldom emphasize insight and do little to actively support its
development at any level. This is very unfortunate. The develop-
ment of insight into mathematics should be actively supported,
starting before children enter school.

Many countries have begun to take quite seriously the problems
associated with overemphasizing algorithms and neglecting in-
sight. For example, the Netherlands has had some limited success
in trying to reform how mathematics is taught. To outsiders, the
relatively high scores on the Third International Mathematics and
Science Study (TIMSS) and TIMSS-R by students in the Neth-
erlands appear to prove this, but the results of the Netherlands in
the PISA study should provide even more proof.

The Netherlands has been helped in moving away from the
strictly algorithmic way of teaching mathematics by the recogni-
tion that mathematical abilities or competencies can be clustered:
one cluster includes reproduction, algorithms, definitions, and so
on; another cluster encompasses the ability to make connections
among different aspects or concepts in mathematics to solve sim-
ple problems; and a third cluster includes insight, reasoning, re-
flection, and generalization as key components (de Lange 1992,
1995). In designing curricula and assessments as well as items for
international examinations, this clustering approach became a
mirror reflecting back to us what we thought constituted good
mathematics in the sense of competencies. To a large extent, this
approach also prevented the very present danger of viewing the
National Council of Teachers of Mathematics (NCTM) goals—
reasoning, communication, and connections—as merely rhetoric
(Steen 2001). Eventually, this clustering of mathematical compe-
tencies found its way into the present OECD PISA study (1999)
as well as into a classroom mathematics assessment framework (de
Lange 1999) and an electronic assessment tool (Cappo and de
Lange 1999).

Finally, we want to make the observation that the competencies
needed for ML are actually the competencies needed for mathe-
matics as it should be taught. Were that the case (with curricula

following the suggestions made by Schoenfeld and Hughes Hal-
lett and extrapolating from experiences in the Netherlands and
other countries), the gap between mathematics and mathematical
literacy would be much smaller than some people suggest it is at
present (Steen 2001). It must be noted, however, that in most
countries this gap is quite large and the need to start thinking and
working toward an understanding of what makes up ML is barely
recognized. As Neubrand et al. (2001) noted in talking about the
situation in Germany: “In actual practice of German mathematics
education, there is no correspondence between the teaching of
mathematics as a discipline and practical applications within a
context” (free translation by author).

What Is Mathematics?
To provide a clearer picture of literacy in mathematics, it seems
wise to reflect for a moment on what constitutes mathematics.
Not that we intend to offer a deep philosophical treatment—there
are many good publications around—but it is not unlikely that
many readers might think of school mathematics as representing
mathematics as a science. Several authors in Mathematics and De-
mocracy (Steen 2001) clearly pointed this out, quite often based on
their own experiences (Schoenfeld, Schneider, Kennedy, and El-
lis, among others). Steen (1990) observed in On the Shoulders of
Giants: New Approaches to Numeracy that traditional school math-
ematics picks a very few strands (e.g., arithmetic, algebra, and
geometry) and arranges them horizontally to form the curriculum:
first arithmetic, then simple algebra, then geometry, then more
algebra and, finally, as if it were the epitome of mathematical
knowledge, calculus. Each course seems designed primarily to
prepare for the next. These courses give a distorted view of math-
ematics as a science, do not seem to be related to the educational
experience of children, and bear no relevance for society. A result
of this is that the informal development of intuition along the
multiple roots of mathematics, a key characteristic in the devel-
opment of ML, is effectively prevented. To overcome this misim-
pression about the nature of mathematics left by such courses, we
will try to sketch how we see mathematics and, subsequently, what
the consequences can be for mathematics education.

Mathematical concepts, structures, and ideas have been invented
as tools to organize phenomena in the natural, social, and mental
worlds. In the real world, the phenomena that lend themselves to
mathematical treatment do not come organized as they are in
school curriculum structures. Rarely do real-life problems arise in
ways and contexts that allow their understanding and solutions to
be achieved through an application of knowledge from a single
content strand. If we look at mathematics as a science that helps us
solve real problems, it makes sense to use a phenomenological
approach to describe mathematical concepts, structures, and
ideas. This approach has been followed by Freudenthal (1973)
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and by others such as Steen (1990), who state that if mathematics
curricula featured multiple parallel strands, each grounded in ap-
propriate childhood experiences, the collective effect would be to
develop among children diverse mathematical insight into the
many different roots of mathematics. Steen then suggested that we
should seek inspiration in the developmental power of five deep
mathematical ideas: dimension, quantity, uncertainty, shape, and
change. The OECD PISA mathematics expert group has adapted
these, creating four phenomenological categories to describe what
constitutes mathematics: quantity, space and shape, change and
relationships, and uncertainty.

Using these four categories, mathematics content can be orga-
nized into a sufficient number of areas to help ensure a spread of
items across the curriculum, but also a small enough number to
avoid an excessively fine division—which would work against a
focus on problems based in real-life situations. Each phenomeno-
logical category is an encompassing set of phenomena and con-
cepts that make sense together and may be encountered within
and across a multitude of quite different situations. By their very
nature, each idea can be perceived as a general notion dealing with
a generalized content dimension. This implies that the categories
or ideas cannot be sharply delineated vis-à-vis one another.
Rather, each represents a certain perspective, or point of view,
which can be thought of as possessing a core, a center of gravity,
and a somewhat blurred penumbra that allow intersection with
other ideas. In principle, any idea can intersect with any other
idea. (For a more detailed description of these four categories or
ideas, please refer to the PISA framework (OECD 2002).)

Quantity. This overarching idea focuses on the need for quantifi-
cation to organize the world. Important aspects include an under-
standing of relative size, recognition of numerical patterns, and
the ability to use numbers to represent quantifiable attributes of
real-world objects (measures). Furthermore, quantity deals with
the processing and understanding of numbers that are represented
to us in various ways. An important aspect of dealing with quan-
tity is quantitative reasoning, whose essential components are de-
veloping and using number sense, representing numbers in vari-
ous ways, understanding the meaning of operations, having a feel
for the magnitude of numbers, writing and understanding math-
ematically elegant computations, doing mental arithmetic, and
estimating.

Space and Shape. Patterns are encountered everywhere around us:
in spoken words, music, video, traffic, architecture, and art.
Shapes can be regarded as patterns: houses, office buildings,
bridges, starfish, snowflakes, town plans, cloverleaves, crystals,
and shadows. Geometric patterns can serve as relatively simple
models of many kinds of phenomena, and their study is desirable
at all levels (Grünbaum 1985). In the study of shapes and con-
structions, we look for similarities and differences as we analyze

the components of form and recognize shapes in different repre-
sentations and different dimensions. The study of shapes is closely
connected to the concept of “grasping space” (Freudenthal
1973)—learning to know, explore, and conquer, in order to live,
breathe, and move with more understanding in the space in which
we live. To achieve this, we must be able to understand the prop-
erties of objects and the relative positions of objects; we must be
aware of how we see things and why we see them as we do; and we
must learn to navigate through space and through constructions
and shapes. This requires understanding the relationship between
shapes and images (or visual representations) such as that between
a real city and photographs and maps of the same city. It also
includes understanding how three-dimensional objects can be
represented in two dimensions, how shadows are formed and
interpreted, and what perspective is and how it functions.

Change and Relationships. Every natural phenomenon is a mani-
festation of change, and in the world around us a multitude of
temporary and permanent relationships among phenomena are
observed: organisms changing as they grow, the cycle of seasons,
the ebb and flow of tides, cycles of unemployment, weather
changes, stock exchange fluctuations. Some of these change pro-
cesses can be modeled by straightforward mathematical functions:
linear, exponential, periodic or logistic, discrete or continuous.
But many relationships fall into different categories, and data
analysis is often essential to determine the kind of relationship
present. Mathematical relationships often take the shape of equa-
tions or inequalities, but relations of a more general nature (e.g.,
equivalence, divisibility) may appear as well. Functional think-
ing—that is, thinking in terms of and about relationships—is one
of the fundamental disciplinary aims of the teaching of mathemat-
ics. Relationships can take a variety of different representations,
including symbolic, algebraic, graphic, tabular, and geometric. As
a result, translation between representations is often of key impor-
tance in dealing with mathematical situations.

Uncertainty. Our information-driven society offers an abundance
of data, often presented as accurate and scientific and with a de-
gree of certainty. But in daily life we are confronted with uncertain
election results, collapsing bridges, stock market crashes, unreli-
able weather forecasts, poor predictions of population growth,
economic models that do not align, and many other demonstra-
tions of the uncertainty of our world. Uncertainty is intended to
suggest two related topics: data and chance, phenomena that are
the subject of mathematical study in statistics and probability,
respectively. Recent recommendations concerning school curric-
ula are unanimous in suggesting that statistics and probability
should occupy a much more prominent place than they have in
the past (Cockroft 1982; LOGSE 1990; MSEB 1993; NCTM
1989, 2000). Specific mathematical concepts and activities that
are important in this area include collecting data, data analysis,
data display and visualization, probability, and inference.
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The Real World
Although we now have “answers” to what constitutes ML, what
the needed skills or competencies are, and what mathematics is,
we still are not in a position to give an answer to what mathematics
is needed for ML. The reason is simple: mathematics curricula
have focused on school-based knowledge whereas mathematical
literacy involves mathematics as it is used in the real world.

An important part of mathematical literacy is using, doing, and
recognizing mathematics in a variety of situations. In dealing with
issues that lend themselves to a mathematical treatment, the
choice of mathematical methods and representations often de-
pends on the situations in which the problems are presented.
Teachers of mathematics often complain that students have diffi-
culty applying the mathematics they have learned in different
contexts. As Hughes Hallett (2001) correctly observed, non-
science students often dislike contexts involving physics applica-
tions in mathematics because they do not understand the physics.
Building from this, I think we need to examine the wisdom of
confronting nonscience students with mathematics applications
that need specific science literacy at a nonbasic level. As has been
pointed out before, to effectively transfer their knowledge from
one area of application to another, students need experience solv-
ing problems in many different situations and contexts (de Lange
1987). Making competencies a central emphasis facilitates this
process: competencies are independent of the area of application.
Students should be offered real-world situations relevant to them,
either real-world situations that will help them to function as
informed and intelligent citizens or real-world situations that are
relevant to their areas of interest, either professionally or educa-
tionally.

By situation, we mean the part of the student’s world in which a
certain problem is embedded. It is very convenient and relevant to
the art of teaching for ML to see situations as having certain
distances in relation to the student (de Lange 1995; OECD 1999,
2002). The closest distance is the student’s personal life; next is
school (educational) life, then work (occupational) and leisure,
followed by the local community and society as encountered in
daily life. Furthest away are scientific situations. It might be de-
sirable to enlarge the distance domain as the age of the students
increases, but not in a strict way.

Steen (2001, 9–15) itemized an impressive list of expressions of
numeracy, most of which can be seen as having a certain “dis-
tance” from “citizens.” Under personal life we include, depending
on age, games, daily scheduling, sports, shopping, saving, inter-
personal relations, finances, voting, reading maps, reading tables,
health, insurance, and so on. School life relates to understanding
the role of mathematics in society, school events (e.g., sports,

teams, scheduling), understanding data, computers, and so on.
Work and leisure involves reasoning, understanding data and sta-
tistics, finances, taxes, risks, rates, samples, scheduling, geometric
patterns, two- and three-dimensional representations, budgets,
visualizations, and so on. In the local community, we see the
intelligent citizen making appropriate judgments, making deci-
sions, evaluating conclusions, gathering data and making infer-
ences, and in general adopting a critical attitude—seeing the rea-
soning behind decisions.

Last, we come to science situations. To function as an intelligent
citizen, individuals need to be literate in many fields, not only in
mathematics. The use of scientific situations or contexts in math-
ematics classes should not be avoided per se, but some care must
be taken. If we try to teach students the right competencies but use
the wrong context, we are creating a problem, not solving it. A
good but rather unscientific example concerns work with middle-
school students in the United States. The designed lesson se-
quence had archeology as a context. Archeologists sometimes use
rather straightforward but quite unexpected and rather “subjec-
tive” mathematical methods in their research—just the kind of
mathematics middle school students can handle. The question,
therefore, was not whether the students could do the mathematics
but whether the context was engaging enough in this short-atten-
tion-span society. The students were highly engaged because of
the unexpectedness of what they were learning and the relevance
of the methods used. As we learned in this instance, connecting to
the students’ real world can be a complex but highly rewarding
journey.

What has become clear in dealing with mathematics in context
over the past 25 years is that making mathematics relevant by
teaching it in context is quite possible and very rewarding, despite
the many pitfalls. We note that much more experience and re-
search is needed, but based on previous experiences we also note
that teaching for both mathematical literacy and relevant mathe-
matics at almost the same time might very well prove feasible.

A Matter of Definitions
Having set the context, it seems appropriate now to make clear
distinctions among types of literacies so that, at least in this essay,
we do not declare things equal that are not equal. For instance,
some equate numeracy with quantitative literacy; others equate
quantitative and mathematical literacy. To make our definitions
functional, we connect them to our phenomenological categories.

Spatial Literacy (SL). We start with the simplest and most ne-
glected, spatial literacy. SL supports our understanding of the
(three-dimensional) world in which we live and move. To deal
with what surrounds us, we must understand properties of objects,
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the relative positions of objects and the effect thereof on our visual
perception, the creation of all kinds of two- and three-dimen-
sional paths and routes, navigational practices, shadows—even
the art of Escher.

Numeracy (N). The next obvious literacy is numeracy (N), fitting
as it does directly into quantity. We can follow, for instance,
Treffers’ (1991) definition, which stresses the ability to handle
numbers and data and to evaluate statements regarding problems
and situations that invite mental processing and estimating in
real-world contexts.

Quantitative Literacy (QL). When we look at quantitative literacy,
we are actually looking at literacy dealing with a cluster of phe-
nomenological categories: quantity, change and relationships, and
uncertainty. These categories stress understanding of, and math-
ematical abilities concerned with, certainties (quantity), uncer-
tainties (quantity as well as uncertainty), and relations (types of,
recognition of, changes in, and reasons for those changes).

Mathematical Literacy (ML). We think of mathematical literacy as
the overarching literacy comprising all others. Thus we can make
a visual representation as follows:

Advanced Mathematical Literacy and Basic Mathematical Literacy.
Another possibly fruitful way to make distinctions within the field
of mathematical literacy is to think about the “community of
practitioners” in somewhat more detail. Being mathematically
literate means different things according to the needs of the com-
munity, both as a group and as individuals. It may be a good idea,
although well beyond the comfort zone for many, to speak of basic
mathematical literacy (BML), a level expected of all students up to
age 15 or so, independent of their role in society. Individual coun-
tries or communities should be able to define in some detail what
this actually means in the local culture. After age 15, however, as
students begin to think of their future careers, they should, ac-
cordingly, acquire advanced mathematical literacy (AML), defined
by their need to fit into their community of practice. Because of
the many different communities of practice in a given society,
defining the general content for career-related AML may be un-
wise, if not impossible. But defining an early career-entry AML for
high school students and undergraduates might be appropriate, as
might defining a general AML for adult life in society, linking its
development, support, and enhancement to continuing education
for adults.
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Examples: The Mathematics
Necessary for Development of ML
Examples from real curricula offer the best illustrations of math-
ematics that meet at least some of the requirements of ML. It will
come as no surprise, perhaps, that the examples offered here,
andour frame of reference, will be the Netherlands, but with an
eye to the U.S. situation.

In the 1970s, it became increasingly clear that there was a serious
mismatch in the Netherlands between what many students
needed and what was offered to them in mathematics curricula, a
mismatch still present in many curricula. Traditional curricula,
for example, include calculus taught in a way that seldom leads to
any understanding of its power or usefulness and seldom either
develops students’ ability to reason with it as a tool or develops it
with an eye to mathematical or scientific proof. Few mathematics
educators see any merit in this approach (see de Lange 1994). Yet
despite the fact that calculus has few easily accessible applications
outside the exact sciences, it has survived “for all,” albeit in very
different shapes, in upper secondary curricula.

This mismatch is particularly acute for the majority of students
who do not want to pursue university study in the exact sciences
but who need mathematics for economics, biological sciences,
language, arts, social sciences, and so on. More generally, this
mismatch affects all future members of our society, which de-
pends so heavily on mathematics and technology. In the early
1980s, a specific curriculum was developed in the Netherlands to
meet the need for more general, socially relevant mathematical
knowledge (ML). The political reasons were simple and clear: all
students needed mathematics, but what they needed to study was
the mathematics required to function well in society and the con-
cepts and areas relevant to their future work and study. As part of
this change, curricula differing in mathematical content, level of
formality, context, and even (to a certain extent) pedagogy were
created to fit the needs of different clusters of students beyond the
age of 14. To convey the nature of this change, we give below
some concrete examples of this mathematics, presented in the
order of our phenomenological categories.

QUANTITY

The Defense Budget. In a certain country, the defense budget was
$30 million for 1980. The total budget for that year was $500
million. The following year, the defense budget was $35 million,
whereas the total budget was $605 million. Inflation during the
period between the two budgets was 10 percent.

(a) You are invited to hold a lecture for a pacifist society. You
want to explain that the defense budget has decreased this
year. Explain how to do this.

(b) You are invited to lecture to a military academy. You want to
claim that the defense budget has increased this year. Ex-
plain how to do this (de Lange 1987).

This problem has been thoroughly researched with 16-year-old stu-
dents. It illustrates very well the third cluster on reflection and insight.
Students recognized the literacy aspect immediately and quite often
were able to make some kind of generalization; the heart of the solu-
tion lies in recognizing that the key mathematical concepts here are
absolute and relative growth. Inflation can of course be left out to
make the problem accessible to somewhat younger students without
losing the key conceptual ideas behind the problem, but doing so
reduces the complexity and thus the required mathematization. An-
other way to make the item simpler is to present the data in a table or
schema. In this case, students have no preliminary work to carry out
before they get to the heart of the matter.

SPACE AND SHAPE

Casting Shadows. We first show an example of basic spatial literacy
that reflects a well-known daily experience, but one in which
people seldom realize what they see. The variety of shadows cast
by the sun (or a light bulb) is an interesting starting point for a
wide array of mathematical questions that have a much wider
impact than people initially realize. Students first are introduced
to a picture of an outdoor lamp surrounded by posts (Feijs 1998):

They then are asked to draw the shadows created by the lamp
(Top View A) and also the shadows cast by the sun (Top View B):
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The answers to both questions are rather straightforward:

They are based on understanding the path of light rays in relation
to the objects that are casting shadows:

This example not only illustrates aspects of mathematical literacy
as it deals with the world in which we live but also can stimulate
thinking about deeper mathematical ideas that are not immedi-
ately evident, for example, parallel and central projection, vision
lines, blind spots, and ratios.

The second example dealing with space and shape is taken from the
curriculum for students preparing for study in the exact sciences.

Equal Distances. The economies of some countries depend on
their fishing industries. Other countries are interested in the ocean
for reasons of oil drilling rights. How do we establish “fair” rules
about who gets what and for what reasons? If we are considering a
straight canal with two different countries on both sides, it seems
obvious: the line through the middle of the canal forms the
boundary because it is the line with equal distances to both coun-
tries. The political and societal relevance of this and similar ques-
tions is immediately clear. But how many people understand the
logic and common sense behind the rules?

The part of geometry that deals with equal distances is sometimes
called Voronoi geometry. It is an area of mathematics that has
relevance to practical (and very often political) problems and also
offers experience in useful mathematical reasoning. Unlike the
previous example, which illustrated Basic ML, this one is for se-
nior high school students, taken from students’ materials at a
Dutch high school.

The illustration shows the Netherlands portioned by use of a Voronoi
diagram: all cities (city centers) are equidistant to the borders.
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(a) What do you know about the distances from A to Middelburg,
from A to Den Haag and from A to Den Bosch?

(b) Explain why a Voronoi diagram with three points can never
look like the following diagram (Goddijn 1997, taken out of
context and order).

These examples form the starting point for a sequence of very
interesting space and shape mathematics that is very relevant from
a societal point of view (e.g., fishing rights, oil-drilling rights). But
Voronoi diagrams have much more to offer in the mathematical
sense. For example, although the last question above is not of
immediate relevance to fishing or oil-drilling rights, it requires
coherent, competent, and consistent reasoning, which is at least as
important as the first questions for intelligent citizens to function
in their societies.

CHANGE AND RELATIONSHIPS

Cheetahs and Horses. Some animals that dwell on grassy plains are
safeguarded against attacks by their large size; others are so small
that they can protect themselves by burrowing into the ground.
Still others must count on speed to escape their enemies.

An animal’s speed depends on its size and the frequency of its
strides. The tarsal (foot) bone of animals of the horse family is
lengthened, with each foot having been reduced to only one toe.
One thick bone is stronger than a number of thin ones. This single
toe is surrounded by a solid hoof, which protects the bone against
jolts when the animal is galloping over hard ground. The powerful
leg muscles are joined together at the top of the leg so that just a
slight muscle movement at that point can freely move the slim
lower leg.

The fastest sprinter in the world is the cheetah. Its legs are shorter
than those of a horse, but it can reach a speed of more than 110
km/h in 17 seconds and maintain that speed for more than 450
meters. The cheetah tires easily, however, whereas a horse, whose
top speed is 70 km/h, can maintain a speed of 50 km/h for more
than 6 km.

A cheetah is awakened from its afternoon nap by a horse’s hooves.
At the moment the cheetah decides to give chase, the horse has a
lead of 200 meters. The horse, traveling at its top speed, still has
plenty of energy. Taking into consideration the above data on the
running powers of the cheetah and the horse, can the cheetah
catch the horse? Assume that the cheetah will need around 300
meters to reach its top speed. Solve this problem by using graphs.
Let the vertical axis represent distance and the horizontal axis time
(Kindt 1979, in de Lange 1987).

As Freudenthal (1979) lamented:
This story of the cheetah seems rather complex. There is an
abundance of numbers . . . and nowhere an indication of
which operation to perform on which numbers. Indeed, is
there anything like a solution? The only question to be an-
swered is, “Does the cheetah catch up with the horse?” It is
“yes” or “no”—no numbers, no kilometers, no seconds. Is
that a solution in the usual sense? (free translation by author).

According to Freudenthal, this is what mathematics is all about,
especially mathematics for ML. This example also shows how we
can introduce students to calculus. Calculus needs to be perceived
as “the science that keeps track of changes,” as a student once
characterized it. A qualitative discussion about rates of change can
be very illuminating for students and at the same time enable
mathematics to contribute to ML. It prevents students from per-
ceiving calculus as that part of mathematics in which “you take the
exponent, put it in front, and the new exponent is one less than the
original one.” Another student in the course in a nonmathemat-
ics-related major, who was not very successful in traditional math-
ematics, answered: “Differentiation is about how to keep check on
rates of change.” Part of the importance of ML can be seen in the
gap between these two answers.

Tides. Natural phenomena should play a vital role in mathematics
for ML. For a country like the Netherlands, with 40 percent of its
area below sea level, the tides are very important. The following
protocol is taken from a classroom of 16-year-olds (de Lange
2000):
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Teacher: Let’s look at the mean tidal graph of Flushing. What
are the essentials?

Student A: High water is 198 cm, and low is –182 cm.

Teacher: And? [pause]

Student A: So it takes longer to go down than up.

Teacher: What do you mean?

Student A: Going down takes 6 hours 29 minutes, up only 5
hours 56 minutes.

Teacher: OK. And how about the period?

Student A: 6 hours 29 and 5 hours 56 makes 12 hours 25
minutes.

Teacher: Now, can we find a simple mathematical model?

Student B: [pause] Maybe 2 sin x.

Teacher: What is the period, then?

Student B: 2 pi, that means around 6.28 hours [pause] 6 hours
18 minutes [pause] oh, I see that it must be 2x, or,
no, x/2.

Teacher: So?

Student C: 2 sin (x/2) will do.

Teacher: Explain.

Student C: Well, that’s simple: the maximum is 2 meters, the
low is –2 meters, and the period is around 12 hours
33 minutes or so. That’s pretty close, isn’t it?

Teacher: [to the class] Isn’t it?

Student D: No, I don’t agree. I think the model needs to show
exactly how high the water can rise. I propose 190
sin (x/2) � 8. In that case, the maximum is exactly
198 cm, and the minimum exactly –182 cm. Not
bad.

Teacher: Any comments, anyone? [some whispering, some
discussion]

Student E: I think it is more important to be precise about the
period. 12 hours 33 minutes is too far off to make
predictions in the future about when it will be high
water. We should be more precise. I think 190 sin
[(pi/6.2)x] is much better.

Teacher: What’s the period in that case?

Student F: 12.4 hours, or 12 hours 24 minutes, only 1 minute
off.

Teacher: Perfect. What model do we prefer? [discussion]

Student G: 190 sin [(pi/6.2)x] � 8.
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The discussion continued with “What happens if we go to a dif-
ferent city that has smaller amplitudes and where high tides come
two hours later? How does this affect the formula? ”Why is the
rate of change so important?“

Why do we consider this a good example of mathematics for ML?
Given the community in which this problem is part of the curric-
ulum, the relevance for society is immediately clear—and the
relevance is rising with global temperatures. The relevance also
becomes clear at a different level, however. The mathematical
method of trial and error illustrated here not only is interesting by
itself, but the combination of the method with the most relevant
variables also is interesting: in one problem setting we are inter-
ested in the exact time of high water, in another we are interested
in the exact height of the water at high tide. Intelligent citizens
need insight into the possibilities and limitations of models. This
problem worked very well for these students, age 16, and the fact
that the “real” model used 40 different sine functions did not
really make that much difference with respect to students’ percep-
tions.

UNCERTAINTY

Challenger. If we fail to pose problems properly or fail to seek
essential data and represent them in a meaningful way, we can very
easily drown in data. One dramatic example concerns the advice

of the producer of solid rocket motors (SRM) to NASA concern-
ing the launch of the space shuttle Challenger in 1986. The rec-
ommendation issued the day before the launch was not to launch
if the temperature was less than 53 degrees Fahrenheit; the low
temperature (29 degrees) that was predicted for the day of the
launch might produce risks. As beautifully laid out by Tufte
(1997), the fax supporting the recommendation was an excellent
example of failed mathematical and common-sense reasoning.
Instead of looking at the data on all 24 previous launches, the fax
related to only two actual launches (giving temperatures, with
ensuing damage to rubber O-rings). NASA, of course, refused to
cancel the launch based on the arguments found in the fax. Simple
mathematics could have saved the lives of the seven astronauts.

The scientists at Morton Thiokol, producer of the O-rings, were
right in their conclusion but were unable to find a correlation
between O-ring damage and temperature. Let us look at the prob-
lem systematically. The first thing to do if we suspect a correlation
is to look at all the data available, in this case, the temperatures at
the time of launch for all 24 launches and the ensuing damage to
the O-rings. At that point, we then order the entries by possible
cause: temperature at launch, from coolest to warmest. Next, for
each launch, we calculate the damage to the O-rings and then
draw a scatter plot showing the findings from all 24 launches prior
to the Challenger.
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In this graph, the temperature scale extends down to 29 degrees,
visually expressing the extraordinary extrapolation (beyond all
previous experience) that had to be made to “see” the launch at 29
degrees. The coolest flight without any O-ring damage was at 66
degrees, some 37 degrees warmer than that predicted for the Chal-
lenger; the forecast of 29 degrees was 5.7 standard deviations
distant from the average temperature on previous launches. This
launch was completely outside the engineering database accumu-
lated in 24 previous flights. The result: the O-rings had already
failed before the rocket was launched.

What Mathematics Education
Supports the Development of ML?
These examples, taken from the classroom, show what kinds of
problems students need to work with to learn good mathematics
while at the same time becoming mathematically literate. In a
general sense, we agree with Steen (2001) that deploying mathe-
matics in sophisticated settings such as modern work-based tasks
gives students not only motivation and context but also a concrete
foundation from which they can later abstract and generalize. As
these examples show, however, it is not necessary to restrict our-
selves to work-based settings. Not every setting lends itself equally
to the successful development of mathematical concepts. The im-
portance of choosing appropriate contexts is well documented
(e.g., de Lange 1987; Feijs in press), and the issues involved in
selecting situations to develop mathematical concepts are quite
different from those involved in choosing contexts “just” for ap-
plication. This is a very tricky area, and much more research is
needed before we can make general statements, but the view ex-
pressed here is not innovative in any sense. For example, in 1962,
some 75 well-known U.S. mathematicians produced a memoran-
dum, “On the Mathematics Curriculum of the High School,”
published in the American Mathematical Monthly:

To know mathematics means to be able to do mathematics:
to use mathematical language with some fluency, to do prob-
lems, to criticize arguments, to find proofs, and, what may be
the most important activity, to recognize a mathematical
concept in, or to extract it from, a given concrete situation
(Ahlfors et al. 1962).

It is precisely this “most important activity” that is the essence of
the philosophy of mathematics education in the Netherlands,
mainly because of the influence of Hans Freudenthal, who in
1968 observed that the goals of teaching mathematics as a socially
useful tool could only be reached by having students start from
situations that needed to be mathematized. Many mathematics
educators and researchers have since supported this view, among
them Lesh and Landau (1986), who argued that applications
should not be reserved for consideration only after learning has

occurred; they can and should be used as a context within which
the learning of mathematical concepts takes place.

Our first observation about the mathematics needed to support
ML is that mathematical concepts should be learned through solving
problems in appropriate settings, with opportunities for progressive
mathematization and generalization. It should be noted that cer-
tain areas in mathematics lend themselves better than others to
these purposes. For instance, matrices and graphs, introduced into
curricula in the Netherlands in the 1980s, lend themselves very
nicely to modeling and representation without the burden of too
much specialized language or too many formulas.

A desirable consequence of starting with real settings is the bonus
of connected and integrated mathematics. The same problem, but
especially the more complex ones, often can be solved in many
different ways. Sometimes students choose a more algebraic
method, sometimes a more geometric one; sometimes they inte-
grate these, or produce something completely unexpected. Our
second observation, then, is that the mathematics that is taught not
only should be connected to other mathematics but also should be
embedded in the real world of the student.

Our third observation is that the goals of education should not be
formulated exclusively in subject areas but should also include com-
petencies. This holds as well for areas within mathematics: we
should not think along the subject lines of arithmetic, algebra,
geometry, among others, but about mathematical competencies.
This point of view forms the backbone of the PISA Framework for
Mathematics, supported by more than 30 countries, including the
United States.

The fourth observation is a trivial but important one: mathematics
literacy will lead to different curricula in different cultures. ML will
need to be culturally attuned and defined by the needs of the
particular country. This should be kept in mind as we attempt to
further determine what mathematics is needed for ML. (We also
note that the technology gap will have a serious impact on the type
of mathematics competencies that define being mathematically
literate in a given country.)

The fifth observation is that, given the goals of ML, the content of
curricula will have to be modernized at least every five to 10 years.
Mathematics is a very dynamic discipline. The culture, and thus
the relation between mathematics and society, changes very
quickly as well. (In the Netherlands, the curricula for mathematics
have a life span of about seven years.)

The sixth observation is that we might be able to reach some degree
of consensus about the meaning of basic mathematical literacy. A
good starting point, as Steen, Schoenfeld, and many others have
pointed out, could be the revised NCTM standards (NCTM
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2000). The standards, however, stick relatively close to tradition
and clearly reflect the difficult process of trying to please everyone.
As a result, they can serve only as a starting point, not as a defin-
itive framework for ML.

The seventh observation is that I can neither describe a curriculum
for ML nor even identify the relevant mathematics in any detail.
Some things are clear: from kindergarten on, we should focus on
competencies; right from the start we should pay attention not
just to arithmetic but to all four phenomenological categories; we
should rethink completely the role of algebra; we should design
the longitudinal development of mathematical concepts in a very
coherent way (at least for students from 4 to 15 years of age); and
we should formulate in some detail what it means to be mathe-
matically literate in the basic sense. In this, the results from PISA
might help us in a modest way. I also suggest that we should not
shy away from new mathematical developments (e.g., discrete
dynamic modeling).

The examples I have presented, if properly interpreted and extrap-
olated, together with these several observations, give the interested
reader an impression of the mathematics needed for ML. But
designing such a curriculum, let alone teaching it, is a completely
different story.

Reflections
I have not answered the question I was asked to address, namely,
what mathematics is important for ML? But I have attempted to
offer some directions: the desired competencies, not the mathe-
matical content, are the main criteria, and these are different at
different ages and for different populations. From a competencies
perspective, mathematics for ML can coexist with calculus—or
even better, should coexist with a calculus track—but with op-
portunities to develop intuition, to explore real-world settings, to
learn reasoning, and so on. It goes without saying that the line of
reasoning I have tried to follow holds for all ages, including uni-
versity students. We also need mathematicians to become math-
ematically literate—as such, they are much better prepared to
participate in society at large and, even more important, can con-
tribute in a constructive and critical way to the discussion about
mathematics education. We all need to understand how impor-
tant, how essential, ML is for every student, and mathematicians
in particular need to understand that ML will contribute to a
better perception about what constitutes mathematics and how
important that field is to our lives.

We have not addressed several other questions. One of the most
important is: How do we teach mathematics for ML? What are the
pedagogical arguments and didactics of mathematics for ML? But

that question needs an article by itself, as in fact do most of the
issues I have discussed here.

But let me end positively. If the experiences in my own country,
the experiments we carried out in the United States, and the
observations we made worldwide are any indication, there is a
good chance that we can achieve ML. The issue is very complex,
however, and we have a long and challenging way to go.
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The Role of Mathematics Courses in the
Development of Quantitative Literacy

DEBORAH HUGHES HALLETT

Conventional wisdom holds that quantitative literacy is developed by taking mathematics courses.
Although this is often true, mathematics courses are no panacea. The views of mathematics acquired
by many students during their education often hamper the development of quantitative literacy and
therefore have profound implications for the strategies that we should adopt to promote it. This
essay analyzes the ways in which the curriculum and pedagogy of mathematics courses could better
enhance quantitative literacy.

Quantitative Literacy: A Habit of Mind
Quantitative literacy is the ability to identify, understand, and use quantitative arguments in every-
day contexts. An essential component is the ability to adapt a quantitative argument from a familiar
context to an unfamiliar context. Just as verbal literacy describes fluency with new passages, so
quantitative literacy describes fluency in applying quantitative arguments to new contexts.

Quantitative literacy describes a habit of mind rather than a set of topics or a list of skills. It depends
on the capacity to identify mathematical structure in context; it requires a mind searching for
patterns rather than following instructions. A quantitatively literate person needs to know some
mathematics, but literacy is not defined by the mathematics known. For example, a person who
knows calculus is not necessarily any more literate than one who knows only arithmetic. The person
who knows calculus formally but cannot see the quantitative aspects of the surrounding world is
probably not quantitatively literate, whereas the person who knows only arithmetic but sees quan-
titative arguments everywhere may be.

Adopting this definition, those who know mathematics purely as algorithms to be memorized are
clearly not quantitatively literate. Quantitative literacy insists on understanding. This understanding
must be flexible enough to enable its owner to apply quantitative ideas in new contexts as well as in
familiar contexts. Quantitative literacy is not about how much mathematics a person knows but
about how well it can be used.

Mathematical Underpinnings of Quantitative Literacy
An alarming number of U.S. students do not become quantitatively literate on their journey through
school and college. Indeed, the general level of quantitative literacy is currently sufficiently limited
that it threatens the ability of citizens to make wise decisions at work and in public and private life.
To rectify this, changes are needed in many areas: educational policy, pedagogy, and curriculum.
Unfortunately, one of the more plausible vehicles for improvement—mathematics courses—will
require significant alteration before they are helpful.

Deborah Hughes Hallett is Professor of Mathematics at the University of Arizona and Adjunct Professor at the Kennedy
School of Government, Harvard. Hughes Hallett is an author of several college mathematics textbooks, including those
created by the Calculus Consortium based at Harvard. Hughes Hallett served as a member of the National Research
Council’s Committee on Advanced Study in American High Schools and was elected a Fellow of the American Association
for the Advancement of Science (AAAS) for contributions to mathematics education.
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To be able to recognize mathematical structure in context, it is of
course necessary to know some mathematics. Although the
knowledge of basic mathematical algorithms such as how to mul-
tiply decimals does not guarantee literacy, the absence of this
knowledge makes literacy unlikely, if not impossible. It would be
helpful to agree on which mathematical algorithms are necessary
underpinning of quantitative literacy, but this is a matter on
which reasonable people differ. The answer also may differ from
country to country and from era to era; however, the fundamental
description of quantitative literacy as a habit of mind is not af-
fected by the mathematical underpinnings chosen.

In this essay, we take the mathematical underpinnings of quanti-
tative literacy to be the topics in a strong U.S. middle school
curriculum, in addition to some topics traditionally taught later,
such as probability and statistics. For us, quantitative literacy in-
cludes the use of basic spreadsheets and formulas (but not, for
example, the spreadsheet’s built-in statistical functions). Quanti-
tative literacy, therefore, includes some aspects of algebra, but not
all. The ability to create and interpret formulas is required; their
symbolic manipulation is not. Reading simple graphs is necessary;
the ability to construct them is not.

Our interpretation of quantitative literacy does not involve most
of traditional algebra and geometry (for example, factoring poly-
nomials, simplifying algebraic fractions, knowing the geometric
properties of circles, chords, and tangents). The reason for this
choice is that most adults do not use such algebra and geometry at
work, or in their private lives, or as voting citizens. This is not to
deny that some traditional algebra and geometry should have a
central role in the high school curriculum. The development of
manipulative skill, in particular, is important in any field that
makes frequent use of symbols; however, the understanding of
formulas required for our definition of quantitative literacy is
hardly touched on in an algebra class that focuses on the rules for
symbolic manipulation.

Let us see what this definition of quantitative literacy means in
practice. It includes being able to make a mental estimate of the tip
in a restaurant; it includes realizing that if Dunkin’ Donuts is
selling donuts for 69¢ each and $3.29 a half-dozen, and if you
want five, you might as well buy six. It includes reading graphs of
the unemployment rate against time; it includes knowing what is
meant by a report that housing starts are down by 0.2 percent over
the same month last year. It includes an understanding of the
implications of repeated addition (linear growth to a mathemati-
cian) and repeated percentage growth (exponential growth).
Quantitative literacy does not expect, however, and in fact may
not benefit from, the algebraic manipulation usually associated
with these topics in a mathematics course.

To probe the boundary of quantitative literacy suggested by this
definition, observe that it would not include understanding all the
graphs in The Economist or Scientific American because both some-
times use logarithmic scales; however, understanding all the
graphs in USA Today is included by this definition.

Mathematical Literacy and
Quantitative Literacy
It may surprise some readers that advanced training in mathemat-
ics does not necessarily ensure high levels of quantitative literacy.
The reason is that mathematics courses focus on teaching mathe-
matical concepts and algorithms, but often without attention to
context. The word “literacy” implies the ability to use quantitative
arguments in everyday contexts that are more varied and more
complicated than most mathematics textbook examples. Thus,
although mathematics courses teach the mathematical tools that
underpin quantitative literacy, they do not necessarily develop the
skill and flexibility with context required for quantitative literacy.

There is, therefore, an important distinction between mathemat-
ical and quantitative literacy. A mathematically literate person
grasps a large number of mathematical concepts and can use them
in mathematical contexts, but may or may not be able to apply
them in a wide range of everyday contexts. A quantitatively literate
person may know many fewer mathematical concepts, but can
apply them widely.

Quantitative Literacy:
Who Is Responsible?
High school and college faculty may be tempted to think that
because the underpinnings of quantitative literacy are middle
school mathematics, they are not responsible for teaching it.
Nothing could be further from the truth. Although the mathe-
matical foundation of quantitative literacy is laid in middle
school, literacy can be developed only by a continued, coordinated
effort throughout high school and college.

The skill needed to apply mathematical ideas in a wide variety of
contexts is not always acquired at the same time as the mathemat-
ics. Instructors in middle school, high school, and college need to
join forces to deepen students’ understanding of basic mathemat-
ics and to provide opportunities for students to become comfort-
able analyzing quantitative arguments in context.

Also key to improving quantitative literacy is the participation of
many disciplines. Quantitative reasoning must be seen as playing
a useful role in a wide variety of fields. The development of quan-
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titative literacy is the responsibility of individuals throughout the
education system.

Impediments to Quantitative Literacy:
Pedagogy and Testing
We start by considering the common practices in mathematical
pedagogy and testing that hinder the development of quantitative
literacy. Here we are concerned with the ways in which topics are
taught and assessed rather than with the topics themselves. What
students learn about a topic is influenced more by the activities
they do than by what the instructor says. In particular, tests often
determine what is learned. Teachers “teach to the test” and stu-
dents “study for the test.” Thus, the types of problems assigned in
courses have a large effect on what is learned.

The cornerstone of quantitative literacy is the ability to apply
quantitative ideas in new or unfamiliar contexts. This is very dif-
ferent from most students’ experience of mathematics courses, in
which the vast majority of problems are of types that they have
seen before. Mastering a mathematics course is, for them, a matter
of keeping straight how to solve each type of problem that the
teacher has demonstrated. A few students, faced with the dizzying
task of memorizing all these types, make sense out of the general
principles instead. But a surprisingly large number of students
find it easier to memorize problem types than to think in general
principles. Ursula Wagener described how teaching may encour-
age such memorization:

A graduate student teacher in a freshman calculus class stands
at the lectern and talks with enthusiasm about how to solve a
problem: “Step one is to translate the problem into mathe-
matical terms; step two is . . .” Then she gives examples.
Across the room, undergraduates memorize a set of steps.
Plugging and chugging—teaching students how to put num-
bers in an equation and solve it—elbows out theory and
understanding.1

In my own classroom, I have had calculus students2 who could not
imagine how to create a formula from a graph because they did not
“do their graphs in that order.” For these otherwise strong stu-
dents from the pre-graphing-calculator era, graphs were produced
by a somewhat painful memorized algorithm that started with a
formula and ended with a picture. Imagining the algorithm run
backward to produce a possible formula struck them as impossi-
ble. These students could not identify which features of the graph
corresponded to which features of the formula. Although they had
a solid mathematical background for their age, these students were
not quantitatively literate.

Calculus provides other examples of how easy it is to learn proce-
dures without being able to recognize their meaning in context.
Formulas, although a small part of quantitative literacy, are cen-
tral to calculus. We expect literacy in calculus to include fluency
with formulas for basic concepts. Problems such as “If f (t) repre-
sents the population of the United States in millions at time t in
years, what is the meaning of the statements f (2000) � 281 and
f �(2000) � 2.5?” look as though calculus students should find
them easy—there are no computations to be done, only symbols
to read.3 Yet such problems cause great difficulty to some students
who are adept at calculations.

As another example, in 1996, a problem on the Advanced Place-
ment (AP) Calculus Exam4 gave students the rate of consumption
of cola over some time interval and asked them to calculate and
interpret the definite integral of the rate. All the students had
learned the fundamental theorem of calculus, but many who
could compute the integral did not know that it represented the
total quantity of cola consumed.

These examples suggest how teaching practices in mathematics
may differ from those required to develop quantitative literacy.
Mathematics courses that concentrate on teaching algorithms, but
not on varied applications in context, are unlikely to develop
quantitative literacy. To improve quantitative literacy, we have to
wrestle with the difficult task of getting students to analyze novel
situations. This is seldom done in high school or in large intro-
ductory college mathematics courses. It is much, much harder
than teaching a new algorithm. It is the difference between teach-
ing a procedure and teaching insight.

Because learning to apply mathematics in unfamiliar situations is
hard, both students and teachers are prone to take shortcuts. Stu-
dents clamor to be shown “the method,” and teachers often com-
ply, sometimes because it is easier and sometimes out of a desire to
be helpful. Learning the method may be effective in the short
run—it may bring higher results on the next examination—but it
is disastrous in the long run. Most students do not develop skills
that are not required of them on examinations.5 Thus if a course
simply requires memorization, that is what the students do. Un-
fortunately, such students are not quantitatively literate.

Another obstacle to the development of quantitative literacy is the
fact that U.S. mathematics texts often have worked examples of
each type of problem. Most U.S. students expect to be shown how
to do every type of problem that could be on an examination.
They would agree with the Harvard undergraduate who praised a
calculus instructor for teaching in a “cookbook fashion.”6 Both
college and school teachers are rewarded for teaching practices
that purposefully avoid the use of new contexts.
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College mathematics faculty frequently fail to realize how care-
fully a course must be structured if students are to deepen their
understanding. Many, many students make their way through
introductory college courses without progressing beyond the
memorization of problem types. Faculty and teaching assistants
are not trying to encourage this, but are often blissfully unaware of
the extent to which it is happening. This, of course, reinforces the
students’ sense that this is the way things are supposed to be,
thereby making it harder for the next faculty member to challenge
that belief.

K–12 teachers are more likely than college faculty to be aware of
the way in which their students think. They are, however, under
more pressure from students, parents, and administrators to en-
sure high scores on the next examination by illustrating one of
every problem type. So K-12 teachers also often reinforce stu-
dents’ tendency to memorize.

There are strong pressures on college and K–12 mathematics in-
structors to use teaching practices that are diametrically opposed
to those that promote quantitative literacy, and indeed much
effective learning. Efforts to improve quantitative literacy must
take these pressures into account.

Teaching Mathematics in Context
One of the reasons that the level of quantitative literacy is low in
the U.S. is that it is difficult to teach students to identify mathe-
matics in context, and most mathematics teachers have no expe-
rience with this. It is much easier to teach an algorithm than the
insight needed to identify quantitative structure. Most U.S. stu-
dents have trouble applying the mathematics they know in “word
problems” and this difficulty is greatly magnified if the context is
novel. Teaching in context thus poses a tremendous challenge.

The work of Erik De Corte, in Belgium, throws some light on
what helps students to think in context. De Corte investigated the
circumstances under which students give unrealistic answers to
mathematical questions. For example, consider the problem that
asks for the number of buses needed to transport a given number
of people; researchers find that a substantial number of students
give a fractional answer, such 33 2/3 buses. De Corte reported that
if the context was made sufficiently realistic, for example, asking
the students to write a letter to the bus company to order buses,
many more students gave reasonable (non-fractional) answers.7

De Corte’s work suggests that many U.S. students think the word
problems in mathematics courses are not realistic. (It is hard to
disagree.) Mathematicians have a lot of work to do to convince
students that they are teaching something useful. Having faculty
outside mathematics include quantitative problems in their own

courses is extremely important. These problems are much more
likely to be considered realistic.

As another example, many calculus students are unaware that the
derivative represents a rate of change, even if they know the defi-
nition.8 Asked to find a rate, these students do not know they are
being asked for a derivative; yet, this interpretation of the deriva-
tive is key to its use in a scientific context. The practical issue, then,
is how to develop the intuitive understanding necessary to apply
calculus in context.

Mathematicians have a natural tendency to try to help students
who do not understand that the derivative is a rate by re-explain-
ing the definition; however, the theoretical underpinning, al-
though helping mathematicians understand a subject, often does
not have the same illuminating effect for students. When students
ask for “an explanation, not a proof,”9 they are asking for an
intuitive understanding of a topic. Mathematicians often become
mathematicians because they find proofs illuminating. Other peo-
ple, however, often develop intuitive understanding separately
from proofs and formal arguments. My own experience teaching
calculus suggests that the realization that a derivative is a rate
comes not from the definition but by talking through the inter-
pretation of the derivative in a wide range of concrete examples.

It is important to realize that any novel problem or context can be
made “old” if students are taught a procedure to analyze it. Stu-
dents’ success then depends on memorizing the procedure rather
than on developing their ability to apply the central mathematical
idea. There is a difficult balance to be maintained between pro-
viding experience with new contexts and overwhelming students
by too many new contexts. Familiar contexts should be includ-
ed—they are essential for developing confidence—but if the
course stops there, quantitative literacy will not be enhanced.

There is tremendous pressure on U.S. teachers to make unfamiliar
contexts familiar and hence to make problems easy to do by ap-
plying memorized algorithms. Changing this will take a coordi-
nated effort: both school and college teachers will need to be
rewarded for breaking out of this mold.

Impediments to Quantitative Literacy:
Attitudes Toward Mathematics
In the course of their education, many students develop attitudes
about mathematics that inhibit the development of quantitative
literacy. Particularly pernicious is the belief that mathematics is
memorized procedures and that mere mortals do not figure things
out for themselves. Students who subscribe to this view look at an
unfamiliar context and immediately give up, saying that they
never were “good at math.”
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Because this belief concerns the nature of mathematics, rather
than the most efficient way to learn the subject, it often is held
with surprising tenacity. Just how sure students can be that math-
ematics is to be memorized was brought home to me by the
student whom I asked to explain why �xy � �x � �y. He
looked puzzled that I should ask such a question, and replied
confidently “It’s a rule.” I tried again; he looked slightly exasper-
ated and said emphatically “It’s a law.” For him, mathematics
involved remembering what rules were true, not figuring out why
they were true.

To further my understanding of students’ attitudes toward math-
ematics, a few years ago I gave a questionnaire to all the students
enrolled in Harvard’s pre-calculus and first-semester calculus
courses. Responses were collected from all of the several hundred
students involved. Two of the questions were as follows:

A well-written problem makes it clear what method should
be used to solve it.

If you can’t do a homework problem, you should be able to
find a worked example in the text to show you how.

On a scale of 1 to 5, on which 5 represented strong agreement, the
pre-calculus students gave the first question 4.6 and the second
question 4.7; the calculus students gave both 4.1. The numbers
suggest that these students—who are among the country’s bright-
est—still think of mathematics largely as procedures.

In teaching mathematics, we should of course give some problems
that suggest the method to be used and some that should be
similar to worked examples; however, if all or most of the prob-
lems we assign are of this type—as is true in many U.S. class-
rooms—it is not surprising that our students find it difficult to
apply mathematics in novel contexts. It is equally understandable
that they find it “unfair” that they should be asked to use quanti-
tative ideas in other fields, in which the context is seldom one they
have seen before. Although their indignation is understandable, it
is also a clear signal that we have a problem.

Reports from students of Mercedes McGowen, who teaches at
William Rainey Harper College, demonstrated similar beliefs
about mathematics. For example, a pre-service elementary teacher
wrote:10

All throughout school, we have been taught that mathematics
is simply just plugging numbers into a learned equation. The
teacher would just show us the equation dealing with what we
were studying and we would complete the equation given
different numbers because we were shown how to do it.

Another elaborated:11

When I began learning mathematics everything was so sim-
ple. As I got older there were many more rules taught to me.
The more rules I learned, the easier it became to forget some
of the older rules.

Unfortunately, the attitudes toward mathematics displayed in
these responses are diametrically opposed to the attitudes required
for quantitative literacy. In attempting to improve quantitative
literacy, we ignore these attitudes at our peril.

The Mathematics Curriculum and
Quantitative Literacy
Although quantitative literacy does not require the use of many
mathematical tools, two curriculum areas are sufficiently impor-
tant that they should receive much more emphasis. These are
estimation, and probability and statistics.

ESTIMATION

The ability to estimate is of great importance for many applica-
tions of mathematics. This is especially true of any application to
the real world and, therefore, of quantitative literacy. Unfortu-
nately, however, estimation is a skill that falls between the cracks.
Mathematics often does not see estimation as its responsibility;
teachers in other fields do not teach it because they think it is part
of mathematics. Many students therefore find estimation difficult.
The solution is for all of us to teach it.

Worse still, because of mathematics’ emphasis on precision, stu-
dents often think that estimation is dangerous, even improper. In
their minds, an estimate is a wrong answer much like any other
wrong answer. The skill and the willingness to estimate should be
included explicitly throughout the curriculum.

Given the current concern about calculator dependence, some
people claim that students would be better at estimation if they
were not allowed to use calculators. It is certainly true that profi-
ciency with a slide rule required estimation; however, even in
pre-calculator days, many students could not estimate. Instead of
grabbing a calculator to do their arithmetic, past students
launched into a memorized algorithm. For example, some years
ago I watched a student use long division to divide 0.6 by 1, then
0.06 by 1, and then 0.006 by 1, before he observed the pattern.12

Even then, he did not recognize the general principle. He never
thought to make an estimate or to see if the answer was reasonable.
Because this was a graduate student, we might reasonably con-
clude that his education had failed to develop his quantitative
literacy skills.
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PROBABILITY AND STATISTICS

One area of quantitative reasoning that is strikingly absent from
the education of many students is probability and statistics. This
gap is remarkable because probabilistic and statistical ideas are so
extensively used in public and private life. Like quantitative liter-
acy, probabilistic thinking is embedded in an enormous variety of
contexts. For example, probabilities are used to quantify risk
(“there is a 30 percent chance of recovery from this medical pro-
cedure”) and in many news reports (“DNA tests . . . showed that
it [the body] was 1.9 million times more likely to be the driver
than anyone else.” 13) Familiarity with statistics is essential for
anyone who plans to interpret opinion polls, monitor the devel-
opment of a political campaign, or understand the results of a drug
test. Statistical arguments are used as evidence in court and to
analyze charges of racial profiling.

Let us look at an example in which public understanding of prob-
ability is crucial. Over the next generation, the effect of AIDS will
be felt worldwide. How can people in the United States under-
stand the impact of the epidemic without understanding the data?
This is not to invalidate the need to understand the human suf-
fering that the epidemic will cause; however, understanding the
data is essential to constructing, voting for, and implementing
policies that will mitigate the suffering. How many people die of
AIDS? (In 2000, 3 million people died worldwide, and 5.3 mil-
lion were infected.14) How many AIDS orphans will there be?
(Millions.)15 What will be the effect on the teaching profession?
(In some countries, there are more AIDS deaths than retirements,
which has significant implications for teacher availability.) Do
these statistics describe the United States? Not now, but it would
be risky to assume that they never could.

Avoiding similar statistics in the United States depends on sound
educational policies aimed at prevention. These policies must be
based on a solid understanding of infection rates. What does this
mean for AIDS testing? The Center for Disease Control (CDC) in
Atlanta spends tax dollars to track the disease and provide rapid,
accurate testing.16 In 1996, the American Medical Association
approved a recommendation mandating HIV testing for pregnant
women.17 Yet Health Education AIDS Liaison (HEAL) in To-
ronto provided a passionate and well-argued warning about the
dangers of widespread testing.18 Using the following two-way
table, HEAL argued that, with the current infection rate of 0.05
percent, even for a test which is 99 percent accurate, “of every
three women testing HIV-positive, two are certain to be false
positives.” (False positives are people who test positive for HIV
although they are not infected.)
As things stand now, many college students could not follow these
discussions. Many might wrongly conclude that the accuracy of
the test is at fault.19 The public’s lack of clarity on this issue could
skew efforts to rationalize policies on mandatory testing.20

Obstacles to Including Probability
and Statistics in the Curriculum
The fact that universities teach probability and statistics in many
departments (economics, business, medicine, psychology, sociol-
ogy, and engineering, as well as mathematics and statistics) is
evidence for their pervasive use. Yet many students pass through
both school and college with no substantial exposure to these
subjects. For example, applicants to medical school are more likely
to be admitted without statistics than without calculus.21 Even
many mathematics and science majors are not required to take
statistics.

Like estimation, the teaching of probability and statistics suffers
from the fact that no one can agree on when or by whom these
topics should be introduced. Each group thinks it is someone
else’s responsibility. Should it be in middle school? In high school?
In college? It is all too reminiscent of the White Queen’s proposal
to Alice for “jam tomorrow and jam yesterday—but never jam
today.”22

In addition to timing, the other obstacle to the introduction of
probability and statistics in the school curriculum is the question
of what topics should be dropped to make room. Traditional
middle school and high school curricula do not contain probabil-
ity and statistics. Every topic in the traditional curriculum has its
advocates, with the effect that the status quo often prevails. There
are a number of notable counterexamples, such as some state’s
high-stakes tests23 and the AP Statistics Examination. Many of the
new school curricular materials do contain these topics, but they
are usually the first to be skipped. Because probability and statis-
tics are not required for college entrance, these topics are often
considered a luxury that can be omitted if time is tight.

Many college faculty thus agree that probability and statistics are
vitally important but cannot agree on what should be done about
teaching them. This is a failure of leadership. The result is that
most people in the United States see probabilistic and statistical
arguments every day yet have no training in making sense of them.

Positive HIV Negative HIV Totals

Test Positive 495 995 1,490

Test Negative 5 98,505 98,510

Totals 500 99,500 100,000
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Relationship Between Mathematics
and the Public
Mathematicians sometimes feel that the general public does not
appreciate their field, and may blame this phenomenon for the
low level of quantitative literacy in the United States. There is
some truth to this view; the question is what to do about it.
Because the media is often the interface between academics and
the general public, increasing the general level of quantitative
literacy will require a better relationship with the media.

Many adults’ last memory of mathematics still stings many years
later. Whether their last course was in school or college, some
remember a teacher whom they perceived as not caring. Some
blame themselves for not being able to understand. Many remem-
ber a course they perceived as having no relevance or a jungle of
symbols with little meaning. Their teachers may not have realized
how little their students understood, or they may have felt that it
was the students’ problem.24 But now it is mathematics’ problem.
Whether these memories are accurate is immaterial; they make a
poor base on which to build collaboration.

To alter these perceptions, mathematics courses are needed that
are meaningful—to everyone—and that do not sting in memory.
Notice that what does and does not sting varies greatly from
culture to culture. In some societies, the threat of humiliation is
used as a spur to study; however, most U.S. students do not study
harder if they are humiliated. Indeed, many will drop mathemat-
ics rather than subject themselves to such treatment. To be effec-
tive, each faculty member must know which techniques inspire
students to learn in his or her particular culture, and use those
techniques.

As a guide as to whether we have succeeded in teaching courses
that are meaningful and that do not sting, we should ask ourselves
the following question: Are we comfortable having the future of
mathematics and quantitative literacy determined by those to
whom we gave a “C” in mathematics and who took no further
courses in the subject? This is not far from the truth at the present
time. If not, we may be widening the split between mathematics
and the general public.

Teaching Quantitative Literacy
Quantitative literacy requires students to have a gut feeling for
mathematics. Because we desire widespread quantitative literacy,
not just for those who find mathematics easy, mathematics teach-
ers will need to diversify their teaching techniques. For example, I
recently had two students who came to office hours together. One
learned approximately the way I do, so writing a symbolic expla-
nation usually worked. The second, who listened earnestly, was

usually looking blank at the end of my discussion with the first
student. I then had to start again and explain everything over in
pictures if I wanted both students to understand. This happened
numerous times throughout the semester, so it was not a function
of the particular topic but of their different learning styles. To
teach both of them, more than one approach was necessary.

For most students, an effective technique for improving their
quantitative literacy is to be introduced to varied examples of the
use of the same mathematical idea with the common theme high-
lighted. A student’s ability to recognize quantitative structure is
enhanced if faculty in many disciplines use the same techniques.
The assistance (“a conspiracy,” according to some students) of
faculty outside mathematics is important because it sends the
message that quantitative analysis is valued outside mathematics.
If students see quantitative reasoning widely used, they are more
likely to regard it as important.

The need to develop quantitative literacy will only be taken seri-
ously when it is a prerequisite for college. Students and parents are
rightfully skeptical that colleges think probability and statistics are
important when they are not required for entrance. Making quan-
titative reasoning a factor in college admissions would give quan-
titative literacy a significant boost.

Conclusion
Achieving a substantial improvement in quantitative literacy will
require a broad-based coalition dedicated to this purpose. Higher
education should lead, involving faculty in mathematics and a
wide variety of fields as well as people from industry and govern-
ment. Classroom teachers from across grade levels and across in-
stitutions—middle schools, high schools, and colleges—must
play a significant role. The cooperation of educational adminis-
trators and policymakers is essential. To make cooperation on this
scale a realistic possibility, public understanding of the need for
quantitative literacy must be vastly improved. Because the media
informs the public’s views, success will require a new relationship
with the media.
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The Third R in Literacy
RANDALL M. RICHARDSON AND WILLIAM G. MCCALLUM

The conventional meaning of the word “literate” (able to read and write) leaves the third of the three
R’s on its own, a separation that is reflected in the traditional curriculum: reading and writing are
taught together, and mathematics is taught as a separate subject. The first question to ask in
considering quantitative literacy and the curriculum is: Why can’t we leave it that way? What is new
in the world that prompts us to incorporate mathematics into the definition of literacy, or to believe
that mathematics must now be spread across the curriculum rather than contained in dedicated
courses? This question is answered persuasively in the opening section of Mathematics and Democ-
racy: The Case for Quantitative Literacy (Steen 2001): what is new in the world is the pervasiveness of
quantitative information and the necessity of acting on it. Thus the list of things a literate person
must be able to read and write has greatly expanded to include the many forms in which quantitative
information is represented in everyday life: graphs, charts, tables, maps, diagrams, and algorithms.

Furthermore, acting on quantitative information requires more than the basic level of comprehen-
sion that comes from listening to a story or looking at a picture; it requires the ability to extract the
relevant pieces from a possibly confusing abundance of data and perform appropriate mathematical
operations and reasoning on those pieces. The explosion in both the amount and variety of quan-
titative information, and the necessity of using such information in daily decisions, make the need
for quantitative literacy both new and urgent.

In considering how the school and college curriculum can lead students to achieve quantitative
literacy, it is crucial to keep in mind two aspects of quantitative literacy that are captured in a
definition of conventional literacy put forth by UNESCO (Fox and Powell 1991): “A literate is a
person who, with understanding, can both read and write a short simple statement on his everyday
life.”

This definition says that simply being able to read and write is not enough for literacy: understanding
and engagement with context (everyday life) also are required. The same applies to quantitative
literacy, and we might well adopt the modified definition: “A quantitatively literate person is a
person who, with understanding, can both read and represent quantitative information arising in his
or her everyday life.”

Although it might seem unnecessary to mention the criteria of understanding and context explicitly,
the fact is that in the traditional curriculum neither goes without saying. Therefore, we start by
considering how each might be applied in judging new curricula.
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Consortium based at Harvard University, McCallum has done mathematical research at the Institut des Hautes Études
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arithmetic algebraic geometry and mathematics education; he has written extensively in both areas.
Randall M. Richardson is Professor of Geosciences and Vice President for Undergraduate Education at the University of
Arizona. Richardson is responsible for the university’s general education program and recently chaired a university-wide
taskforce on mathematics across the curriculum. He is also involved in NSF-sponsored projects for reforming K-12 teacher
preparation and for mentoring early-career geosciences faculty.
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The Role of Understanding
The ability to perform some of the basic operations of mathemat-
ics is necessary for quantitative literacy, but even the ability to
perform many of them is not sufficient. Anyone who has taught
mathematics, or who has taught a subject requiring the mathe-
matics that students have learned in previous courses, is aware of
this fact. Many students are technically capable but unable to
make reasonable decisions about which techniques to apply and
how to apply them. Mathematicians and their colleagues in other
departments share frustration at the fragility of what students
learn in their mathematics classes. We hesitate to call literate a
person who reads haltingly, picking out words one at a time with
no appearance of understanding what is being read; yet too many
of the students leaving mathematics courses use mathematics halt-
ingly if at all. Too many appear to be lacking in conceptual un-
derstanding.

We make a distinction here between conceptual understanding
and formal mathematical understanding. The latter refers to an
ability to formulate precise mathematical arguments that are uni-
versal in the sense that they work for all numbers or all polygons.
Conceptual understanding is understanding of a less formal na-
ture, more like what mathematicians sometimes call intuitive un-
derstanding. It refers to an ability to recognize underlying con-
cepts in a variety of different representations and applications. For
example, a student who understands the concept of rate knows
that the velocity of a moving object, the slope of its position graph,
and the coefficient of t in a formula giving its position as a func-
tion of time t are all manifestations of the same underlying con-
cept, and knows how to translate between them.

Even though recent efforts to reform mathematics education have
paid attention to conceptual understanding, it is often neglected
in mathematics classes. Sometimes, in the K–12 environment,
this is the result of drifting curricula that, in the absence of firm
guidance, gravitate inevitably toward convenient arrangements
between teacher and student, and teacher and parent that concen-
trate mostly on the correct performance of procedures. At other
times, it is a consequence of conscious decisions by curriculum
designers who believe in division of labor between mathematics
classes, which provide technical skills, and classes in mathemati-
cally intensive disciplines, which provide context and understand-
ing.

It is worth listening to the voices of teachers in those disciplines.
The Mathematical Association of America (MAA) recently con-
ducted a series of workshops with faculty from different disci-
plines as part of a project to develop recommendations for the
mathematics curriculum in the first two years of postsecondary
education. Again and again, the authors of these workshop re-

ports—engineers, physicists, biologists, chemists, computer sci-
entists, statisticians, and mathematicians—explicitly mentioned
understanding as a key goal of the mathematics curriculum, and
they made it clear that they thought that it was a proper role of
mathematics classes to teach it (Curriculum Foundations Project
2001):

Physics: Students need conceptual understanding first, and some
comfort in using basic skills; then a deeper approach and
more sophisticated skills become meaningful.

Life Sciences: Throughout these recommendations, the definition
of mastery of a mathematical concept recognizes the impor-
tance of both conceptual understanding at the level of defi-
nition and understanding in terms of use/implementation/
computation.

Chemical Engineering: . . . the “solution” to a math problem is
often in the understanding of the behavior of the process
described by the mathematics, rather than the specific closed
form (or numerical) result.

Civil Engineering: Introductory math content should focus on
developing a sound understanding of key fundamental con-
cepts and their relevance to applied problems.

Business: Mathematics departments can help prepare business stu-
dents by stressing conceptual understanding of quantitative
reasoning and enhancing critical thinking skills.

Statistics: Focus on conceptual understanding of key ideas of cal-
culus and linear algebra, including function, derivative, inte-
gral, approximation, and transformation.

What is striking about these reports is that so many science, math-
ematics, engineering, and technology (SMET) disciplines feel the
need to explicitly request conceptual understanding from mathe-
matics courses preparing their students. All the more must we
worry about the state of conceptual understanding in students
who are not preparing for SMET disciplines but simply need
quantitative literacy as a basic life skill. Thus, our first criterion:

A curriculum for quantitative literacy must go beyond the basic
ability to “read and write” mathematics and develop conceptual
understanding.

The Role of Context
The UNESCO definition specifies that a literate can read and
write a “statement . . . on his everyday life.” The term “everyday
life” is open to interpretation: everyday life in the examples above
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from the SMET disciplines might include chemical reactions in a
laboratory. The vast majority of students, however, are not headed
for SMET careers. For most people, everyday life might include
telephone rate plans, nutrition information on packages, or the
relative risks of a serious car accident versus being struck by light-
ning, for example. A quantitatively literate person must be able to
think mathematically in context. This requires a dual duty, mar-
rying the mathematical meaning of symbols and operations to
their contextual meaning, and thinking simultaneously about
both. It is considerably more difficult than the ability to perform
the underlying mathematical operations, stripped of their contex-
tual meaning. Nor is it sufficient simply to clothe the mathematics
in a superficial layer of contextual meaning. The mathematics
must be engaged with the context and be providing power, not an
engine idling in neutral. Too many attempts at teaching mathe-
matics in context amount to little more than teaching students to
sit in a car with the engine on, but not in gear. The “everyday life”
test provides a measure of engagement; everyday life that moves
forward must have an engine that is in gear.

We share two local examples outside of the training for traditional
SMET careers. The first is a “math for all citizens” example. One
of us (RMR) teaches a freshman-level general education science
course for nonscience majors. Reading graphs as pictures or
graphs as active conveyors of quantitative information is a desired
learning outcome for the course. For the past five years we have
used, in classes with as many as 325 students, the so-called Keeling
CO2 data set. This data set consists of a nearly continuous 50-year
record of monthly atmospheric CO2 concentration levels at
Mauna Loa, Hawaii (Keller 2000; Keeling and Whorf 2001).
Working in groups during a single lecture period, students ran-
domly select 15 data points from about a six-year (100-point)
portion of the data set. They plot this subset on an overhead
transparency and estimate the slope of the data. Using their slopes,
they estimate the number of years it will take for CO2 concentra-
tion to double, an important component of all climate models of
global warming. Because the small sample size of the data is insuf-
ficient to accurately reflect both an annual cycle and a long-term
increase, student estimates of slope and doubling times vary by at
least a factor of two. When all transparencies are superimposed
using an overhead projector, the annual cycle is clearly visible.
This exercise, although simple and completed in a single class
period, includes basic mathematical operations (slopes, rates, dou-
bling times) and issues of data quality and completeness, as well as
a contextual setting that is arguably one of the most important for
everyday life in the twenty-first century. (The Mauna Loa CO2

data set is very rich for quantitative literacy instruction. For ex-
ample, geologist Len Vacher at the University of South Florida
uses the same data set to show that errors in estimating slopes from
graphs are very common unless the axes of such graphs are under-
stood.)

Another example is a business mathematics course recently devel-
oped at the University of Arizona by a collaboration between the
Department of Mathematics and the College of Business and
Public Administration. In this course, students use mathematical
and technological tools to make business decisions based on real-
istic (in some cases, real) data sets. In one project, for example,
students decide whether to foreclose on a business loan or work
out a new payment schedule. They have available some informa-
tion about the value of the business, the amount of the loan, and
the likely future value if the business is allowed to continue but
still fails. They also have some demographic information about
the person running the business. Using historical records about
the success and failure of previous arrangements to work out a
payment schedule, they make successively more sophisticated cal-
culations of expected value to arrive at their decision. Students are
expected to understand both the mathematics and the business
context, and to make professional oral presentations of their con-
clusions in which they are expected to express themselves mathe-
matically, with clarity, completeness, and accuracy.

A noteworthy feature of this course is the level of involvement of
the business college. The impetus to create the course came from
the college, as do the basic ideas for projects. The visible involve-
ment of the college makes their students take seriously the require-
ment to understand the mathematics. Thus, our second criterion:

A curriculum for quantitative literacy must be engaged with a
context, be it everyday life, humanities, business, science, engi-
neering, or technology.

Mathematics and Democracy (Steen 2001) lists elements that
might compose quantitative literacy: confidence with mathemat-
ics, cultural appreciation, interpreting data, logical thinking, mak-
ing decisions, mathematics in context, number sense, practical
skills, prerequisite knowledge, symbol sense. Many of these ele-
ments arise naturally in applying the criteria we have given here,
and are, in varying proportions, necessary ingredients of a curric-
ulum for quantitative literacy. The precise proportions depend on
the educational level and background of the students. Symbol
sense, for example, is a rich vein in the everyday life of students in
the physical and social sciences and engineering, but perhaps not
as important to students in art or literature. On the other hand,
because all citizens are bombarded daily with statistical data and
inferences from it, reasoning logically and confidently with data is
a crucial component of any curriculum for quantitative literacy.

The odd man out in this list is “cultural appreciation.” In recent
years there has been a proliferation of general education courses,
taught by mathematics departments, that study such topics as
voting schemes, symmetry, and periodic tilings of the plane. Al-
though these “mathematics appreciation” courses often provide
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the serious engagement with quantitative information necessary
for quantitative literacy, they focus primarily on fostering a gen-
eral understanding of the uses of mathematics. Although there is
certainly a place in the curriculum for mathematics appreciation
courses, we believe an important difference exists between such
courses and quantitative literacy—just as there is a difference be-
tween the ability to appreciate a great work of art and the ability to
make some sketches of one’s own, however rudimentary. For
quantitative literacy, the element of engagement is crucial.

Who Is Responsible for Teaching
Quantitative Literacy?
This question has both a vertical dimension (in which grades
should quantitative literacy be taught?) and a horizontal dimen-
sion (in which departments?). Along the vertical dimension, we
are faced with the question of whether quantitative literacy is
properly a college subject at all. It can be argued that a good K–12
education should be sufficient to lay the foundations of quantita-
tive literacy, and that the proper role of colleges and universities,
typically in general education courses, is not to teach it but to use
it.

Whatever the ideal, the reality is that there are well-documented
problems with the mathematical performance of students in
grades K–12; see, for example, the Third International Mathe-
matics and Science Study (TIMSS). As a local confirmation of a
national issue, each year over 35 percent of freshman students
entering the University of Arizona, which has a four-year high
school mathematics entrance requirement, place below college al-
gebra.

Many people, including mathematics faculty, are working to im-
prove the situation. Mathematics faculty have focused on improv-
ing the teaching of mathematics in high schools and reforming
courses in mathematics departments in the first two years of col-
lege. The National Council of Teachers of Mathematics (NCTM)
issued standards for K–12 mathematics in 1989 (NCTM 1989)
and revised them in 2000 (NCTM 2000). Many states and local-
ities have endeavored to improve mathematics education by im-
plementing standards, frameworks, or high-stakes tests. At the
college level, the National Science Foundation (NSF) has funded
projects to reconsider curricula in pre-calculus, calculus, differen-
tial equations, and linear algebra. More recently, the Curriculum
Foundations Project of the Mathematical Association of America,
cited above, has initiated an ambitious undertaking aimed at for-
mulating recommendations for the first two years of undergradu-
ate mathematics.

Would improvements in mathematics education be sufficient to
remedy current deficiencies in quantitative literacy? Attempts to

change the mathematics curriculum—to make room earlier for
statistics and probability (as recommended by NCTM), to teach
mathematics in context, to pay attention to conceptual under-
standing, and to improve the mathematics education of K–12
teachers—would certainly move partway toward the changes
needed to improve quantitative literacy. Such improvements are
necessary. However, although the way mathematics is taught has a
lot to do with quantitative literacy, so do other things.

Quantitative literacy cannot be taught by mathematics teachers
alone, not because of deficiencies in teaching but because quanti-
tative material must be pervasive in all areas of a student’s educa-
tion. Quantitative literacy is not simply a matter of knowing how
to do the mathematics but also requires the ability to wed math-
ematics to context. This ability is learned from seeing and using
mathematics regularly in contexts outside the mathematics class-
room: in daily life, in chemistry class, in the business world. Thus,
quantitative literacy cannot be regarded as the sole responsibility
of high school mathematics teachers or of college teachers in
mathematics departments. It has long been recognized, for exam-
ple, that instruction in writing literacy, isolated in English com-
position courses, cannot succeed. Students quickly recognize that
a requirement satisfied by a course or two in a single department is
a local “hoop” to be jumped through, not a global requirement
central to their education. Students often behave as if mathemat-
ical ideas are applicable only in mathematics courses, so that once
they enter the world of their chosen major they can safely forget
whatever they learned in those courses.

It must therefore be the common responsibility of both mathe-
maticians and those in other disciplines to provide students with
basic skills, to develop conceptual understanding, and to model
the systematic use of mathematics as a way of looking at the world.
The pervasiveness of quantitative information in the world out-
side the classroom also must be reflected throughout academe. A
beautiful example of this pervasiveness is the recent foray into art
history by optical scientist Charles Falco and contemporary artist
David Hockney. These two have recently challenged traditional
art historian interpretations of fifteenth-century art. Using simple
optics, they have argued persuasively that a number of important
painters of the fifteenth century, from van Eyck to Bellini, used
lenses or mirrors to produce some of their paintings nearly 200
years earlier than had been believed possible. They argue that the
use of such optical instruments accounts for the sudden surge in
the reality of portraits in the fifteenth century (Hockney and Falco
2000). We can easily envision a wonderful application of quanti-
tative literacy in fine arts education if their arguments stand the
test of further scrutiny.

A persuasive argument can be made that the skills component of
quantitative literacy is essentially precollege in nature. What, this
argument goes, beyond the topics of precollege education (graphs,
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algebra, geometry, logic, probability, and statistics) is founda-
tional to quantitative literacy for everyday life? Looking at the
curriculum as a list of topics, however, misses an important point:
quantitative literacy is not something that a person either knows
or does not know. It is hard to argue that precollege education in
writing fails to cover the basics of grammar, composition, and
voice, for example. Yet it is widely accepted that writing is a skill
that improves with practice in a wide variety of settings at the
college level. We argue here that quantitative literacy at the college
level also requires an across-the-curriculum approach, providing a
wide variety of opportunities for practice.

The challenges to incorporating quantitative literacy across the
curriculum are many, including math anxiety on the part of both
faculty and students, lack of administrative understanding and
support, and competing pressures for various other literacy re-
quirements. We discuss below a variety of approaches that have
demonstrated success at the college level in moving quantitative
literacy across the curriculum. A more comprehensive discussion
would address how these approaches should be coordinated with
efforts to improve K–12 education, an issue we do not feel qual-
ified to address. It is worth pointing out, however, that improving
quantitative literacy at the college level would have an important
effect on K–12 education for the simple reason that it would
influence the mathematics education of K–12 teachers.

Mathematics Across the Curriculum
The term “mathematics across the curriculum” refers to attempts
to incorporate mathematical thinking in courses throughout the
university. The following excerpt from the vision statement of the
Mathematics Across the Curriculum committee at the University
of Arizona expresses the goals (2000):

The purpose of Mathematics Across the Curriculum at the
University of Arizona is to help students recognize the utility
of mathematics across disciplines and majors and to improve
their skills in mathematics. Just as all students should be able
to write an essay in any class they take, all students should be
able to look at a problem or situation in any class and be able
to formulate appropriate mathematical approaches to finding
solutions. They should also have the mathematical skills to
know how to seek solutions. Particular attention must be
paid to such fundamental processes as graphic representation
of quantitative data; estimation; basic numeracy (i.e., ability
to perform “basic” mathematical operations); and logic,
among other mathematical concepts and topics.

Various approaches to implementing mathematics across the cur-
riculum have been tried. We consider six approaches here: collab-
oration between mathematics and other faculty, gateway testing,

intensive instructional support, workshops for nonmathematics
faculty, quantitative reasoning requirements, and individual ini-
tiative by nonmathematics faculty. This is not intended to be an
exhaustive list of all possible approaches or all approaches that
have been tried, but rather an illustration of the range of possibil-
ities.

“FRIENDLY CONSPIRACIES” BETWEEN MATHEMATICIANS

AND OTHERS

Collaboration between mathematics faculty and faculty from other
departments is one powerful approach. This could involve a sort of
pact between mathematicians and others: mathematicians will add
more context to their courses, others will add more mathematical
concepts to theirs. Deborah Hughes Hallett writes of the need for
friendly conspiracies between mathematicians and other departments
to make sure this happens (Hughes Hallett 2001). The two-course
business mathematics sequence developed at the University of Ari-
zona is an example of such a conspiracy: students know that the
problems they are studying in their mathematics course will come up
again in their business courses, because they know that the course was
developed with significant input from the business college. Team-
teaching arrangements between mathematics and other departments
are another example of this collaborative approach.

One cautionary note on such collaborations is illustrated by a
survey conducted by the Mathematics Across the Curriculum
group at the University of Arizona. This survey was sent to faculty
in the College of Social and Behavioral Sciences who teach some
of the largest general education courses on campus. The responses,
completed by almost 33 percent of the group, included some
telling results. More than half responded positively to the ques-
tion, “Does any course you teach include any mathematical or
quantitative elements?” The most common elements included
statistics, slopes and rates, analysis of experimental outcomes,
graphs, formal reasoning, and decision theory. Faculty were also
asked, “Would you be willing to integrate some mathematical
elements into your courses?” Again, more than half responded
positively, although the response was cautious. For example, even
among the positive responses, faculty said, “I don’t see this as
central to the usefulness of the course. Emphasis on the mathe-
matics might actually distract students from the more important
(in this course!) learning,” and, “I would be reluctant to assign
stats-heavy reading, as most students do not seem to pay close
attention to such materials.” The faculty responding negatively
were split about evenly between “The course doesn’t seem com-
patible with the addition of mathematical content” and “My
background in mathematics is insufficient.” These responses, typ-
ical of faculty everywhere, highlight some of the challenges inher-
ent in establishing these friendly conspiracies.
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GATEWAY TESTING IN COURSES OUTSIDE MATHEMATICS

The University of Nevada, Reno, approaches quantitative literacy
by offering a set of mathematics competency tests in courses across
the university, based on a model described in an article by Steven
F. Bauman and William O. Martin (1995). The mathematics
covered by the tests is required for success in the courses, and is no
more than the students reasonably can be expected to have learned
already. The main purpose of the tests is to inform instructors and
students. Students may retake a test until they pass (a passing
grade is 80 percent). The initial test is held in class during the first
week of classes, to make clear that the test is an integral part of the
course; after that, a separate office, the Math Center, handles
grading and retesting, to make it feasible for instructors to use the
system. The Math Center also provides tutors who go over a failed
examination with each student and help him or her correct mis-
takes. Courses that have been involved with this program include
agricultural economics, anthropology, art, biology, chemistry,
economics, English, environmental studies, geography, geology,
mathematics core courses, nutrition, philosophy, physics, politi-
cal science, psychology, recreation, physical education, dance, so-
ciology, and Western traditions.

MATHEMATICS INSTRUCTIONAL SUPPORT

The Center for Mathematics and Quantitative Education at Dart-
mouth College (2001) functions as a laboratory support office for
the mathematics department, analogous to similar services avail-
able in other science departments. It houses equipment for use in
mathematics classrooms, books, videos, and prepared laboratory
activities. Some of these materials come from Mathematics Across
The Curriculum (MATC) courses at Dartmouth. The center also
provides consulting, classroom visitation, and videotaping ser-
vices, and runs a departmental Teaching Seminar during the sum-
mer. The center works in collaboration with similar offices in
other departments and supports courses in other departments that
feature mathematics as a key component. It reviews materials that
come out of the university’s MATC courses and makes those that
are suitable for K–12 available to teachers. It also facilitates links
between K–12 teachers and college professors for conversation
and collaboration across levels and disciplines.

WORKSHOPS FOR FACULTY OUTSIDE MATHEMATICS

Many disciplines, most commonly the SMET disciplines, have
come to recognize the importance of quantitative literacy and
some have organized regional or national workshops on the topic.
One group that has facilitated such workshops is Project Kaleido-
scope (PKAL 2002), an informal national alliance working to
build strong learning environments for undergraduate students in
mathematics, engineering, and the various fields of science. One
PKAL workshop, entitled “Building the Quantitative Skills of
Non-Majors and Majors in Earth and Planetary Science Courses,”
was held in January 1999 at the College of William and Mary. The

workshop brought together over 30 earth and planetary science
faculty from research-intensive, and four-year and two-year insti-
tutions to work together on such questions as:

● Which quantitative skills are important in our curriculum,
and at what levels?

● How do we include appropriate quantitative expectations in
our courses for nonmajors without sending some students
running for less quantitative offerings elsewhere on campus?

● How can a department work to build the quantitative skills of
its majors?

● Many students, nonmajors and majors, bring tremendous
fear, or “math anxiety,” to our courses. What support is nec-
essary to help students understand, use, and enjoy mathemat-
ics in our courses?

Such workshops have had a significant impact on how faculty
outside of mathematics view quantitative literacy, and have pro-
vided concrete strategies and “best practices” to help them trans-
form their courses. One example is the development of “Q-
Courses” (e.g., Marine Environmental Geology and Introduction
to Environmental Geology and Hydrology) at Bowdoin College
by a geology team that grew out of the 1999 PKAL workshop.

QUANTITATIVE REASONING REQUIREMENTS

Recognizing that quantitative literacy often is not ensured by their
entrance requirements, many colleges have instituted quantitative
reasoning requirements that must be satisfied by all graduates. At
some institutions, such as Harvard University and the University
of Michigan, there is an approved list of courses that satisfy the
requirement. An example of a more formal quantitative reasoning
requirement is the one at Wellesley College (2002). This consists
of a basic skills component, which is satisfied either by passing a
quantitative reasoning test or by taking a specific course, and an
overlay course component. The topics covered by the test are
arithmetic, algebra, graphing, geometry, data analysis, and linear-
ity. Overlay courses are taught within departments and engage
students in using these skills in reasoning about and interpreting
data in specific contexts. Guidelines specify the minimum neces-
sary exposure to data analysis for a course to qualify as an overlay
course. For example, such a course must address issues of collect-
ing, representing, and summarizing data and must require a work-
ing knowledge of probability, distributions, and sampling. The
goals of the overlay requirement are worth quoting for their reso-
nance with the issues of quantitative literacy:

Literacy. The number of topics, and depth of coverage, should be
sufficient to ensure that students have the basic knowledge
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they need in order to function in real-life situations involving
quantitative data.

Authenticity. Students should have experience in using authentic
numerical data. The experience should arise naturally in the
context of the course and actually advance the work of the
course. Only with such experience is the literacy goal likely to
be realized.

Applicability. The examples used in an overlay class should be
adequate to convince the average student that the methods
used in the analysis of data are of general applicability and
usefulness.

Understanding. A student’s experience with data analysis should
not be limited to rote application of some involved statistical
procedure. Rather, students should understand enough of
what they are doing so that their experience of data analysis is
likely to stay with them, at least as a residue of judgment and
willingness to enter into similar data analyses in the future.

Practicality. The breadth of topics covered, and the depth of cov-
erage, should be consistent with what an average Wellesley
student can realistically absorb in a course that devotes only a
part of its time to data analysis.

GOOD-CITIZEN MODEL OF CONCERNED

NONMATHEMATICS FACULTY

All the previous approaches involve either mathematics faculty or
specialized administrative units, but we should never underesti-
mate the power of nonmathematics faculty or departments acting
on their own initiative to advance quantitative literacy. There are
many such examples of individual faculty revising courses and
curricula simply because it is the right thing to do. Examples
include Len Vacher at the University of South Florida, Bill Pro-
thero at the University of California at Santa Barbara, Kim Kas-
tens at Columbia University, Larry Braille and Jon Harbour at
Purdue University, and Alexandra Moore at Cornell University.
These faculty may take advantage of some of the approaches listed
above, but they often are essentially lone crusaders for quantitative
literacy working in the trenches. Although they may attend work-
shops or seek NSF funding, for example, just as often they proceed
with little administrative support or interaction with mathematics
faculty. In fact, some are hampered by administrations that de-
pend on student credit hours as the coin of the realm, or student
evaluations that can tend to favor less quantitatively challenging
courses.

Given strong evidence of the success of these independent initia-
tives, we cannot but wonder at how much more effective such
efforts could be with the full involvement and cooperation of

mathematics faculty and college or university administrations. We
argue that one critical component of quantitative literacy across
the curriculum must be the support and nurturing of such initia-
tives. As one example of administrative support, we cite the reform
of the promotion and tenure system in the College of Science at
the University of Arizona for faculty whose primary scholarly
contribution is in the area of mathematics and science education.
This reform was recognized by NSF with one of just 10 Recogni-
tion Awards for the Integration of Research and Education (Uni-
versity of Arizona 1998).

Conclusions and Challenges
We have argued that conceptual understanding and everyday life
are two aspects of quantitative literacy deserving special attention.
The ability to adapt mathematical ideas to new contexts that is
part of conceptual understanding is a key component of quanti-
tative literacy. The everyday-life component of quantitative liter-
acy argues forcefully for engagement of faculty across the curric-
ulum. Quantitative literacy thus must be the responsibility of
teachers in all disciplines and cannot be isolated in mathematics
departments.

We have illustrated curricular approaches to quantitative literacy
at the college or university level that range from friendly conspir-
acies between mathematics and other faculty to administrative
structures and requirements to initiatives by individual nonmath-
ematics faculty. All offer success stories as well as war stories, both
of which serve as models for how we can work to improve quan-
titative literacy.

We end with two challenges. The approaches we have illustrated
must be only the start of continued and sustained efforts on the
parts of faculty and institutions. Significant institutional change
must occur to achieve the sort of pervasive use of mathematical
ideas that we think essential in teaching quantitative literacy. Nei-
ther administratively imposed solutions nor grassroots move-
ments will succeed alone; initiatives solely from within mathemat-
ics departments or solely from without are bound to fail. The first
challenge, therefore, is to cross the boundaries that separate disci-
plines and levels of administration. Administrators of university-
wide requirements must talk with the faculty who do the teaching
on the ground; pioneers in the classroom must talk to each other
and to administrators; departments of mathematics must collab-
orate with other departments.

Second, we must not lose sight of the fact that our goal is student
learning. It is far too easy, in the heat of battle over establishing
quantitative literacy requirements, setting up support centers, or
revising our individual courses, to forget that the student must be
the focus of our efforts. The question of “what works best” must
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be answered in terms of student learning. To do this, we must
establish clearly defined student learning outcomes in quantitative
literacy. We must be able to develop measures for these outcomes
as part of an ongoing assessment program. Key to the success of
such an assessment program is feedback on the way we are teach-
ing quantitative literacy. Without such formative assessment, de-
bates on how to improve quantitative literacy will be driven by
anecdotal experience and the force of individual personality. Stu-
dents deserve better.

We welcome the national focus on quantitative literacy and are
hopeful that the kinds of approaches described here may serve as
models for others.
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Articulation and Mathematical Literacy:
Political and Policy Issues

MICHAEL W. KIRST

Articulation of the mathematics curriculum is very difficult to attain at any grade level, but partic-
ularly for grades 11 through 14. Fragmented decision making concerning K–12 mathematics cur-
ricula and lack of linkage between higher and lower education pose major problems for articulation.

Higher education influences what is taught in secondary schools. Every secondary school reacts to
changes in college admissions requirements that involve different courses or major changes in
content emphasis within a subject. For example, changes in admissions weighting such as more
emphasis on Advanced Placement, or honors courses elicit a response from secondary schools.
Higher education’s impact is often blunted, however, by incomplete or confusing signals sent to
secondary schools and to high school students concerning what knowledge is most worth knowing.
In part, these unclear signals reflect uncertainty about priorities within the entire scope of the
mathematics curriculum, including quantitative literacy: “Almost everyone believes quantitative
literacy to be important, but there is little agreement on just what it is” (Steen 2001).

The potential leverage of higher education on the K–16 system, therefore, may or may not be
effective. A clear signal within an articulated K–16 system is required so that students know what
they should be learning.

In this essay, I take the mathematics curriculum to encompass three related literacies:

● Mathematical Literacy (ML): The basic skills of arithmetic, algebra, and geometry that histor-
ically have formed the core of school mathematics;

● Quantitative Literacy (QL): Reasoning with data in their natural contexts, especially in situa-
tions that citizens encounter in judging public issues (e.g., pollution, taxes) or private decisions
(e.g., cell phone plans); and

● Symbol Literacy (SL): Fluent use of algebraic notation as a second language, typical of students
in science and engineering, but at a level beyond what states or districts would consider as a
requirement for all students.

Although these same terms often are used by others with different interpretations, these are the
definitions that apply throughout this essay.

K–16 Content and Articulation of Assessment
There is no agreement, nor even a forum in which to deliberate about a possible consensus, con-
cerning mathematical or quantitative literacy in the U.S. K–16 education system. Educational policy
in the United States is decentralized. Moreover, within each state—and at the federal level as

Michael W. Kirst is Professor of Education at Stanford University. A member of the National Academy of Education, Kirst
is co-director of Policy Analysis for California Education (PACE), a policy research consortium including Stanford and UC
Berkeley. Previously, he served as staff director of the U.S. Senate Subcommittee on Manpower, Employment, and Poverty
and as President of the California State Board of Education. His current research centers on the relationship between state
education reform efforts and educational outcomes.
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well—an additional, less overt, division exists, one that is based on
the historical and pervasive assumption that K–12 schools and
colleges and universities should be guided by policies exclusive to
each sector. As a result of this premise, public policy tools that
influence one sector—funding, accountability, and governance
systems, for instance—have little in common with the policy tools
that influence the other. Given this division, it is not surprising
that the most serious questions about quality in American educa-
tion have been directed primarily toward one side of the educa-
tional divide: the K–12 public schools.

THE DISJUNCTURE BETWEEN K–12 AND HIGHER

EDUCATION

The origin of the disjuncture between lower and higher education
in the United States stems, in part, from the laudable way the
nation created mass education systems for both K–12 and higher
education. In Europe, in contrast, the higher grades of secondary
education were designed for an elite group who would be going on
to universities. European universities have long played a major
role in determining both the content of the secondary school
curriculum and the content and format of secondary school ex-
aminations. For example, professors at British universities such as
Oxford and Durham grade the A levels taken by students during
their last year of secondary education, and these essay examina-
tions figure crucially in a student’s chances for university admis-
sion.

Over time, the chasm between lower and higher education in the
United States has grown wider than that in many other industri-
alized nations (Clark 1985). Nonetheless, at one time U.S. col-
leges and universities did play an important role in the high
schools. In 1900, for example, the College Board set uniform
standards for each academic subject and issued a syllabus to help
students prepare for college entrance subject-matter examina-
tions. (These College Board examinations were used by some
colleges and universities until after World War II.) Some state
universities developed their own systems for reviewing high school
curricula. Until the 1930s, for example, the University of Califor-
nia accredited high schools to make sure that their curricula were
adequate for university preparation; however, as more high
schools sent students on to postsecondary education, the process
became unmanageable.

In the postwar years, the notion of K–16 mathematics academic
standards vanished. “Aptitude” tests such as the SAT replaced
subject-matter standards for college admissions, and secondary
schools added elective courses in nonacademic areas, including
vocational education and life skills. Today, K–12 faculty and col-
lege mathematics faculty are organized into separate professional
organizations and rarely meet in professional contexts. K–12
mathematics policymakers and higher education policymakers

cross paths even less often. The only large-scale, nationally aligned
K–16 standards effort that involves K–16 faculty is the Advanced
Placement Program (AP)—a stalactite extending from universities
to high schools that influences the course syllabus and examina-
tion. An examination grade of 3, 4, or 5 on an AP examination is
one indicator of college preparation. But roughly one-third of all
AP students do not take the AP Examination, which means that
many AP students may not be benefiting much from AP’s close
link to postsecondary standards (Lichten 2000).

With the exception of the AP Program, there are no major efforts to
provide curricular coherence and sequencing for grades 10 to 14. Nor
has anyone proposed a conception of liberal education that relates the
academic content of mathematics in secondary schools to the first two
years of college. Instead, students face an “eclectic academic muddle
in grades 10 to 14” (Orrill 2000) until they select a college major. In
Ernest Boyer’s metaphor, postsecondary general education is the
“spare room” of the university, “the domain of no one in particular”
whose many functions make it useless for any one purpose (Boyer and
Levine 1981). The functional “rooms,” those inhabited by faculty,
are the departmental majors.

There are no recent assessments of the status of general education.
C. Adelman (1992) analyzed college students’ transcripts from the
National Longitudinal Study, containing data from the early to
mid-1970s, which proved to be a low point in general education
requirements. He reported that students took very few courses in
the fields comprised by general education. Less than one-third of
college credits were from courses that focused on cultural knowl-
edge, including Western and non-Western culture, ethnic, or gen-
der studies. Among bachelor’s degree recipients, 26 percent did
not earn a single college credit in history, 40 percent did not study
any English or American literature, and 58 percent had no course
work in foreign languages.

When attention is paid to general education, two contending theories
predominate. One holds that courses used for general education
should be the same courses as those used to prepare prospective ma-
jors for upper-division specialization. Another view contends that the
purpose of general education is as an antidote to specialization, voca-
tionalism, and majors. Clark (1993) hoped that somehow the spe-
cialized interests of the faculty could be arranged in interdisciplinary
forms that would provide a framework for mathematical literacy, but
there is little evidence that this is happening.

In sum, the high school curriculum is unmoored from any con-
tinuous vision of quantitative literacy. Policymakers for secondary
and postsecondary schools work in separate orbits that rarely in-
teract, and the policy focus for community colleges has been more
concerned with access to postsecondary education than with aca-
demic preparation. Access, rather than preparation, is also the
theme of many of the professionals who mediate between high
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schools and universities: high school counselors, college recruiters,
and college admissions and financial aid officers.

The number and influence of mediating groups is, for C. Stocking
(1985, 263), an indicator of the “amount of disorder and confu-
sion that has grown through the years in the relationship between
the school and the university in America.” In addition to the
mediating professionals employed by the high schools and the
colleges, “A major role is assumed by the major private testing
organizations, whose mathematics tests have become powerful
tools for allocating students to different types of universities and
colleges.” Appendix I demonstrates that these testing organiza-
tions must be involved in any revision of the balance between
quantitative and mathematical literacy.

THE STANDARDS MOVEMENT AND THE K–16
DISJUNCTURE

In recent years, the standards movement has swept across the
United States. Forty-six states have developed K–12 content stan-
dards in most academic subjects, and all but Iowa and Nebraska
have statewide K–12 student achievement tests. These state-di-
rected efforts have two interrelated goals: clarifying what students
must know and be able to do in the K–12 grades and aligning
standards, assessments, textbook selection, and accountability
measures in those grades. These reforms, however, have ignored
the lack of coherence in content and assessment standards be-
tween K–12 and higher education. Until educators address this
issue, secondary schools and their students will have no clear sense
of what knowledge and skills constitute mathematical literacy.

Colleges and universities rely on the SAT and ACT to provide
some uniform national assessment, but neither of these tests was
designed to measure quantitative literacy as defined by the Na-
tional Council on Education and the Disciplines (Steen 2001, 1).
The relationship between K–12 mathematics standards and col-
lege placement tests is even more chaotic. In 1995, for example,
universities in the southeastern United States devised 125 combi-
nations of 75 different placement tests, with scant regard to sec-
ondary school standards.

Tests at each level—K–12 achievement tests, standardized college
entrance examinations, and college placement assessments—use
different mathematics formats, emphasize different content, and
are given under different conditions, for example:

● California’s newly augmented K–12 assessment, the Stan-
dardized Testing And Reporting (STAR) program, includes
mathematics that is considerably more advanced and difficult
than the SAT or ACT, but Texas’ high school assessment,
Texas Assessment of Academic Skills (TAAS) includes less
algebra and geometry than the SAT.

● Some state K–12 assessments permit students to use calcula-
tors, but many college placement examinations do not.

● Texas has a statewide postsecondary placement test, the Texas
Academic Skills Program (TASP), but many Texas universi-
ties also use their own mathematics placement examinations.
High school students in Texas are either confused by or igno-
rant of college placement standards (Venezia 2000).

Universities provide some good arguments to explain why they
pay little attention to K–12 standards or assessments. First, uni-
versities emphasize that they are not involved in the development
or refinement of the K–12 standards. Second, universities observe
that both politics and technical problems affect frequent changes
in state K–12 standards. Third, they note that K–12 assessments
have not been evaluated to see how well they predict freshman
grades (although such evaluations are not difficult to conduct).

Many universities are wary of being subjected to a postsecondary
version of K–12 state accountability systems and the political
quagmire surrounding high-stakes testing. Mathematics curricu-
lum policy disjunctures between K–12 and higher education will
be hard to mend in the absence of a national institutional center
and institutions in each state whose mission is K–16 alignment
and reform. Without new deliberative bodies, more influence is
left to textbook publishers and private testing firms. Currently,
there are few opportunities for K–12 educators to discuss, much
less resolve, questions about mathematics articulation with college
and university faculty or policymakers. Very few states have any
policy mechanism for specific decisions concerning K–16 stan-
dards and assessment, and higher education coordinating bodies
do not include K–16 standards alignment within their purview.
The disciplinary and professional associations have the potential
to serve as a locus for such discussion, but these are organized into
separate K–12 and postsecondary units.

The governor’s office might seem the logical place for states to
align their fractured K–16 standards, but higher education leaders
(especially those at private universities) want to guard their polit-
ical independence from gubernatorial and legislative interference
in admissions criteria. Nor is it clear what can be done at the
federal level, given that each state has its own K–12 standards and
assessment system. When President Clinton spoke in support of
voluntary national testing, he was silenced by protestors champi-
oning states’ rights, local control of schools, and students’ freedom
and opportunity to learn.

HIGH SCHOOL STUDENTS FACE A BABEL OF ASSESSMENTS

High school students receive confusing messages about the math-
ematical knowledge and skills that they need to acquire in high
school to succeed in college. In deciding how many years of math-
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ematics to take, students look at their high school graduation and
college admissions requirements; the former reflect the content of
any statewide grades 10 to 12 mathematics assessments, and the
latter entail mastering the content that appears in the mathematics
sections of the SAT-I or the ACT. As a recent analysis shows (see
Table 1), the content of statewide high school mathematics assess-
ment tests and the content of the mathematics portions of the
SAT-I and ACT are fairly similar: they tend to emphasize basic
algebra, geometry, probability and statistics, and numbers (num-
ber theory, arithmetic, combinatorics, and logic) and to ignore
intermediate algebra, trigonometry, and pre-calculus.

But the differences between the above tests and college placement
tests are enormous. College placement examinations, such as
Compass and Accuplacer, produced by national testing compa-
nies, which are used by community colleges, put considerable
emphasis on intermediate algebra and trigonometry. Many col-
leges, even some major universities, use local placement tests writ-
ten by the mathematics departments without any special oversight
or blessing by the university as a whole. These tests are more
accurately described as departmental placement examinations,
and their quality is very uneven. Students thus prepare for and are

admitted to college based on one set of skills but then are given
placement tests that cover different topics.

Higher education must be an integral part of any attempt to
improve mathematics articulation. Higher education policymak-
ers need to be involved in the design and implementation of K–12
standards and assessments to ensure K–16 mathematics articula-
tion. Some states, such as Illinois, California, and New York, are
moving ahead on this. Illinois is giving ACT mathematics to all
eleventh graders, but augmenting it with test items based on the
Illinois mathematics K–12 standards. The 19 campuses in the
California State University (CSU) system are eliminating the
placement test designed by CSU faculty and using the K–12 Cal-
ifornia standards test for placement. The City University of New
York (CUNY) system allows students with high scores on the
K–12 Regents examination in mathematics to be exempt from
taking CUNY mathematics placement tests.

Some K–12 state assessments are rigorous, with content that more
closely resembles college placement tests than the SAT-I. The
Massachusetts and Kentucky K–12 assessments include interme-
diate algebra and trigonometry. Then again, many state K–12

Table 1.
Distribution of Topics on Standardized Mathematics Tests

Percentage of questions devoted to:

Algebra
I Geometry

Data,
Probability,
Statistics

Number Theory,
Arithmetic, Logic,
Combinatorics

Algebra
II

Trigonometry,
Pre-Calculus

Privately developed high school assessment tests

TerraNova 14 29 23 21 0 0

Stanford 9 m/c 29 25 25 21 0 0

State high school assessment tests

Kentucky (CATS) 9 33 17 18 20 0

Massachusetts (MCAS 10) 23 28 13 18 13 5

New York 29 26 9 26 9 3

Texas (TAAS) 12 23 3 53 0 0

College admissions examinations

SAT-I 47 23 3 23 3 0

ACT 25 27 5 18 12 8

Privately developed college placement tests

Compass 14 23 0 19 25 15

Accuplacer (algebra) 25 0 0 0 75 0

Accuplacer (calculus) 16 0 0 0 63 21

Source: Education Trust, 2000. “Thinking K–16,” 3(2): 27.

Note: Numbers may not add to 100% because some items could not be classified or overlapped categories.
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tests, including the California Stanford 9 and the Texas TAAS,
stress data, probability, and statistics—topics that college admis-
sions and placement tests largely ignore. The content and topical
differences in the major national assessments and in those in Cal-
ifornia are shown in Appendix I.

Is it any wonder that high school juniors and seniors are confused?
They are focused on high school graduation (state assessment
tests) and college admission (SAT-I), not on college placement
examinations, undergraduate general studies, or distribution re-
quirements. Many do not realize the importance of taking math-
ematics in their senior year as part of their preparation for college.

REACHING CONSENSUS ON MATHEMATICAL LITERACY

Suppose that a representative K–16 commission was created to
formulate an articulated K–16 mathematical literacy curriculum.
Such a group would immediately confront a number of difficult
issues:

1. Who must be involved in the process to certify that it is
inclusive? Students? Business? If you exclude groups, this will
lead to charges of bias. If you include every group that is
suggested, this will lead to a cumbersome and slow process.

2. If you choose standards that achieve a broad consensus in a
field, “leading-edge thinkers” will object. You will be accused
of certifying “what is” rather than “what ought.”

3. If you choose standards that achieve consensus in a field, you
will not be able to satisfy demands for “less is more.” Consen-
sus expands topics rather than cutting them.

4. If you choose standards that reflect a consensus on current
content, this will lead to criticism that you have not suffi-
ciently stressed interdisciplinary content. There is limited
support for interdisciplinary content in any of the subject-
matter organizations such as the National Council of Teach-
ers of Mathematics (NCTM).

5. If you approve standards that are too general, or that do not
contain pedagogy, critics will say that there is insufficient
instructional guidance for teachers and the content gaps will
be filled by tests or assessment. If you do approve pedagogy or
detailed standards, you will be criticized because the stan-
dards are too long, complex, and overly control local practice.

6. If you do not hear appeals from the public for specific content
changes (e.g., inclusion of calculators), you will be criticized
for not having public participation at the highest level and
leaving crucial decisions to a technical panel of nonelected
officials. If the commission hears all these protests, it will

become bogged down in time-consuming and fractious dis-
putes.

7. If you wish to have standards in place by 2004, you are
contradicting findings that it takes closer to five years than
two years to formulate national content standards.

Articulation and K–12 Mathematics
Curriculum Policymaking
To help understand why K–16 articulation issues are so challeng-
ing, it is useful to analyze how K–12 mathematics curriculum
policy is made and the political issues that surround articulation.
Many institutions and actors influence mathematics curriculum
policy in the dispersed and fragmented U.S. education system.
The following list illustrates the multiple actors who have some
potential to help define and promulgate mathematical literacy and
who need to be involved in building a coalition for articulation:

● Insiders
- Higher education policymakers
- Professors in mathematics, mathematics education, and re-

lated disciplines
- State curriculum framework policymakers
- Textbook publishers/testing agencies (private industry)
- National Science Foundation (NSF) collaboratives, partner-

ships, and curriculum development projects
- Legislative leaders in educational policy

● Near Circle
- Teacher preparation institutions
- Teacher certification organizations (e.g., National Council

on Accreditation of Teacher Education (NCATE), Na-
tional Board for Professional Teaching Standards (NBPTS),
American Association of Colleges for Teacher Education
(AACTE))

- Ideological interest groups
- Federal agencies (Office of Educational Research and Im-
provement (OERI), National Science Foundation (NSF),
U.S. Department of Education (DOE))

● Far Circle
- National Governors’ Association
- Education Commission of the States
- Council of Chief State School Officers
- National Academy of Sciences

● Sometimes Players
- School accrediting agencies (e.g., North Central)
- Business organizations, minority organizations
- National Research Council
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Different influence configurations will arise in different states and
localities, but there are significant national actors as well. The
groups listed above have different philosophies and priorities for
mathematical literacy; they therefore will need to bargain and
deliberate concerning their conflicts. In California, for example,
the state board of education does not agree with some standards of
the NCTM or some views of the NSF and the National Academy
of Sciences on mathematical literacy. A K–16 coalition in favor of
articulation must be created and sustained. It must include both
public and private higher education as well as K–12 teacher, ad-
ministrator, and mathematics curriculum specialists. Crucial pol-
icy instruments including assessments, content standards, and
textbooks need to be aligned through a dominant K–16 political
coalition that has bargained and compromised its conceptual,
content, and pedagogical disputes. I now provide an overview of
the multiple political and policy influences on potential mathe-
matics articulation.

MATHEMATICS ARTICULATION AND POLITICAL AND VALUE

CONFLICTS

As the national debate about curriculum content standards dem-
onstrates, policymaking concerning mathematics content and
standards is a political as well as a technical process (Ravitch
1995). Disputes over such issues as the inclusion of AIDS educa-
tion or creation science in a curriculum highlight the existence of
value conflicts embedded in the development and maintenance of
curriculum standards (Wirt and Kirst 1992). The “math wars” in
the California standards debate of 1997 included intense debate
concerning the relative emphasis on mathematical literacy versus
quantitative literacy. Because of these conflicts, curriculum poli-
cymaking often requires complex trade-offs between groups of
competing interests. Articulation of the mathematics curriculum
in grades 11 to 14 not only involves these conflicts but also others
surrounding the relative priority of symbol literacy in the total
mathematics curriculum linking lower and higher education in
such fields as science and engineering.

The most common way to determine curriculum standards is to
endow an individual or group (e.g., a state school board or a
national subject-matter association) with the authority to make
decisions about curricular content using professional and, pre-
sumably expert, judgment (Massell and Kirst 1994). But what
procedures do the developers of curriculum standards follow? Past
efforts best can be described by what Lindblom and Braybrooke
(1963) call disjointed incrementalism, a strategy in which deci-
sion makers use pragmatic methods that result in minimal changes
at the margin. Conflict is avoided by adopting vague language
concerning standards and covering so many topics that no major
interest group feels left out. Content priority is sacrificed to the
political necessity of coverage. Disjointed incremental strategies,
however, will not solve the grades 11 to 14 mathematical literacy

problem; this essay therefore makes several suggestions for more
fundamental change.

The development of state mathematics standards in the 1990s was
an attempt to replace disjointed incrementalism with a nonincre-
mental reconceptualization that involved a thorough overhaul of
subject-matter standards and examinations. For example, in
mathematics this included more emphasis on data analysis and
statistics in K–12 education.

The politics of developing state standards are complex, as one
observer of NCTM’s efforts noted (Ball 1992, 2–3):

Twin needs propelled the development of NCTM’s stan-
dards for school mathematics: the need to gain consensus and
the need to promote change. On the one hand, if these stan-
dards were to stand as the banners of the community, then
they had to reflect shared values and commitment. On the
other hand, if change was desired, then these standards had to
do more than reflect current practice. New ideas were
needed, ideas that departed from extant assumptions and
practices.

In short, the development of grades 11 to 14 mathematics stan-
dards requires complex trade-offs. There is no way to avoid con-
flict and the sense of winners and losers. In California, for exam-
ple, the NCTM standards were challenged by a statewide group
called Mathematically Correct. Difficult choices were made con-
cerning the standards and the procedures by which mathematics
content priorities were established.

Merely following the “right” procedural steps is not sufficient
because there are many constraints on the total mathematics con-
tent that can be included (e.g., length of the school year). The
history of standards development has been one of jockeying for
priority in an overcrowded school schedule and incorporating
some interest groups’ priorities into the curriculum because of
political considerations while others’ priorities are neglected. For
example, organized proponents of driver education and voca-
tional education have been more effective politically than those of
music education (Wirt and Kirst 1975).

Efforts to formulate mathematics curriculum standards have pro-
voked conflict over the proper foundations for deciding what to
teach. For example, should schools teach those things that are
likely to be useful immediately in life outside of school or those
most fundamental to an understanding of organized knowledge?
Should they emphasize the development of individuality or con-
formity to the needs of higher education? As long as people dis-
agree on how to evaluate curricula, they are bound to quarrel over
its composition. The basis for this disagreement is evidenced by
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the University of California dispute concerning the use of SAT-I
or SAT-II mathematics for admissions.

TRENDS IN THE POLITICS OF MATHEMATICS REFORM

Until the 1950s, mathematics curricula were selected by individ-
ual school systems in response to the perceived desires of local
communities. The successful launch of Sputnik I in 1957 created
demands for stronger federal and state roles in the education sys-
tem using two broad strategies: more mathematics content at all
levels and different content and instructional foci (Yee and Kirst
1994). Nevertheless, there were strong demands for preserving
local control over some traditional curriculum matters, and the
political conflict surrounding curricula escalated in the 1970s
(Dow 1991).

An attempt by a federal agency to influence the development of all
subjects in the local curriculum was rebuffed in the 1970s when
Congress cut back the role of the federal government in social
studies curriculum development (Dow 1991). An example of re-
sistance to the federal government’s efforts was the charge by
Congressman John Conlan (R.-Ariz.) that this curriculum was a
federal attempt to “use classrooms for conditioning, to mold a
new generation of Americans toward a repudiation of traditional
values, behavior, and patriotic beliefs” (cited in Wirt and Kirst
1992, 102). Yet 20 years earlier, the federal government had en-
tered the curriculum and text development field because of con-
cern that mathematics and science curricula were outdated, inac-
curate, dull, and lacking in diversity (Dow 1991). Scholars and
experts in education who advise federal and state governments
have been criticized for trying to impose their own cosmopolitan
and secular values on diverse local communities. Curricular re-
form itself has become professionalized through government and
foundation grants. No longer are perceived crises such as the eco-
nomic recession of 1980 to 1983 required to generate curricular
change because curricular change now has a self-starting capacity.

Curricular conflict has many roots. Military threats or changes in
public sentiment about issues such as the women’s movement
generate value conflicts about curriculum. Other forces, such as
court decisions favoring bilingual education or the pronounce-
ments of influential individuals, can result in changes to the cur-
riculum without the direct development of new materials. To
incorporate all these influences, the process of new mathematics
textbook creation is “managed,” whereby a writing team prepares
a series of texts. The actual author is frequently the publisher’s
internal editor, not the authors listed on the title page. States that
adopt textbooks (mostly in the Southeast) have disproportionate
influence on what is offered in the national market. Thus any
attempt to change mathematics curriculum must involve rethink-
ing textbook creation and adoption policies.

The limited impact of the “new math” curricular reform of 25
years ago, widely regarded as a failure, suggests the obstacles for
articulation in grades 11 to 14 unless there are powerful constit-
uencies and organized forces backing change. Parents may be
confused and many will want to revert back to the traditional
pattern of mathematics education that they experienced during
their K–12 schooling. Consequently, if change is to occur, higher
education must be a united and firm supporter of mathematical
literacy articulation in grades 11 to 14.

This will not be easy or swift. In California, the 1996 to 1999
reading wars were easier and quicker to resolve than the mathe-
matics conflicts. In the case of mathematics, higher education was
represented by mathematics professors with specific views, but not
by their institutions, or by those who make policy concerning
admissions or placement. No state body except the New York
Regents has a K–16 institutional center that could provide a fo-
rum to settle these disputes. Professional mathematics associations
such as NCTM include some higher education mathematicians
but not many postsecondary policymakers. Moreover, because
NCTM has been a major protagonist in the mathematics stan-
dards debate, it may not be able to play a major role in building a
coalition for articulation.

THE COMPLEXITIES OF SYSTEMIC CHANGE

Curricular developments in the 1990s underline the need to
change the entire education system, but this strategy confronts
considerable political obstacles. The systemic reform strategy cur-
rently in use departs from the traditional practice of leaving con-
tent determination solely to individual teachers and local schools
(Fuhrman 1993). Frequent elections and turnover of key leaders
at the state and school board level make it very difficult for math-
ematics curriculum changes to persist long enough for systemwide
implementation. The difficulty of reelecting state leaders com-
bined with fractured mathematics interest groups tends to pre-
serve local control. Several states limit legislative terms to six years.

Historically, the education system in the United States, supported
by federal and state policies, has tended to reinforce the use of
textbooks and low-level, basic skills curricula that in turn have
become the de facto national curricula (Elmore and Fuhrman
1994). Textbook publishers can broaden their market potential
by gearing standards to the lowest common denominator (Kirst
1984). For example, it has been typical for schools and teachers to
make their decisions as to what will be taught by deferring to
textbook publishers’ tables of contents and letting standardized
tests required by states and districts define the skills children
should learn (Elmore and Fuhrman 1994). State-mandated mul-
tiple-choice tests and basic skills examinations typically emphasize
single, correct answers and often do not adequately emphasize
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analysis, statistical inference, multistep mathematical problem
solving, synthesis, and complex reading (Kirst 1994).

Many states are trying to change this with new mathematics stan-
dards assessments, but there is little motivation for students be-
cause teachers typically do not use students’ scores on state assess-
ments to determine grades. State tests rarely are used for college
entrance or placement, and employers rarely ask to see a high
school transcript (Kirst 1994). With the lack of any explicit con-
sensus, low-level skills that are familiar and relatively easy to teach
become the curriculum (Fuhrman 1993; Smith and O’Day
1991). If a school system has no clear mathematics goals or direc-
tions, it cannot develop any authentic means by which to judge its
progress; schools are left with no independent means of assessing
students’ achievement apart from the grades assigned by teachers.

Because of support for local control, state policymakers have his-
torically avoided determining the articulation of mathematics
content. For the most part, educators have not tried to change the
status quo and, in fact, many have argued against state “policy
interference” (Fuhrman 1993). Educators have tended to be
highly skeptical of state policymakers’ ability to develop ambitious
and challenging student achievement standards that can actually
be carried out in the classroom. Their skepticism is based on the
fact that until recently, politicians found it was easiest to set stan-
dards at levels that school systems could readily achieve; however,
from 1995 to 2000, several states established mathematics gradu-
ation standards that failed about 50 percent of the students. When
standards are set too high, educators complain because they feel
unfairly held to impossibly high standards (Ravitch 1995).

Because many educators do not believe that state government is
able to make enlightened educational policy using top-down state
tests linked to sanctions and incentives, they have placed their
hope for mathematics improvement on individual school efforts
or bottom-up reform (Cohen 1983; Cuban 1984; Elmore 1990;
Fuhrman 1993; Purkey and Smith 1983). But as long as there is a
school-based “us versus them” attitude at the policy level, articu-
lation in grades 11 to 14 may never be successful. An alternative is
the integration of top-down and bottom-up reform strategies,
with both state and local policymakers working together to help
change the system.

Mathematics Articulation and
Coalition Building
Today, mathematics and science curriculum developers are bridg-
ing the gap between legislation and the classroom by specifying
content, assessment, and performance standards, while at the
same time trying to give teachers and local school districts a mean-
ingful “zone of local discretion” over how to achieve the goals of

the legislation (Elmore and Fuhrman 1994; O’Day and Smith
1993). There are, however, five main areas of political tension that
make it difficult to develop a supportive coalition for mathematics
articulation inside and outside the schools: the tension between
leadership and political consensus, between flexible and specific
standards, between up-to-date, dynamic standards and reasonable
expectations for change in the system, and between professional
leadership and public understanding (Massell 1994a). The most
recent tension is between expectations and requirements—how to
specify high mathematics expectations that provide worthy goals
and, at the same time, calibrate high school graduation require-
ments to accommodate those who will not have met these high
expectations.

THE TENSION BETWEEN LEADERSHIP AND POLITICAL

CONSENSUS

Previous education reform efforts, especially large-scale curricu-
lum reforms, often have been criticized for ignoring the social,
political, and technical realities of implementation in schools and
classrooms (Dow 1991; McLaughlin 1991; Yee and Kirst 1994).
The new math projects that were sponsored by the National Sci-
ence Foundation from the 1950s to the 1970s are good examples
of programs that were criticized because parents, teachers, com-
munity leaders, administrators, and others “had only limited, if
any, involvement in the development of the new curriculum, were
uninformed about the changes they were expected to make, and
were ill-prepared to defend the reforms when challenges arose at
the local levels” (Massell 1994a, 186-87). Because of the failure of
these past reform efforts, today’s educators are well aware of the
types of problems that will arise if notions of change are not widely
shared at the community level (Carlson 1995). Most of today’s
K–12 standards projects thus try to gather diverse input by engag-
ing in a broad review and feedback process with professional ed-
ucators, business, community members, and others who have an
interest in the standards. Gathering diverse input alone, however,
will not achieve the development and implementation of leading-
edge content standards because the broad range of ideas frequently
blocks consensus. Might a variety of passionate individuals pur-
suing very different goals in very different ways produce much
greater student learning and commitment than the same individ-
uals constrained by a forced consensus?

NCTM achieved a degree of initial consensus around the content
standards that they designed in 1989 (Massell 1994a). The impact
of those standards was enhanced by a long period of preparation
prior to convening the writing committees. This preparation laid
some of the intellectual groundwork for mathematics reform and
ensured broad involvement in the developmental process. In con-
trast to past large-scale curriculum reform efforts, NCTM en-
gaged more educators as well as subject-matter specialists on its
drafting committees. Its efforts also were enhanced by far-reach-
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ing review and feedback processes. The organization embarked on
an extensive consensus-building process among thousands of
practitioners, academics, and other professionals as well as among
members of the general public. NCTM received the endorsement
of major professional associations prior to the release of its stan-
dards document. Even after the standards were drafted, NCTM
continued its consensus- and capacity-building efforts (Massell
1994a, 1994b). Yet even this extensive process of involvement did
not prevent major challenges to the NCTM standards.

D. Massell (1994a, 188) described the unique characteristics of
mathematics that helped NCTM in the formation of its stan-
dards:

Mathematics, unlike science, is not fragmented into a large
number of competitive sub-disciplines; furthermore, the sub-
areas that do exist (i.e., geometry, algebra, calculus) share a
common conceptual base and language that facilitates discus-
sions across them and makes goals like “depth over breadth”
more easily achieved. In contrast to science, mathematics
does not tend to galvanize debate on pressing social issues or
political concerns. The mathematics community has rela-
tively few national organizations, and many have overlapping
membership. These elements strengthen communication
and provide a more solid foundation for consensus.

Compared with the National Research Council’s (1996) develop-
ment of the National Science Education Standards in the mid-
1990s, the development of the NCTM standards was facilitated
by the less-turbulent political atmosphere surrounding the issue in
the late 1980s. In fact, NCTM had to use its own resources to
produce the mathematics standards because “federal and founda-
tion actors did not think a national curriculum document was a
good idea” (Massell 1994a, 188). Because NCTM had no external
support, it had to recruit support for the standards project from
within the ranks of its own membership. NCTM also was able to
take its time (seven to nine years, depending on how you count it)
in developing the standards, a luxury today’s standards developers
do not have.

Professional disputes arose during the NCTM formation process
that still linger today even after NCTM’s recent revisions to its
standards. For example, NCTM members have continuing para-
digmatic arguments about whether basic skills should be taught
first and applications second, along with disagreements over the
timing of the introduction of problem solving. NCTM members
who prefer a behavioral approach to learning argue for a teacher-
centered direct instructional method. They also argue that:

You have to crawl/walk before you can run. If formulas aren’t
memorized, there will be no basis for the mathematical rea-
soning. If there is no mechanistic answer finding, there will

be no conjecturing, inventing, and problem solving. If you
don’t know a body of so-called isolated concepts and proce-
dures, there won’t be any connecting mathematics and its
applications. Judicious use of old-fashioned rote memory and
drill are as necessary today as they were in generations past
(Carlson 1995, 9).

Other mathematics educators believe that classrooms should be
student centered with emphasis on mathematical reasoning
learned through constructing and solving problems. Their “tim-
ing” argument, and the one that NCTM used in the 1980s, was
that skills and concepts can and do emerge during the process of
problem solving and should proceed in tandem (Massell 1994b).
Curriculum and Evaluation Standards for School Mathematics
(NCTM 1989, 9) stated:

Two general principles have guided our descriptions [of student
activities related to mathematics]: First, activities should grow
out of problem situations; and second, learning occurs through
active as well as passive involvement with mathematics. Tradi-
tional teaching emphases on practice in manipulating expres-
sions and practicing algorithms as a precursor to solving prob-
lems ignore the fact that knowledge often emerges from the
problems. This suggests that instead of the expectation that skill
in computation should precede word problems, experience with
problems helps develop the ability to compute.

The development and impact of the NCTM standards reflect
continuing debates about the relative emphasis on quantitative
literacy versus mathematical literacy. This experience shows that
any attempt to improve mathematics articulation in grades 11 to
14 will encounter difficulties in reaching and sustaining a consen-
sus. NCTM used a number of promising strategies but still was
engulfed in conflict in states such as California because groups
such as Mathematically Correct opposed the NCTM content.

THE TENSION BETWEEN FLEXIBLE AND SPECIFIC STANDARDS

Recently, local control of curricula has decreased in favor of increased
roles for the states and the federal government. For articulated stan-
dards in mathematics to be accepted, the people of this nation must
want to have them, and the standards must be flexible enough to
allow for local elaboration and variation. Keeping this in mind, Smith
and O’Day (1991, 254) propose to simultaneously:

. . . increase coherence in the system through centralized co-
ordination and increase professional discretion at the school
site. Thus while schools have the ultimate responsibility to
educate thoughtful, competent, and responsible citizens, the
state—representing the public—has the responsibility to de-
fine what “thoughtful, competent, and responsible citizens”
will mean in the coming century.
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Today, the term “standard” is typically used as a flag that reflects
the valued goals around which educators can rally and decide for
themselves how these goals will be accomplished in their schools
and classrooms (Ravitch 1995). Developers of standards for math-
ematics thus may find it undesirable to enforce a particular set of
practices or materials. Rather, mathematics articulation could be
designed to direct and guide local choice instead of determining
and prescribing practice and teaching. No rigid or specific impli-
cations for practice would be inferred from the standards (Ball
1992; Myers 1994; Sykes and Plastrik 1992). In allowing this
flexibility, however, policymakers trying to link high school math-
ematics courses to the first two years of university may confront
the problem of not knowing when their standards lack the speci-
ficity required to provide strong leadership (Massell 1994a). This
same concern emerged among experts who were trying to design
teacher knowledge assessments for the National Board for Profes-
sional Teaching Standards:

By not creating standards at what we would call a fine-
grained level . . . standard writers leave the critical work of
operationalizing standards for exercises and judging to the
assessment developers. We, not the standards committee . . .
imagined the vignettes or examples of accomplished teach-
ing, we attempted to ground the standards in research, and
we think the standards committee should have been involved
in the assessment effort to operationalize standards (Pence
and Petrosky 1992, 12).

Therefore, “a certain level of detail in the content standard is
necessary to guide the construction of Grades 11 to 14 course
sequence standards, which will then guide test specifications, and
finally the development of the tests themselves” (Massell 1994a,
192). If the mathematics content standards do not provide suffi-
cient detail, they will not pave the way for other policy compo-
nents such as assessment and instructional materials; this is the
problem mathematics frameworks are struggling with today.
Thus, the national debate on mathematics and science standards:

“. . . must go beyond generally worded standards to include
the development of curricula specific enough to guide teach-
ing and assessment. These must be the first steps; a syllabus-
based examination system will have to wait until standards
are established, because we cannot ensure that students have
a fair chance to learn what is tested until we have a curricula
in place” (Koretz, Madaus, Haertel, and Beaton, 1992, 12).

But with more specificity comes less flexibility for individuals at
various levels in the system and the potential for greater politically
based opposition to policymakers telling teachers what to teach. A
possible solution to the flexibility/specificity dilemma is to de-
velop numerous, relatively detailed strands of content for grades
11 to 14 keyed to a common set of standards. These standards

could include relative emphasis and sequencing for quantitative,
mathematical, and symbol literacy.

THE TENSION BETWEEN UP-TO-DATE, DYNAMIC

STANDARDS AND REASONABLE EXPECTATIONS

FOR CHANGE IN THE SYSTEM

We already know how difficult it is to develop standards, and
given all the interlocking systemic components such as teacher
repertoires, instructional materials, and assessments that take time
and significant resources to develop, frequent revisions are not
practical. California currently revises its curricular frameworks on
a staggered eight-year schedule. That is, each particular content-
area framework is reviewed every eight years, with a new subject
being addressed each year by state policymakers. Eight years may
seem like a long time, but if we break the process up into the time
it takes to complete each step we can see that eight years can
become a very short time. For example, it takes approximately two
years to revise the curricular framework, and then publishers must
be given enough time to align their textbooks accordingly. Fur-
thermore, staff development programs, assessments, and other
facets of the system must be constructed and implemented in the
schools.

California frequently has been criticized for having its frameworks
and assessments ready before the staff development programs and
curriculum materials were in place (Massell 1994a). Although the
staggered schedule does not present a great burden for middle
school and high school teachers, it does for elementary school
teachers because they are responsible for the whole range of sub-
jects and, therefore, have to reassess a key component of their
curriculum every year (Massell 1994a). The district curriculum
supervisors have the same problem (Marsh and Odden 1991).
Thus, mathematics standards developers must set a time line that
is practical and feasible; revised standards do nothing to help
educate our students if our educational resources and systems
cannot keep up with them.

Many educational frameworks, standards, and materials for math-
ematics disciplines are also criticized because they tend to “cover
the waterfront” instead of focusing only on a few key points or
topics in great detail; that is, they cover a wide range of material
superficially instead of emphasizing in-depth learning of key con-
cepts. Typically, such broad frameworks do not push publishers to
develop high-quality materials, have little impact in the class-
room, and are “seen as little more than ‘good doorstops’” (Massell
1994b, 119) because of the intentionally vague language. Instead
of working together and compromising to provide in-depth cov-
erage of a few key topics, developers try to include everything. By
using vague terms, developers avoid offending advocates of the
various sub-areas, a likely result if topics from one sub-area are
emphasized more strongly than those from another.
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THE TENSION BETWEEN PROFESSIONAL LEADERSHIP

AND PUBLIC UNDERSTANDING

Parents, religious groups, and other factions in society will con-
tinue to have an effect on the wording and content of articulation
documents that better link high school mathematics curriculum
to college and university courses, as well as on what teachers
choose to teach in their classrooms. Challenges to public school
programs and materials are nothing new in America. As M. Mc-
Carthy (1995, 55) noted:

For decades civil rights groups have been challenging mate-
rials as racist or sexist or as curtailing free speech; consumer
groups have been contesting materials that promote bad
health habits; environmentalists have been critical of texts
that do not encourage global responsibility; and parents and
religious groups have objected to the language and orienta-
tion of particular books, courses, and activities.

Recent disputes, however, are different from these challenges in
several ways. In the 1960s and 1970s, “the most vociferous critics
of public education usually came from the politically left” (Whitty
1984, 52). Since the 1980s, however, more and more critics of
public education have come from conservative citizen groups who
have been labeled the “new right.” Also, the number of challenges
has increased dramatically, and their central focus has broadened
from single books to entire programs and strategies to redesign
schooling (McCarthy 1995). In addition, the disputes have galva-
nized considerable media coverage: “Battle lines are clearly drawn,
misinformation abounds, vicious accusations are being hurled,
logic is often replaced by emotion, and there seems to be little
desire to compromise” (McCarthy 1995, 55). The conflicts today
seem to reflect the different values and world views of educators,
parents, business leaders, and policymakers with regard to the
purpose of schooling and the relationship between quantitative
and mathematical literacy (McCarthy 1995; Marzana 1993–94).

SUMMARY OF POLICY AND POLITICAL ISSUES

Articulation of mathematics content standards and examinations
for grades 11 to 14 could be another chapter in the long-running
saga of U.S. curriculum politics. Decisions on what knowledge is
most worth knowing are at the center of school politics, even
though school finance usually attracts more media attention. Cur-
riculum standards are the crucial components of the overall vision
of systemic reform (Smith and O’Day 1991). Content standards
are a beginning for subsequent state and local policy alignment of
textbooks, assessment, staff development, categorical programs,
and accreditation. All these policy areas must be linked to teaching
articulated standards in U.S. classrooms for systemic reform to
succeed. Consequently, “standards for mathematics” is high-
stakes politics.

Some potentially useful political strategies for mathematics and
science curriculum developers include better public engagement
and parent involvement; coalition building with business, higher
education, vocational education, and teacher organizations; and a
recognition that some value conflicts are so deep that no reason-
able compromise is possible. In Transforming Education: Over-
coming Barriers (David and Goren 1993), the National Gover-
nors’ Association offered six guidelines: (1) send clear and
consistent signals; (2) give priority to professional development;
(3) balance top-down and bottom-up strategies; (4) create feed-
back mechanisms; (5) make mid-course corrections; and (6) focus
attention on education as a public good. These guidelines offer
insight for educators and policymakers at all levels who want to
pursue articulation.

PROMISING POLICIES

Despite these complex issues, some progress has been made. For
example, NCTM content revisions in 2000 appear to have re-
duced objections by opponents. CUNY has agreed to use the New
York Regents mathematics tests for initial freshman placement,
and Oregon has developed a system for K–16 educators to rate
high school student work samples in their college preparatory
courses as one criterion for university admissions. Representatives
of the University of California, California State University, Cali-
fornia community colleges, and K–12 are devising a college ad-
missions test that will be an integral part of the California state
secondary school assessment. Georgia has regional P–16 Councils
that help improve student preparation for postsecondary educa-
tion. These diverse K–16 efforts have the potential to send clearer
signals to students, but articulation requires that these signals be
received: they must culminate in specific and clear student under-
standing of mathematical literacy.

Signaling theory suggests that streamlined messages have a positive
impact on students’ learning and achievement but that mixed sig-
nals—the current state of affairs—have the opposite effect. Crucial
aspects of signals and incentives are clarity and consistency. Consis-
tency occurs when signals and institutional policies are aligned—for
example, when state and local K–12 assessments are coordinated with
the ACT and SAT. In the emerging climate, a simple rule of thumb
will likely apply: the more that incoherent and vague signals are sent
by universities to students, the less adequate student preparation for
higher education will become. Better mathematics articulation will
require basic changes in curriculum policymaking and K–16 integra-
tion. It can be done but will require persistent leadership and institu-
tional structures that provide effective deliberative forums. The
United States has made some initial promising steps but there is still
a long way to go. The incentives for the higher education community
to work with K–12 to develop quantitative literacy are weak, so this
must become a higher priority for college and university presidents,
provosts, deans, and faculty.
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“Get Real!” Assessing for
Quantitative Literacy

GRANT WIGGINS

“OK, people, settle down. It’s time to take out some paper and pencil, we’re going to have a pop quiz
today in Quant. Lit. 101. Stop the groaning please! You have 40 minutes only. As always, you can
consult any resource, including other people in the room, but budget your time wisely and note all
texts and people consulted for each answer. . . . Here are the questions.”

1. What is the meaning of the phrase “statistical tie” in the sentence “The result of the 2000
election in Florida was a statistical tie, even though George Bush was declared the winner”?
Extra credit: Sketch out a mathematically sound and politically palatable solution to the prob-
lem of close elections.

2. Respond to the following claim, made by a student to his geometry teacher: “Well, you may
have proven the theorem today, but we may discover something tomorrow that proves the
theorem wrong.”

3. Guesstimate quickly, please: If you want the most money for your retirement, should you (a)
invest $500 per year in an index-based mutual fund from the time you are 16 years old to the
time you are 30, or (b) invest $1,000 per year in a bank savings account from the time you are
25 until you are 65?

4. Is mathematics more like geography (a science of what is really “out there”) or more like chess
(whose rules and logical implications we just made up)? Did we “discover” the truth that 1 �
1 � 2, or did we “invent” it? Based on our work this semester, give two plausible reasons for each
perspective. Then give your own view, with reasons.

5. Study the data on the last 10 years of AIDS cases in the United States from the newspaper
clipping in front of you. What are two trends for charting future policy?

6. “At current rates of revenue and payout the Social Security fund will be bankrupt by the time
you retire.” Explain how this statement could be both true and false, mathematically speaking,
depending on the definitions and assumptions used.

7. Comment on this proof, please:1

Solve 6x – 10 � 21x – 35 for x.
Solution: 2(3x – 5) � 7(3x – 5)

Therefore 2 � 7

Grant Wiggins is the President and Director of Programs for Relearning by Design, a not-for-profit educational organiza-
tion that consults with schools, districts, and state education departments on a variety of issues, notably assessment and
curricular change. Wiggins is the author of Educative Assessment (1998), Assessing Student Performance (1999), and (with Jay
McTighe) Understanding by Design (2000). Wiggins’ many articles have appeared in such journals as Educational Leadership
and Phi Delta Kappan.
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8. “Hoops” McGinty wants to donate millions of dollars from
his salary and sports-drink earnings toward a special exhibit
in the new Rose Planetarium area of the American Museum
of Natural History in New York. Hoops wants the exhibit to
include a three-dimensional scale model of the solar system
in which the size of the planets and the distance of each
planet from the sun would be exactly to scale. There is a
catch, however: the sun is to be represented by a regulation
NBA basketball. The nervous folks in the gifts department
of the museum call on you because of your expertise in
astronomy and matters of scale. What can you advise
them—quickly—about the feasibility of McGinty’s plan?
What approach will work best to ensure a basketball-related
design in the display?

9. Discuss the following statement, picking a key axiom as an
example to support your observations: “The axioms in any
mathematical system may logically precede the theorems,
but it does not follow (and indeed is not true historically)
that they were all formulated prior in time to the theorems.
Axioms are not self-evident truths. They may even some-
times be less obvious than theorems, and formulated late in
the game. They are necessary ‘givens’, shaped by what we
wish to be able to prove.”

10. Write a memo to the House Education Committee on the
accuracy and implications of the following analysis:

New York Times, August 13, 2001

Rigid Rules Will Damage School
By Thomas J. Kane and Douglas O. Staiger

As school was about to let out this summer, both houses of
Congress voted for a dramatic expansion of the federal role
in the education of our children. A committee is at work
now to bring the two bills together, but whatever the specific
result, the center of the Elementary and Secondary Educa-
tion Act will be identifying schools that are not raising test
scores fast enough to satisfy the federal government and
then penalizing or reorganizing them. Once a school has
failed to clear the new federal hurdle, the local school district
will be required to intervene.

The trouble with this law . . . is that both versions of this bill
place far too much emphasis on year-to-year changes in test
scores. . . . Because the average elementary school has only
68 children in each grade, a few bright kids one year or a
group of rowdy friends the next can cause fluctuations in
test performance even if a school is on the right track.

Chance fluctuations are a typical problem in tracking
trends, as the federal government itself recognizes in gath-

ering other kinds of statistics. The best way to keep them
from causing misinterpretations of the overall picture is to
use a large sample. The Department of Labor, for example,
tracks the performance of the labor market with a phone
survey of 60,000 households each month. Yet now Congress
is proposing to track the performance of the typical Ameri-
can elementary school with a sample of students in each
grade that is only a thousandth of that size.

With our colleague Jeffrey Geppert of Stanford, we studied
the test scores in two states that have done well, investigating
how their schools would have fared under the proposed
legislation. Between 1994 and 1999, North Carolina and
Texas were the envy of the educational world, achieving
increases of 2 to 5 percentage points every year in the pro-
portion of their students who were proficient in reading and
math. However, the steady progress at the state level masked
an uneven, zigzag pattern of improvement at the typical
school. Indeed, we estimate that more than 98 percent of the
schools in North Carolina and Texas would have failed to
live up to the proposed federal expectation in at least one
year between 1994 and 1999. At the typical school, two
steps forward were often followed by one step back.

More than three-quarters of the schools in North Carolina
and Texas would have been required to offer public school
options to their students if either version of the new educa-
tion bill had been in effect. Under the Senate bill a quarter of
the schools in both states would have been required to re-
structure themselves sometime in those five years—by lay-
ing off most of their staffs, becoming public charter schools
or turning themselves over to private operators. Under the
more stringent House bill, roughly three-quarters of the
schools would have been required to restructure themselves.

Both bills would be particularly harsh on racially diverse
schools. Each school would be expected to achieve not only
an increase in test scores for the school as a whole, but
increases for each and every racial or ethnic group as well.
Because each group’s scores fluctuate depending upon the
particular students being tested each year, it is rare to see
every group’s performance moving upward in the same year.
Black and Latino students are more likely than white stu-
dents to be enrolled in highly diverse schools, so their
schools would be more likely than others to be arbitrarily
disrupted by a poorly designed formula. . . .

In their current bills, the House and Senate have set a very
high bar—so high that it is likely that virtually all school
systems would be found to be inadequate, with many
schools failing. And if that happens, the worst schools would
be lost in the crowd. The resources and energy required to
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reform them would probably be dissipated. For these
schools, a poorly designed federal rule can be worse than no
rule at all.2

11. “It is fair to say that no more cataclysmic event has ever
taken place in the history of thought.” Even though we have
not read the text from which this quote comes, mathemati-
cian Morris Kline was referring to a mid-nineteenth-century
development in mathematics. To what was he most likely
making such dramatic reference? Why was it so important
in the history of thought?

* * *

In an essay designed to stimulate thought and discussion on as-
sessing quantitative literacy (QL), why not start with a little con-
crete provocation: an attempt to suggest the content of questions
such an assessment should contain? (Later I will suggest why the
typical form of mathematics assessment—a “secure” quiz/test/
examination—can produce invalid inferences about students’ QL
ability, an argument that undercuts the overall value of my quiz,
too.)

Note that the questions on my quiz relate to the various proposed
definitions of QL offered in Mathematics and Democracy: The Case
for Quantitative Literacy (hereafter “case statement”).3 As part of a
working definition, the case statement identified 10 overlapping
elements of quantitative literacy:

A. Confidence with Mathematics

B. Cultural Appreciation

C. Interpreting Data

D. Logical Thinking

E. Making Decisions

F. Mathematics in Context

G. Number Sense

H. Practical Skills

I. Prerequisite Knowledge

J. Symbol Sense

to which I would peg my quiz questions categorically as follows:

1. Statistical Tie C, E, F, H

2. Fragile Proof A, D, I

3. Investment Estimate E, F, G, H

4. Discover or Invent A, B, D, I

5. AIDS Data C, F, G, I

6. Social Security A, B, D, E, G, H

7. Silly Proof D, I

8. Solar System C, E, F, G, H

9. Axioms and Truth D, I, J

10. Testing Memo C, D, E, F, H

11. Cataclysmic B

If we wish for the sake of mental ease to reduce the 10 overlapping
elements of quantitative literacy to a few phrases, I would propose
two: realistic mathematics in context and mathematics in perspective.
Both of these can be summed up by a familiar phrase: quantitative
literacy is about mathematical understanding, not merely techni-
cal proficiency. Certainly, the call for a more realistic approach to
mathematics via the study of numbers in context is at the heart of
the case for QL. The importance of context is underscored repeat-
edly in Mathematics and Democracy,4 and not only in the case
statement:

In contrast to mathematics, statistics, and most other school
subjects, quantitative literacy is inseparable from its context.
In this respect it is more like writing than like algebra, more
like speaking than like history. Numeracy has no special con-
tent of its own, but inherits its content from its context.5

. . . mathematics focuses on climbing the ladder of abstrac-
tion, while quantitative literacy clings to context. Mathemat-
ics asks students to rise above context, while quantitative
literacy asks students to stay in context. Mathematics is about
general principles that can be applied in a range of contexts;
quantitative literacy is about seeing every context through a
quantitative lens.6

But what exactly is implied here for assessment, despite the surface
appeal of the contrast? To assess QL, we need to make the idea of
“context” (and “realistic”) concrete and functional. What exactly
is a context? In what sense does mathematics “rise above context”
while QL asks students to “stay in context”? Does context refer to
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the content area in which we do QL (as suggested by one of the
essays in Mathematics and Democracy7) or does context refer to the
conditions under which we are expected to use mathematical abil-
ities in any content area? If QL is “more like writing,” should we
conclude that current writing assessments serve as good models for
contextualized assessment? Or might not the opposite be the case:
the contextual nature of writing is regularly undercut by the
canned, bland, and secure one-shot writing prompts used in all
large-scale tests of writing? If context is by definition unique, can
we ever have standardized tests “in context”? In other words, is
“assessing performance in context” a contradiction in terms?

What about assessing for mathematics in perspective, our other
capsule summary of QL? As quiz questions 2, 4, 9, and 11 suggest,
such an assessment represents a decidedly unorthodox approach
to teaching and assessment for grades 10 to 14. Some readers of
this essay no doubt reacted to those questions by thinking, “Gee,
aren’t those only appropriate for graduate students?” But such a
reaction may only reveal how far we are from understanding how
to teach and assess for understanding. We certainly do not flinch
from asking high school students to read and derive important
meaning from Shakespeare’s Macbeth, even though our adult
hunch might be that students lack the psychological and literary
wisdom to “truly” understand what they read. Reflection and
meaning making are central to the learning process, even if it takes
years to produce significant results. Why should mathematics as-
sessment be any different?

In fact, I have often explored questions 4 and 9 on the nature of
“givens” and proof with high school mathematics classes, with
great results, through such questions as: Which came first: a game
or its rules? Can you change the rules and still have it be the same
game? Which geometry best describes the space you experience in
school and the space on the surface of the earth? Then why is
Euclid’s the one we study? In one tenth-grade class, a student with
the worst grades (as I later found out from the surprised teacher)
eagerly volunteered to do research on the history of rule changes in
his favorite sports, to serve as fodder for the next class discussion
on “core” versus changeable rules. (That discussion, coinciden-
tally, led to inquiry into the phrase “spirit versus letter of the
law”—a vital idea in United States history—based on the use of
that phrase in a ruling made by the president of baseball’s Amer-
ican League in the famous George Brett pine-tar bat incident 20
years ago.)

I confess that making mathematics more deliberately meaningful,
and then assessing students’ meaning making (as we do in any
humanities class), is important to me. Although some readers
sympathetic to the case statement may disagree, they only need sit
in mathematics classrooms for a while (as I have done over the past
20 years) to see that too many teachers of mathematics fail to offer
students a clear view of what mathematics is and why it matters

intellectually. Is it any accident that student performance on tests
is so poor and that so few people take upper-level mathematics
courses?

Without anchoring mathematics on a foundation of fascinating
issues and “big ideas,” there is no intellectual rationale or clear goal
for the student. This problem is embodied in the role of the
textbook. Instead of being a resource in the service of broader and
defensible priorities, in mathematics classes the textbook is the
course. I encourage readers to try this simple assessment of the
diagnosis: ask any mathematics student midyear, “So, what are the
few really big ideas in this course? What are the key questions?
Given the mathematics you are currently learning, what does it
enable you to do or do better that you could not do without it?”
The answers will not yield mathematics teachers much joy. By
teaching that mathematics is mere unending symbol manipula-
tion, all we do is induce innumeracy.

Quiz question 11 interests me the most in this regard because,
whether or not I agree with Kline, I would be willing to bet that
not more than one in 100 highly educated people know anything
about the development in question—even if I were to give the
hint of “Bolyai and Lobachevski.” More important, most would
be completely taken aback by Kline’s language: how can any de-
velopment in mathematics be intellectually cataclysmic? (I can say
without exaggeration that I was utterly roused to a life of serious
intellectual work by becoming immersed in the controversies and
discoveries Kline refers to. I had no idea that mathematics could
be so controversial, so thought provoking, so important.)

Regardless of my idiosyncratic St. John’s College experience,
should not all students consider the meaning of the skills they
learn? That is what a liberal education is all about: So what? What
of it? Why does it matter? What is its value? What is assumed?
What are the limits of this “truth”? These are questions that a
student must regularly ask. In this respect, quantitative literacy is
no different from reading literacy: assessment must seek more
than just decoding ability. We need evidence of fluent, thoughtful
meaning making, as Peter T. Ewell noted in his interview in
Mathematics and Democracy.8

Talking about quantitative literacy as part of liberal education
may make the problem seem quaint or “academic” in the pejora-
tive sense. The QL case statement is in fact radical, in the collo-
quial and mathematical sense of that term. As these opening mus-
ings suggest, we need to question the time-honored testing (and
teaching) practices currently used in all mathematics classes. We
are forced to return to our very roots—about teaching, about
testing, about what mathematics is and why we teach it to non-
specialists—if the manifesto on quantitative literacy is to be real-
ized, not merely praised.
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The result of students’ endless exposure to typical tests is a pro-
found lack of understanding about what mathematics is: “Perhaps
the greatest difficulty in the whole area of mathematics concerns
students’ misapprehension of what is actually at stake when they
are posed a problem. . . . [S]tudents are nearly always searching for
[how] to follow the algorithm. . . . Seeing mathematics as a way of
understanding the world . . . is a rare occurrence.”9 Surely this has
more to do with enculturation via the demands of school, than
with some innate limitation.10

Putting it this way at the outset properly alerts readers to a grim
truth: this reform is not going to be easy. QL is a Trojan horse,
promising great gifts to educators but in fact threatening all main-
stream testing and grading practices in all the disciplines, but
especially mathematics. The implications of contextualized and
meaningful assessment in QL challenge the very conception of
“test” as we understand and employ that term. Test “items” posed
under standardized conditions are decontextualized by design.

These issues create a big caveat for those cheery reformers who
may be thinking that the solution to quantitative illiteracy is sim-
ply to add more performance-based assessments to our repertoire
of test items. The need is not for performance tests (also out of
context)—most teacher, state, and commercial tests have added
some—but for an altogether different approach to assessment.
Specifically, assessment must be designed to cause questioning
(not just “plug and chug” responses to arid prompts); to teach
(and not just test) which ideas and performances really matter; and
to demonstrate what it means to do mathematics. The case state-
ment challenges us to finally solve the problem highlighted by
John Dewey and the progressives (as Cuban notes11), namely, to
make school no longer isolated from the world. Rather, as the case
statement makes clear, we want to regularly assess student work
with numbers and numerical ideas in the field (or in virtual real-
ities with great verisimilitude).

What does such a goal imply? On the surface, the answer is obvi-
ous: we need to see evidence of learners’ abilities to use mathemat-
ics in a distinctive and complicated situation. In other words, the
challenge is to assess students’ abilities to bring to bear a repertoire
of ideas and skills to a specific situation, applied with good judg-
ment and high standards. In QL, we are after something akin to
the “test” faced by youthful soccer players in fluid games after they
have learned some discrete moves via drills, or the “test” of the
architect trying to make a design idea fit the constraints of prop-
erty, location, budget, client style, and zoning laws.

Few of us can imagine such a system fully blown, never mind
construct one. Our habits and our isolation—from one another,
from peer review, from review by the wider world—keep mathe-
matics assessment stuck in its ways. As with any habit, the results
of design mimic the tests we experienced as students. The solu-

tion, then, depends on a team design approach, working against
clear and obligatory design standards. In other words, to avoid
reinventing only what we know, assessment design needs to be-
come more public and subject to disinterested review—in a word,
more professional.

This is in fact the chief recommendation for improving mathe-
matics teaching in The Teaching Gap, based on a process used
widely in Japanese middle schools.12 I can report that although
such an aim may at first seem threatening to academic prerogative,
for the past 10 years we have trained many dozens of high school
and college faculties to engage in this kind of group design and
peer review against design standards, without rancor or remorse.
(Academic freedom does not provide cover for assessment mal-
practice: a test and the grading of it are not valid simply because a
teacher says that they are.)

Thus the sweeping reform needed to make QL a reality in school
curriculum and assessment is as much about the reinvention of the
job description of “teacher” and the norms of the educational
workplace as it is about developing new tests. To honor the case
statement is to end the policies and practices that make schooling
more like a secretive and austere medieval guild than a profes-
sion.13 The change would be welcome; I sketch some possibilities
below.

What We Assess Depends on Why
We Assess
Any discussion of assessment must begin with the question of
purpose and audience: for what —and whose—purposes are we
assessing? What are the standards and end results sought and by
whom? What exactly do we seek evidence of and what should that
evidence enable us and the learners to do?

These are not simple or inconsequential questions. As I have ar-
gued elsewhere, in education we have often sacrificed the primary
client (the learner) in the name of accountability.14 Students’
needs too often have been sacrificed to teachers’ need for ease of
grading; teachers’ needs as coach too often have been sacrificed to
the cost and logistical constraints imposed by audits testing for
accountability or admissions. Rather than being viewed as a key
element in ongoing feedback cycles of learning to perform, testing
is viewed as something that takes place after each bit of teaching is
over to see who got it and who did not, done in the most efficient
manner possible, before we move on in the linear syllabus, regard-
less of results.

If there is an axiom at the heart of this argument it is this: assess-
ment should be first and foremost for the learner’s sake, designed
and implemented to provide useful feedback to the learner (and
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teacher-coach) on worthy tasks to make improved performance
and ultimate mastery more likely.15 This clearly implies that the
assessment must be built on a foundation of realistic tasks, not
proxies, and built to be a robust, timely, open, and user-friendly
system of feedback and its use. Assessments for other purposes,
(e.g., to provide efficiently gained scores for ranking decisions,
using secure proxies for real performance) would thus have to be
perpetually scrutinized to be sure that a secondary purpose does
not override the learner’s right to more educative assessment.

We understand this in the wider world. Mathematicians working
for the U.S. Census Bureau are paid to work on situated problems
on which their performance appraisals depend. We do not keep
testing their mathematical virtuosity, using secure items, to deter-
mine whether they get a raise based merely on what they know.
Athletes play many games, under many different conditions, both
to test their learning and as an integral part of learning. I perform
in concert once a month with my “retro” rock band the Hazbins to
keep learning how to perform (and to feel the joy from doing so);
a score from a judge on the fruits of my guitar lessons, in isolated
exercises, would have little value for me. The formal challenge is
not an onerous extra exercise but the raison d’être of the enter-
prise, providing educational focus and incentive.

Yet, most tests fail to meet this basic criterion, designed as they are
for the convenience of scorekeepers not players. Consider:

● The test is typically unknown until the day of the assessment.

● We do not know how we are doing as we perform.

● Feedback after the performance is neither timely nor user
friendly. We wait days, sometimes weeks, to find out how we
did; and the results are often presented in terms that do not
make sense to the performer or sometimes even to the teacher-
coach.

● The test is usually a proxy for genuine performance, justifiable
and sensible only to psychometricians.

● The test is designed to be scored quickly, with reliability,
whether or not the task has intellectual value or meaning for
the performer.

In mathematics, the facts are arguably far worse than this dreary
general picture suggests. Few tests given today in mathematics
classrooms (be they teacher, state, or test-company designed) pro-
vide students with performance goals that might provide the in-
centive to learn or meaning for the discrete facts and skills learned.
Typical tests finesse the whole issue of purpose by relying on items
that ask for discrete facts or technical skill out of context. What
QL requires (and any truly defensible mathematics program

should require), however, is assessment of complex, realistic,
meaningful, and creative performance.

Whether or not my particular opening quiz questions appeal to
you, I hope the point of them is clear: Evidence of “realistic use,”
crucial to QL, requires that students confront challenges like those
faced in assessment of reading literacy: Hmm, what does this
mean? What kind of problem is this? What kind of response is
wanted (and how might my answer be problematic)? What is
assumed here, and is it a wise assumption? What feedback do I
need to seek if I am to know whether I am on the right track?16

Assessment of QL requires tasks that challenge the learner’s judg-
ment, not just exercises that cue the learner.

The same holds true for assessing students’ understanding of
mathematics in perspective. Students may be able to prove that
there are 180 degrees in any triangle, but it does not follow that
they understand what they have done. Can they explain why the
proof works? Can they explain why it matters? Can they argue the
crucial role played by the parallel postulate in making the theorem
possible, the 2000-year controversy about that postulate (and the
attempts by many mathematicians to prove or alter it), and the
eventual realization growing from that controversy that there
could be other geometries, as valid as Euclid’s, in which the 180-
degree theorem does not hold true?

As it stands now, almost all students graduate from college never
knowing of this history, of the existence of other valid geometries,
and of the intellectual implications. In other words, they lack
perspective on the Euclidean geometry that they have learned.
When they do not really grasp what an axiom is and why we have
it, and how other systems might and do exist, can they really be
said to understand geometry at all?

What is at stake here is a challenge to a long-standing habit con-
veyed by a system that is not based on well-thought through
purposes. This custom was perhaps best summarized by Lauren
Resnick and David Resnick over 15 years ago: “American students
are the most tested but the least examined students in the
world.”27 As the case statement and the Resnick’s remark suggest,
what we need is to probe more than quiz, to ask for creative
solutions, not merely correct answers.18

What Is Realistic Assessment and
Why Is It Needed?
Regardless of the nettlesome questions raised by the call for im-
proved quantitative literacy, one implication for assessment is
clear enough: QL demands evidence of students’ abilities to grap-
ple with realistic or “situated” problems. But what is unrealistic
about most mathematics tests if they have content validity and tap
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into skills and facts actually needed in mathematics? The short
answer is that typical tests are mere proxies for real performance.
They amount to sideline drills as opposed to playing the game on
the field.

The aims in the case statement are not new ones. Consider this
enthusiastic report about a modest attempt to change college ad-
missions testing at Harvard a few years back. Students were asked
to perform a set of key physics experiments by themselves and
have their high school physics teacher certify the results, while also
doing some laboratory work in front of the college’s professors:

The change in the physics requirement has been more radical
than that in any other subject. . . . For years the college re-
quired only such a memory knowledge of physical laws and
phenomena as could be got from a . . . textbook. . . . [U]nder
the best of circumstances the pupil’s thinking was largely
done for him. By this method of teaching . . . his memory was
loaded with facts of which he might or might not have any
real understanding, while he did very little real thinking. . . .
This was a system of teaching hardly calculated to train his
mind, or to awaken an interest in [physics].

How different is the present attitude of the college! It now
publishes a descriptive list of forty experiments, covering the
elementary principles of mechanics, sound, light, heat, and
electricity. These, so far as possible, are quantitative experi-
ments; that is, they require careful measurements from which
the laws and principles of physics can be reasoned out.
Where, for any reason, such measurements are impossible,
the experiments are merely illustrative; but even from these
the student must reason carefully to arrive at the principles
which they illustrate. The student must perform these exper-
iments himself in a laboratory, under the supervision of a
teacher. He must keep a record of all his observations and
measurements, together with the conclusions which he draws
from them. The laboratory book in which this record is kept,
bearing the certificate of his instructor, must be presented for
critical examination when he comes to [the admissions of-
fice]. In addition to this, he is tested by a written paper and by
a laboratory examination.19

This account was written about Harvard in the Atlantic Monthly—
in 1892! We know what happened later, of course. The College
Board was invented to make admissions testing more streamlined
and standardized (and thereby, it must be said, more equitable for
students around the country, as well as less of a hassle for colleges),
but at another cost, as it turns out.

Although the century-old physics test may not have been situated
in a real-world challenge, it was a noble attempt to see if students
could actually do science. This is surely where assessment for QL

must begin: Can the student do mathematics? Can the student
confront inherently messy and situated problems well? That is a
different question from “does the student know various mathe-
matical ‘moves’ and facts?”

Some folks have regretted or resented my long-time use of the
word “authentic” in describing the assessments we need.20 But the
phrase remains apt, I think, if readers recall that one meaning of
authentic is “realistic.” Conventional mathematics test questions
are not authentic because they do not represent the challenges
mathematicians face routinely in their work. As noted above, a
mathematics test is more like a series of sideline drills than the
challenge of playing the game. In fact, mathematics tests are no-
toriously unrealistic, the source of unending jokes by laypersons
about trains heading toward each other on the same track, and the
source of the wider world’s alienation from mathematics. (Re-
search is needed, I think, to determine whether simplistic test
items are so abstracted from the world as to be needlessly hard for
all but the symbolically inclined.)

How should we define “realistic”?21 An assessment task, problem,
or project is realistic if it is faithful to how mathematics is actually
practiced when real people are challenged by problems involving
numeracy. The task(s) must reflect the ways in which a person’s
knowledge and abilities are tested in real-world situations. Such
challenges

● ask us to “do” the subject. Students have to use knowledge and
skills wisely and effectively to solve unstructured problems,
not simply grind out an algorithm, formula, or number.

● require judgment and innovation. Instead of merely reciting,
restating, or replicating through demonstration the lessons
taught and skills learned, students have to explore projects in
mathematics, using their repertoire of knowledge and skills.

● reflect the contexts in which adults are tested in the workplace, in
civic life, and in personal life. Contexts involve specific situa-
tions that have particular constraints, purposes, and audi-
ences.

● allow appropriate opportunities to rehearse, practice, consult re-
sources, solicit feedback, refine performances, and revise products.
Secrecy, enforced quiet, solitary work, and other artificial
constraints imposed by large-scale testing are minimized.

Nothing new here. Benjamin Bloom and his colleagues made the
same point almost 50 years ago, in their account of application
and synthesis:

[S]ituations new to the student or situations containing new
elements as compared to the situation in which the abstrac-
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tion was learned . . . . Ideally we are seeking a problem which
will test the extent to which an individual has learned to apply
the abstraction in a practical way.22 . . . [A] type of divergent
thinking [where] it is unlikely that the right solution to a
problem can be set in advance.23

In later materials, Bloom and his colleagues characterized synthe-
sis tasks in language that makes clearer what we must do to make
the assessment more realistic:

The problem, task, or situation involving synthesis should be
new or in some way different from those used in instruction.
The students . . . may have considerable freedom in redefin-
ing it. . . . The student may attack the problem with a variety
of references or other available materials as they are needed.
Thus synthesis problems may be open-book examinations, in
which the student may use notes, the library, and other re-
sources as appropriate. Ideally synthesis problems should be
as close as possible to the situation in which a scholar (or
artist, engineer, and so forth) attacks a problem he or she is
interested in. The time allowed, conditions of work, and
other stipulations, should be as far from the typical, con-
trolled examination situation as possible.24

Researcher Fred Newmann and his colleagues at the University of
Wisconsin have developed a similar set of standards for judging
the authenticity of tasks in assessments and instructional work and
have used those standards to study instructional and assessment
practices around the country.25 In their view, authentic tasks re-
quire:

CONSTRUCTION OF KNOWLEDGE

1. Student organization of information (higher-order skills)

2. Student consideration of alternatives

DISCIPLINED INQUIRY

3. Core disciplinary content knowledge required

4. Core disciplinary processes required

5. Elaborated written communications required to expand un-
derstanding

VALUE BEYOND SCHOOL

6. Problems are connected to the world beyond the classroom

7. An audience beyond the school is involved

What do such tasks look like? Compare Figures 1 and 2 below.
Figure 1 shows various test questions on an eighth-grade state
mathematics test. Six test “items” (the four below and two others)
make up the entire set of questions used to assess against the state
standard for the students’ knowledge of volume. Figure 2 shows
an example of a situated performance that requires students to use
their understanding of that same knowledge effectively. (The sec-
ond test does not replace the first test; it supplements it.)

Let us cast this contrast in terms of validity of inference. We are
being asked to consider: what can we infer from good performance
on the four test items? I would certainly grant the conventional
premise that a student who gets most of these questions right is
more likely to have control over the discrete skills and facts of this
sub-domain than a student who gets most of them incorrect.

What about evidence of QL? Can we infer the likelihood that a
student who got all the state test questions correct will likely do
well on the second contextualized problem? Not a very plausible
inference, I would claim, backed in part by data from a pilot
mathematics portfolio project we ran for the Commission on
Standards and Accountability in 15 districts that took the state
test that had these test items.26 The scores on the task in Figure 2
were low across the board—averaging 2 on a rubric scale of 6, with
little range in scores within and across quite varied districts. This
is not what we would expect, and it underscores the validity prob-
lems lurking in an exclusive reliance on conventional test items.

The second approach permits us to see evidence of the student’s
thoughtful use of knowledge and skill. It does not obviate the need
for the traditional items. But it is simply untrue, as many people
defending the status quo claim, that in light of the first test, the
second is unnecessary—and especially not worth the hassle and
expense.
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Realism and Context
Ultimately, realism hinges on situational fidelity—context—not
merely whether the task is open-ended or “hands on.” QL assess-
ment asks: Can you draw on a rich repertoire to address this
complicated problem, mindful of the particular—perhaps
unique—features of context? The packaging example in Figure 2
(and QL aims more generally) seek evidence of students’ under-
standing in situations, not their technical skills in isolation. “Do
you understand what to do here, in this new situation, and why
that approach might work?” “Do you grasp the significance of
both the problem and the answer?” “Can you generalize from your
experience, and how might that generalization be flawed or too
sweeping?” These are the kinds of questions we must ask in the
assessment of QL. It is, after all, what we mean by “transfer,” the
Holy Grail in education.

Our failure to attend to contextualization in mathematics educa-
tion can lead to humorous results. Consider the infamous Na-
tional Assessment of Educational Progress (NAEP) bus problem:
“An army bus holds 36 soldiers. If 1128 soldiers are being bused to
their training site, how many buses are needed? Only 24 percent of
eighth graders could answer it correctly. Alas, about the same
percentage of the respondents answered “31 remainder 12.” No
story better illustrates the habits of teaching, testing, and learning
whereby mathematics floats in a netherworld of unmoored ab-
stractions.

Context matters, so it must come to matter in day in and day out
assessment. Let us have unending problems that force students to
ponder its impact. Consider, for example, how the particulars of
the situation affect the use of mathematics in the following prob-
lem:

Manufacturers want to spend as little as possible, not only on
the product but also on packing and shipping it to stores.
They want to minimize the cost of production of their pack-
aging, and they want to maximize the amount of what is
packaged inside (to keep handling and postage costs down:
the more individual packages you ship the more it costs).

Suppose you are an engineer for M&M’s. The manager of the
shipping department has found the perfect material for ship-
ping (a piece of poster board you will be given). She is asking
each engineering work group to help solve a problem: What
completely closed container, built out of the given materials, will
hold the largest volume of M&M’s for safe and economical ship-
ping?

You will need to prove to company executives that the shape
and dimensions of your group’s container idea maximize the

volume. You will need to turn in a convincing written report
to the managers, making your case and supplying all impor-
tant data and formulas. Build multiple models out of the
material to illustrate your solution. The models are not proof;
they will illustrate the claims you will offer in your report.
Your group will also be asked to make a three-minute oral
report at the next staff meeting. The reports will be judged for
accuracy, thoroughness, and persuasiveness.

Merely providing the correct mathematical answers is beside the
point here. We might say without stretching the truth too much
that the seemingly correct mathematics answer (the sphere) is the
wrong answer here. In fact, I have seen seventh graders provide
better answers to this problem than calculus students, with more
insight yet limited tools.

Realism thus is not merely about access to performance-based test
questions. Realism refers more to verisimilitude of content-pro-
cess-situation-task-goal constraints. Most performance-based test
questions are typically unrealistic because they strip context to a
bare minimum, in the service of isolating the skills to be tested. To
focus on context is to do justice to the fluid, ambiguous, and
ill-structured situations in which typical adult performance invari-
ably occurs, in which the answer is often “Well, it depends . . . or
“Well, if . . . then . . . else . . . then . . .”

The humor in the NAEP bus problem should not blind us to the
harm of failing to assess in contexts. Decontextualized training
and assessment lead to unfortunate, even fatal results. Consider
this complaint, made a few years back in a federal report criticizing
the testing program of a national organization: “These programs
are lacking in ‘real world’ scenarios and result in non-thinking
performance, where the ability of the student to demonstrate a
mastery of complex problems, good judgment, situational aware-
ness, . . . and leadership skills have all been removed.” The sober-
ing fact is that this is not an accrediting report about a school’s
program but a Federal Aviation Administration (FAA) report con-
cerning deficiencies in the annual pilot testing and rectification
program for a major U.S. airline. It is even more sobering to realize
that the FAA is criticizing the airline for its use of airplane simu-
lators in annual re-certification testing—a challenge more realistic
than almost all school testing in mathematics today.27

How then should we proceed with our design work? Context is
usefully addressed in assessment by reference to the mantra at the
heart of process writing: worry about specific purpose and audi-
ence. Realistic challenges always have real (or virtual) purposes
and real (or virtual) audiences. We can add other criteria and set
out questions that can be used as design standards for the building
of context in QL assessment:
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● Is there an overriding performance goal to guide action that is
obvious to the student?

● Is there a distinct audience for the work whose needs and
feedback can appropriately focus the work and adjustments
en route?

● Are the options and constraints in the task realistic or arbi-
trary?

● Are appropriate resources available? Does the task require an
efficient as well as effective use of notes, materials, and reper-
toire of skills and concepts?

● Is secrecy concerning performance goals, possible strategy,
criteria, and standards minimized?

● Is the setting realistically noisy and messy—sufficiently ill-
structured and ill-defined that the learner must constantly
consider what the question really is and what the key variables
are?

● Are there apt opportunities to self-assess, to get lots of feed-
back, and to self-adjust en route as needed?

In The Understanding by Design Handbook, we summarize these
design questions by the acronym GRASPS:

● What is the performer’s goal in this scenario? What must he or
she accomplish?

● What role does the performer play in this situation?

● Who is the primary audience for the performer’s work?

● What is the situation? What conditions/opportunities/con-
straints exist?

● What are the particular performances/products that must be
produced?

● Against what standards and criteria will the work be judged?28

We also developed a six-faceted view of how understanding (in
context) manifests itself.29 For example, when we truly under-
stand, we

● Can explain, make connections, offer good theories: We can
make sense of what we experience. We can “show our work”
and defend it. We can provide thorough, supported, and
justifiable accounts of phenomena, facts, and data. We can
answer such questions as: Why is that so? What explains such

events? What accounts for such an effect? How can we prove
it? To what is this connected? How does this work? What is
implied? Why do you think so?

● Can interpret: Tell meaningful stories; offer apt translations;
provide a revealing historical or personal dimension to ideas
and events; make it personal or accessible through images,
anecdotes, analogies, models. We can answer such questions
as: What does it mean? Why does it matter? What of it? What
does it illustrate or illuminate in human experience? How
does it relate to me? What does and does not make sense here?

● Can apply: Effectively use and adapt what we know in diverse
contexts. We can answer such questions as: How and where
can we use this knowledge, skill, process? In what ways do
people apply this understanding in the world beyond the
school? How should my thinking and action be modified to
meet the demands of this particular situation?

● Have perspective: See multiple points of view, with critical eyes
and ears; see the big picture. We can answer such questions as:
From whose point of view? From which vantage point? What
is assumed or tacit that needs to be made explicit and consid-
ered? How is this justified or warranted? Is there adequate
evidence? Is it reasonable? What are the strengths and weak-
nesses of the idea? Is it plausible? What are its limits?

● Can empathize: Get inside, find value in what others might
find odd, alien, or implausible; perceive sensitively, enter the
mind and heart of others. We can answer such questions as:
How does it seem to you? What do they see that I do not?
What do I need to experience if I am to understand? What was
the artist, writer, or performer feeling, seeing, and trying to
make me feel and see?

● Show self-knowledge: Perceive the personal style, prejudices,
projections, and habits of mind that both shape and impede
our own understanding; we are aware of what we do not
understand, why it is so hard to understand. What are my
blind spots? What am I prone to misunderstand because of
prejudice, habit, style? How does who I am influence how I
understand and do not understand?

As this summary suggests, the idea of “context” is inseparable from
what it means to understand. Three of the six facets described
above explicitly warn us to attend to context: application, perspec-
tive, and empathy. Other colloquial language also makes this
clear. We want students to develop tact in the older sense of that
term as used by William James in his Talks to Teachers: “sensitivity
to the demands of the particular situation”30 Thus, I would argue,
understanding is a usefully ambiguous term: it properly asks us to
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consider both the intellectual content and the interpersonal wis-
dom needed here, now, in this case.

Thus the goal in assessing QL is not merely to determine whether
students can use mathematical knowledge in problems but
whether they can communicate with others about that under-
standing and be held accountable for the consequences of the use
of their knowledge. Our failure to assess using real-world conse-
quences of the work itself and to assess students’ defense of their
choices and results (as opposed to giving an answer and waiting for
scores returned by teachers or test companies) may explain a ubiq-
uitous phenomenon that greatly angers the general public: stu-
dents’ failure to take an adequate interest in work quality and
results.

Here is a vivid example of the problem. A graphics design teacher
at a vocational high school brought in a real potential client for
design jobs, and the students were asked to bid on the work by
providing mock-ups and price quotes. They listened to the man
explain his product needs, they went to work (without asking
questions), and they worked very hard, much harder than usual, to
produce what they thought he wanted. He came back the next
week, inspected the work, and politely turned down all the efforts.
The students’ reaction? Anger. “We worked so hard!. . .” Yes, but
did they ever check with the client to make sure they were on the
right track? Did they put a variety of design styles before the client
to tease out his tastes, as all good designers do? No. The teacher
had taught these students technical skills but not how to accom-
plish results in the marketplace. This illustrates the need to take
seriously all six facets of contextual understanding. To find evi-
dence of students’ understanding, we need problems that require
such understanding.

Consider the following transformations of a conventional high
school unit, based on a well-known textbook, to see how assess-
ment of course content can be approached more contextually
without sacrificing rigor:

THE ORIGINAL UNIT, SUMMARIZED:

Topic: Surface Area and Volume (geometry)
Knowledge and skill sought:

● How to calculate surface area and volume for various three-
dimensional figures

● Know and use Cavalieri’s Principle to compare volumes

● Know and use other volume and surface area formulas to
compare shapes

Assessments, all derived from the University of Chicago School
Mathematics Project geometry textbook:

● Odd-numbered problems in Chapter 10 Review, pp. 516–
519

● Progress self-test, p. 515

● Homework: each third question in the sub-chapter reviews

● Completion of one “exploration”

● Exploration 22, p. 482—“Containers holding small amounts
can be made to appear to hold more than they do by making
them long and thin. Give some examples.”

● Exploration 25, p. 509—“Unlike a cone or cylinder, it is
impossible to make an accurate two-dimensional net for a
sphere. For this reason, maps of earth are distorted. The Mer-
cator projection is one way to show the earth. How is this
projection made?”

The assessments, revised:

● Consult to the United Nations on the least controversial two-
dimensional map of the world, after having undertaken Ex-
ploration 22.

● Investigate the relationship of the surface areas and volume of
various containers (e.g., tuna fish cans, cereal boxes, Pringles,
candy packages, etc.). Do they maximize volume? Minimize
cost? If not, why not? Consider what nonmathematical vari-
ables determine container shape and size.

What we are really seeking evidence of in context-bound assess-
ment is a combination of technical skill and good judgment in its
use. A “good judge,” said Dewey, “has a sense of the relative values
of the various features of a perplexing situation,” has “horse
sense,” has the capacity to “estimate, appraise, and evaluate,” and
has “tact and discernment.” Those who judge well, whether it be
in matters of numeracy or human interaction, bring expertise to
bear intelligently and concretely on unique and always incom-
pletely understood events. Thus, merely “acquiring information
can never develop the power of judgment. Development of judg-
ment is in spite of, not because of, methods of instruction that
emphasize simple learning. . . . [The student] cannot get power of
judgment excepting as he is continually exercised in forming and
testing judgments.”31
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It is noteworthy that fields with the incentive to better merge
theory and praxis (engineering, medicine, business, law, etc.) have
gravitated to the case- or problem-based learning method of in-
struction and assessment, in which context is key. Yet, it is still rare
in mathematics testing to ask students to confront questions such
as quiz questions 1, 3, 5, and 6 until very late in a mathematics
career, if at all.

Why is this so? I believe part of the answer is a tacit (and false)
learning theory that dominates mathematics education, which
might be vocalized as follows: “First, you have to learn all the
basics, in the logical order of the elements (thus disconnected
from experiential and historical context), using only paper and
pencil; then you can ask important questions and confront ‘real’
problems.” By that argument, of course, we would never allow
little kids to play the difficult game of soccer until years of desk-
bound study or let medical students make rounds to see patients.
This is simply un-thought through pedagogy—a bad habit—
abetted by overreliance on textbooks, built as they are on the logic
of mathematics ideas instead of the logic of pedagogy to maximize
the understanding of those ideas.32

In no area of human performance is it true that years of drills and
facts must precede all attempts to perform. That view is truly
premodern. And as noted above, the validity of tests that follow
from this assumption is open to question: evidence of competence
cannot be had from exclusive reliance on results from “sideline
drills,” for the same reason that ability to cite the textbook mean-
ing of a symptom is not an accurate predictor of performance
ability in medicine.

Assessment of QL requires challenges that are essentially not well
structured or even well defined; problems that are, well, problem-
atic. As in book literacy, evidence of students’ ability to play the
messy game of the discipline depends on seeing whether they can
handle tasks without specific cues, prompts, or simplifying scaf-
folds from the teacher-coach or test designer. In QL, students
confront situations that have no signs pointing to the right algo-
rithm or solution path. This raises havoc with traditional psycho-
metrics because it is the exact opposite of an effective test “item.”

Because real problems are messy and not amenable to unequivocal
final answers, we need to see how students respond to such uncer-
tainties metacognitively. A realistic assessment would thus always
ask for a self-assessment. “How well did your proposed answer or
solution work? What were the strengths and weaknesses of that
approach? What adjustments need to be made, based on your
approach and the resultant effects?” Unless they confront such
questions, students will continue to exit formal schooling with the
belief that merely giving back what was taught is a sufficient indi-
cator of numeracy, or believing that performance is a ritual re-
sponse to an academic prompt. This is why Norm Frederiksen, a

former senior researcher at Educational Testing Service, declared
that the real bias of the SAT was not related to content but to
format: the neat and clean character of test items versus the messy
and uncertain character of the challenges put before us in life.33

Genuine fluency always demands creativity, not “plug and chug.”
It is worth recalling that Bloom and his colleagues (who developed
the Taxonomy of Educational Objectives) described “synthesis” as
always “creative,” and “application” as requiring “novel situations
or problems.”34 Fifty years on, the Taxonomy still has not achieved
its purpose. Two generations (or more) of mathematics educators
have misunderstood what Bloom meant. Understanding why
must be part of the QL agenda, too. Usiskin speculated in Math-
ematics and Democracy that the problem is training. Most teachers
think of “application” as “word problems”:

The many examples of the need for quantitative literacy of-
fered in the case statement can easily lead us to wonder why so
little has been accomplished. I believe the problem relates in
part to a perception by the majority of mathematics teachers
about the “word problems” or “story problems” they studied
in high school. . . . These problems have little to do with real
situations and they invoke fear and avoidance in many stu-
dents. So it should come as no surprise that current teachers
imagine that “applications” are as artificial as the word prob-
lems they encountered as students, and feel that mathematics
beyond simple arithmetic has few real applications.35

We see the urgency of this issue more clearly now in the fallout
from the disputed Florida election results. The idea of “margin of
error” was made real and high stakes; the consequences of failing
to consider the lessons of past, close local elections have come back
to haunt us. (In retrospect, it seems amazing that there was no
procedure for considering a very close election as a statistical tie
that then would call forth additional means for fairly filling the
office in question.) The consequences of a person’s work need to
be felt in context—in the same way they are on the playing field or
in the auditorium. A challenge, then, is to engineer assessment so
that students have far more direct and powerful experiences of the
actual effects of their work—on themselves, on other people, and
on situations, be they real or virtual. We need an intellectual
Outward Bound, as I like to call it, or better assessment software
that is more like Oregon Trail than Reader Rabbit.

Core Assessment Tasks
Because so few current mathematics assessments seem to pass
muster, I would propose that we commission a national team of
experts to develop the equivalent of the Olympic decathlon in
mathematics: 100 key tasks, forming the mathematics “centalon.”
The parallel is apt. Around the time Harvard was trying out its
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new physics performance tests, the modern Olympics were being
invented. One of the challenges faced was an assessment problem
related to our concern. The task was to design a performance test,
over a few days, for well-rounded “athleticism” in all its manifes-
tations, with no favoritism given to speed, strength, hand-eye
coordination, or stamina. Thus, the decathlon.

What would be the equivalent in mathematics? We need to know:
too few teachers can today answer these questions: What are the
most important and representative problems in mathematics?
What types of complex challenges should we seek evidence of to
deem a graduate quantitatively literate? What might be 100 per-
formances at the heart of QL in which high school students and
college underclassmen should be certified, along the 1892 Har-
vard model? What genres of problems (again to use the parallel
with reading and writing literacy) sum up the domain of real
performance that a highly literate person should be able to master?
Too much of the reform debate has been cast in terms of mathe-
matics content. In light of the bad habits and lack of imagination
in mathematics assessment, we need a sage account of priority
performances and situations.

Lauren Resnick and her colleagues in the New Standards project
developed an answer a few years back. Beyond the mix of open-
ended and constructed-response questions developed for the stan-
dardized examinations, there is a mathematics portfolio to be
assembled by students locally. Each student submits evidence of
work in conceptual understanding of number and operation, ge-
ometry and measurement, and functions and algebra; and exhibits
in problem solving, data study, mathematical modeling, design of
a physical structure, management and planning, pure mathemat-
ical investigation, and history of a mathematical idea. In addition,
students provide evidence of 12 discrete skills (e.g., “know how to
write a simple computer program to carry out computations to be
repeated many times”).36 Apropos the issue of context, under
design of a physical structure the guidelines say: “Show that you
can design a physical structure that meets given specifications . . .
[and] explain how your design meets its purpose and how it can be
built within constraints (physical, functional, budgetary, aes-
thetic).”

An ironic weakness in this approach is that the evidence sought
was framed by a very broad-brush and context-less set of guide-
lines, with no reference to any specific big ideas, core content, or
key situations. For example, the guidelines under problem solving
say, “Show that you can formulate a variety of meaningful prob-
lems . . . use problem-solving strategies to solve non-routine and
multi-step problems . . .”—without offering any examples or cri-
teria as to what such problems are. We also gain no sense here of
the key questions that lie at the heart of thoughtful numeracy.

Questions offer a key doorway into identifying bigger ideas and
more meaningful work. In Understanding by Design,37 we coach
faculties in developing “essential questions” for all units, courses,
and programs as a way to focus their teaching on more justified
intellectual priorities. Sadly and predictably, mathematics teach-
ers have the hardest time of any group doing the work. Indeed,
more than a few mathematics teachers have told me there are no
big ideas in mathematics. It is a “skills” discipline, they say.38

Here, for example, is a draft curricular unit in algebra from a
veteran teacher who was trying for the first time to organize his
lessons around big ideas:

Course Title: Integrated Mathematics1
Topics: Linear Equations, Linear Graphs

Understandings:
First degree equations give linear graphs.
Intercepts are zeros.
Slope intercept form (y � mx � b).
Standard form (Ax � By � C).

Essential Questions:
What does slope measure?
How is slope calculated?
How do you graph a line from an equation?
How do you write an equation of a line from a graph?

We look in vain here for meaningful issues and challenges that
might stimulate student thought or inquiry. But change is occur-
ring. Consider the following responses to a design exercise by a
small group of high school mathematics teachers:

Unit goal, with reference to big idea: Students will understand
measures of tendency (and other methods for grading, voting, and
ranking)

Thought-provoking questions on unit goal:

1. By what mathematical method should grading and rankings
be done to be most fair?

2. Should voters be allowed to rank order candidates? Are there
defensible alternatives to our voting system?

3. Is the mathematically sound solution always the most objec-
tively fair solution?

Predictable misunderstandings:

1. Computing the “average” or “majority” is the only fair
method
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2. Mathematics cannot help us resolve differences of opinion
about fairness

Interesting investigations:

1. Saylor point system in soccer standings

2. Distributive and rank order voting

3. New grading systems for students (median/standard devia-
tion/throw out high and low, etc.)

Or, consider these thought-provoking and perspective-providing
questions generated by the mathematics department at the Tilton
School, based on a multiyear effort focused on Understanding by
Design:39

Do mathematical ideas exist separate from the person who under-
stands and can communicate them?

1. What is a quantifiable idea? Is any idea quantifiable? If not,
when and why not?

2. How do we determine what makes mathematical ideas true,
proven, and/or usable?

3. How do we use mathematical ideas to decipher and explain
the world we live in?

4. In what ways is mathematical thinking and logic applicable
outside the realm of mathematics? What are the limits or
dangers of that extension, if any?

5. In what ways is mathematics rigid, fixed, and systematic? In
what ways is mathematics aesthetic, elegant, flexible, and ever
expanding?

The Tilton mathematics faculty have committed to address these
questions in all their courses. The Understanding by Design model
requires that the questions be matched by assessments and en-
abling lessons to ensure that the questions are not idle but integral.

It Is Not the Problems But What We
Score that Ultimately Matters
Even the most wonderful, realistic challenges are ruined by foolish
scoring and grading practices. Perhaps nothing reveals the need
for fundamental reform in mathematics more than the propensity
of teachers to use simplistic scoring on one-time test items: the
answer is either right or wrong (with partial credit sometimes
granted, although with no explicit criteria for points taken off).

But if all understanding is a matter of degree, existing along a
continuum and subject to disagreement (we can have different
understandings of the same problem), there is much teacher bag-
gage to throw overboard in giving grades and scores. If we seek
evidence of a student’s explanation of confusing data, what does a
range of explanations look like—from the most simplistic to the
most sophisticated on any of my 11 quiz questions? For example,
what does a novice understanding of Hoops McGinty’s basketball
planetarium problem of scale or the retirement funds problem
look like compared with a sophisticated answer?

We can ask such questions meaningfully precisely because the
proposed test questions are by design not technique-unique, un-
like almost all current mathematics test questions. QL questions
can be asked of high school sophomores or college seniors, with
profit, just as writing prompts and soccer games can be used from
K–16. We find that when we assess this way, some students with
less technical skill propose better solutions than students with
more advanced technical knowledge, as in the M&M’s problem.
We would expect such results if we were assessing for QL, just as
we expect and actually find some younger performers in writing
whose language is less developed but more powerful than that of
older students with more schooling and vocabulary under their
belts.

But are teachers of mathematics ready to think this way? Consider
the following two student answers to the same problem to see how
even an experienced teacher of twelfth-grade mathematics can
have difficulty escaping our common habits of testing and grad-
ing:

Consider an ice cream sugar cone, 8 cm in diameter and 12
cm high, capped with an 8 cm in diameter sphere of luscious
rich triple-chocolate ice cream. If the ice cream melts com-
pletely, will the cone overflow or not? How do you know—
explain your answer.

Answer 1: We must first find the volume of the cone and the ice
cream scoop:

vcone � (1/3)�r2h

� (1/3)� 42 � 12

� 201.06 cm3

vscoop � (4/3)�r3

� (4/3)� � (4)3

� (4/3) � 201.06 cm3

� 268.08 cm3
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We now see that the scoop of ice cream has a volume that is well
over 50 cm more than the cone’s volume. Therefore it is unlikely
that the melted ice cream could fit completely inside the cone.
However, as all ice cream lovers like myself know, there is a certain
amount of air within ice cream [therefore experiments would have
to be done].

Answer 2: Obviously, the first thing to do would be to plug in the
values in the equations for the volume of a cone and sphere [the
student performs the same calculations as above]. From this we
can see that the ice cream will not fit in the cone.

Now I will compare the two formulas:

(4/3) �r3 � (1/3)�r2h

4�r3 � �r2h

4�r � �h

4r � h

From this final comparison, we can see that if the height of the
cone is exactly 4 times the radius, the volumes will be equal . . .
[The student goes on to explain why there are numerous questions
about ice cream in real life that will affect the answer, e.g., Will the
ice cream’s volume change as it melts? Is it possible to compress ice
cream?, etc. He concludes by reminding us that we can only find
out via experiment.]

The second explanation is surely more sophisticated, displaying a
number of qualities we seek in QL (e.g., attention to context,
comfort with numbers and data). The student’s analysis is mature
in part because it subsumes the particular mathematics problem
under a broader one: under what conditions are the volumes of
different shapes equal? In the first case, all the student has done is
calculate the volumes based on the formulas and the given num-
bers. The second explanation is mature and indicative of under-
standing by showing perspective: the student has written a narra-
tive as if he were explaining himself to his teacher—mindful, in a
humorous way, of audience and purpose.

Nonetheless, the teacher in question gave these two papers the
same grade. Both papers gave the correct mathematical answer,
after all. Even more alarming, the second paper was given lower
grades than the first paper by a slight majority of middle school
mathematics teachers (who seemed to take offense at the student’s
flippancy) in a national mathematics workshop a few years ago.

Of course, when scoring criteria are unclear, arbitrariness sets
in—usually in the form of scoring what is easiest to see or scoring
based on the teacher’s unexamined and semiconscious habits.
That is why learning to score for inter-rater reliability (as is done

with Advanced Placement essays and in state and district tests) is
such a vital part of any successful reform effort. Yet over 50 per-
cent of teachers of mathematics in our surveys argued that rubrics
are “not needed” in mathematics and that, in any event, such
scoring is “too subjective.”

What if mathematics teachers routinely had to use multiple crite-
ria with related rubrics in the assessment of performance? Here are
five possible criteria, with the top-level descriptor from each rubric
(used in the pilot statewide performance assessments in North
Carolina, mentioned above) 40:

● Mathematical Insight. Shows a sophisticated understanding of
the subject matter involved. The concepts, evidence, argu-
ments, qualifications made, questions posed, and/or methods
used are expertly insightful, going well beyond the grasp of
the topic typically found at this level of experience. Grasps the
essence of the problem and applies the most powerful tools for
solving it. The work shows that the student is able to make
subtle distinctions and to relate the particular problem to
more significant, complex, and/or comprehensive mathemat-
ical principles, formulas, or models.

● Mathematical Reasoning. Shows a methodical, logical, and
thorough plan for solving the problem. The approach and
answers are explicitly detailed and reasonable throughout
(whether or not the knowledge used is always sophisticated or
accurate). The student justifies all claims with thorough argu-
ment: counterarguments, questionable data, and implicit pre-
mises are fully explicated.

● Contextual Effectiveness of Solution. The solution to the prob-
lem is effective and often inventive. All essential details of the
problem and audience, purpose, and other contextual matters
are fully addressed in a graceful and effective way. The solu-
tion may be creative in many possible ways: an unorthodox
approach, unusually clever juggling of conflicting variables,
the bringing in of unobvious mathematics, imaginative evi-
dence, etc.

● Accuracy of Work. The work is accurate throughout. All cal-
culations are correct, provided to the proper degree of preci-
sion/measurement error, and properly labeled.

● Quality of Communication. The student’s performance is per-
suasive and unusually well presented. The essence of the re-
search and the problems to be solved are summed up in a
highly engaging and efficient manner, mindful of the audi-
ence and the purpose of the presentation. There is obvious
craftsmanship in the final product(s): effective use is made of
supporting material (visuals, models, overheads, videos, etc.)
and of team members (when appropriate). The audience
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shows enthusiasm and/or confidence that the presenter un-
derstands what he/she is talking about and understands the
listeners’ interests.

Note that these criteria and rubrics provide more than a frame-
work for reliable and valid scoring of student work. They also
provide a blueprint for what the assessment tasks should be. Any
assessment must be designed mindful of the rubrics so that the
criteria are salient for the specifics of the proposed task. That
compels teachers and examination designers to ground their de-
signs in the kinds of complex and nonroutine challenges at the
heart of QL. Rather than requiring a new array of secure tests with
simplistic items, we should be requiring the use of such rubrics in
all assessment, local and statewide.

This approach has an important parallel in literacy assessment. In
miscue analysis, we make readers’ strategies and renderings ex-
plicit, helping them see where they succeeded and where they did
not and why, and where a misreading is plausible and sensible and
where not, so that both learner and teacher come to better under-
stand reading performance. But we rarely do such miscue analysis
at higher grades in any subject, despite its power for the learner.

Here is what happened when some mathematics students were
taught to self-assess their work through an error analysis after a
test: “After we graded their tests, students were asked to evaluate
their own performance. . . . Each student was required to submit
a written assessment of test performance that contained correc-
tions of all errors and an analysis of test performance. . . . We
directed our students to pay particular attention to the types of
errors they made. . . . They were to attempt to distinguish between
conceptual errors and procedural errors.” The teachers found this
process extremely useful: “Student self-assessment and the result-
ing student-teacher dialogue were invaluable in drawing a clear
picture of what students were thinking when errors were made.”
But they also reported that students found the task demanding. In
particular, teachers in training “had difficulty weighing the seri-
ousness of an error” and seemed “to have difficulty assigning
grades to their work. . . . Many had a tendency to weigh effort
heavily regardless of the quality of the product.” 41

The previously cited example from North Carolina included a
rubric for assessing mathematical insight. Not only is insight vital
to mathematics but it can and must be taught, hence assessed, as
part of quantitative literacy.42 This is yet another “radical” aspect
of the QL agenda: even though we typically flinch from assessing
insight because of fear or ignorance, we must assess what we value
highly, including mathematical intuition or insight. Of course in-
sight is measurable: anyone who can see through messy contexts,
unfamiliar situations, or ill-structured and seemingly intractable
problems to an effective solution has insight. We think insight is

impossible to assess because we rarely use test items that require
insight.

An article on the Third International Mathematics and Science
Study (TIMSS) results by a New York Times reporter makes the
point clearly:

Consider one problem on the test. . . .It shows a string
wound around a circular rod exactly four times, creating a
spiral from one end of the rod to the other. The problem was
asked only of those who had studied advanced mathematics:
what is the string’s length, if the circumference of the rod is 4
centimeters and its length is 12 centimeters?

The problem is simply stated and simply illustrated. It also
cannot be dismissed as being so theoretical or abstract as to be
irrelevant. . . . It might be asked about tungsten coiled into
filaments; it might come in handy in designing computer
chips. . . . It seems to involve some intuition about the phys-
ical world. . . .

It also turned out to be one of the hardest questions on the
test. . . . [Only] 10% solved it completely. But the average for
the United States was even worse: just 4 % . . . . The rate of
Swedish students’ success was 6 times greater than that of the
Americans; Swiss students did more than four times as
well. . . .

What is so interesting about this particular example . . . is
that it requires almost no advanced mathematics at all. It does
not require memorization of an esoteric concept or the mas-
tery of a specialty. It requires a way of thinking. If you cut the
cylinder open and lay it flat, leaving the string in place, you
get a series of four right triangles with pieces of string as their
diagonals. The length of the string is calculated using a prin-
ciple learned by every ninth grader. . . .

Nothing could be a better illustration of the value of teaching
a mathematical way of thinking. It requires different ways of
examining objects; it might mean restating problems in other
forms. It can demand a playful readiness to consider alterna-
tives and enough insight to recognize patterns.43

Here are some indicators (“look-fors”) of insight, derived in part
from analysis of the six facets of understanding mentioned earlier.
These indicators can be used as guidelines for designing tasks that
require such abilities. Insight is revealed by the ability to show:

● Other plausible ways to look at and define the problem;

● A potentially more powerful principle than the one taught or
on the table;
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● The tacit assumptions at work that have not been made ex-
plicit;

● Inconsistency in current versus past discussion;

● Author blind spots;

● Comparison and contrast, not just description;

● Novel implications; and

● How custom and habit influence the views, discussion, or
approach to the problem.

The basic blueprint for tasks that can help us assess insight was
provided by a grumpy workshop participant many years ago: “You
know the trouble with kids today? They don’t know what to do
when they don’t know what to do!” But that is because our assess-
ments are almost never designed to make them not know what
to do.

Longitudinal Rubrics

sophistication. Of a person: free of naiveté, experienced,
worldly-wise; subtle, discriminating, refined, cultured; aware
of, versed in, the complexities of a subject or pursuit.44

As suggested in our discussion of rubrics and criteria, understand-
ings are not right or wrong. They exist on a continuum running
from naı̈ve to expert. To find evidence of QL, we need something
more than scores on new test questions. We need a whole different
way of charting progress over time. We need to validly and reliably
describe a student’s degree of understanding of core tasks over
time, just as we have done for a few decades in English literacy. QL
requires that we discriminate between naı̈ve, developing, compe-
tent, and expert performance (to suggest four key points on a
continuum of ability).

Some such rubrics already exist in mathematics, with greater re-
finement. Consider the following from Great Britain representing
what might be termed the British rubric for QL:

ATTAINMENT TARGET 1: MA1. USING AND APPLYING

MATHEMATICS:

● Level 1. Pupils use mathematics as an integral part of class-
room activities. They represent their work with objects or
pictures and discuss it. They recognise and use a simple pat-
tern or relationship.

● Level 2. Pupils select the mathematics they use in some class-
room activities. They discuss their work using mathematical
language and are beginning to represent it using symbols and
simple diagrams. They explain why an answer is correct.

● Level 3. Pupils try different approaches and find ways of over-
coming difficulties that arise when they are solving problems.
They are beginning to organise their work and check results.
Pupils discuss their mathematical work and are beginning to
explain their thinking. They use and interpret mathematical
symbols and diagrams. Pupils show that they understand a
general statement by finding particular examples that match
it.

● Level 4. Pupils are developing their own strategies for solving
problems and are using these strategies both in working
within mathematics and in applying mathematics to practical
contexts. They present information and results in a clear and
organised way. They search for a solution by trying out ideas
of their own.

● Level 5. In order to carry through tasks and solve mathemat-
ical problems, pupils identify and obtain necessary informa-
tion. They check their results, considering whether these are
sensible. Pupils show understanding of situations by describ-
ing them mathematically using symbols, words and diagrams.
They draw simple conclusions of their own and give an ex-
planation of their reasoning.

● Level 6. Pupils carry through substantial tasks and solve quite
complex problems by independently breaking them down
into smaller, more manageable tasks. They interpret, discuss
and synthesise information presented in a variety of mathe-
matical forms. Pupils’ writing explains and informs their use
of diagrams. Pupils are beginning to give mathematical justi-
fications.

● Level 7. Starting from problems or contexts that have been
presented to them, pupils progressively refine or extend the
mathematics used to generate fuller solutions. They give a
reason for their choice of mathematical presentation, explain-
ing features they have selected. Pupils justify their generalisa-
tions, arguments or solutions, showing some insight into the
mathematical structure of the problem. They appreciate the
difference between mathematical explanation and experi-
mental evidence.

● Level 8. Pupils develop and follow alternative approaches.
They reflect on their own lines of enquiry when exploring
mathematical tasks; in doing so they introduce and use a
range of mathematical techniques. Pupils convey mathemat-
ical or statistical meaning through precise and consistent use
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of symbols that is sustained throughout the work. They ex-
amine generalisations or solutions reached in an activity,
commenting constructively on the reasoning and logic or the
process employed, or the results obtained, and make further
progress in the activity as a result.

● Exceptional Performance. Pupils give reasons for the choices
they make when investigating within mathematics itself or
when using mathematics to analyse tasks; these reasons ex-
plain why particular lines of enquiry or procedures are fol-
lowed and others rejected. Pupils apply the mathematics they
know in familiar and unfamiliar contexts. Pupils use mathe-
matical language and symbols effectively in presenting a con-
vincing reasoned argument. Their reports include mathemat-
ical justifications, explaining their solutions to problems
involving a number of features or variables.45

The phrasing throughout nicely indicates that students must gain
not merely more specialized knowledge of mathematics per se but
also increased understanding of mathematics in use. Again, these
rubrics do more than show how we should score. They properly
serve as criteria for the development of tasks requiring such abili-
ties.

A Sad Irony: Our Ignorance About
How Assessment Works
Why is the problem of innumeracy so difficult to solve if many of
the ideas cited above are now in use in some high schools and
colleges worldwide? Because too many mathematics educators
have not been forced to defend their assessments or challenge their
habits. Typical tests would not pass muster if held up to the light.

Please suspend disbelief. (If you are still reading, you are not
among the educators I worry about.) Consider such common
unthinking and questionable grading habits in mathematics
classes as forcing a small sample of scores to fit a bell curve or
computing grades via a calculation of the mean score, as if both
were the only possible or defensible practices. In fact, both prac-
tices are ironic examples of the thoughtless use of algorithms—in the
context of classrooms and educational goals. Yet when surveyed,
many mathematics teachers claim that the grades they assign are
more valid than those in other fields because “mathematics is in-
herently more precise and objective,” as one teacher put it. Many
of the same teachers are surprisingly uninterested in relevant ed-
ucational research. “That may be true in their study,” is the com-
mon refrain, “but not in my class.”

A more serious misconception has to do with the relation of QL to
state tests. Consider the universal excuse offered by mathematics
educators when many of these reform ideas are presented in work-

shops. “That’s great, we would love to do this, but we cannot. We
have to teach to the test.” In our surveys, the argument for being
unable to teach for understanding because of tests comes more
from mathematics teachers than any other group. Yet this “teach
to the test” mantra ironically turns out on closer inspection to be
an example of a form of innumeracy described by John Paulos in his
deservedly best-selling book on the subject: namely, the educator
is often confusing causality with correlation.46

The extended lament makes this conflation clearer: “Well, we’re
told that we must get test scores up. So, clearly we cannot teach for
the kind of QL and understanding being discussed here. We have
no choice but to teach to the test, to use in our testing the kinds of
items the state test uses. We have to cover so much content super-
ficially. . . .” Two quick arguments will get the speaker and listen-
ers to stop and consider the reasoning implied:

1. Let me see if I understand. Aren’t you saying, then, that the
way to raise test scores is to teach less competently (since you
admit to being forced to use a superficial and scattered ap-
proach, as opposed to teaching for understanding)?

2. If you’re right, then by analogy I should practice the physical
examination all year if I want to have the best possible result
on my annual medical checkup.

The bewildered looks speak volumes. They do not protest my
analysis; it clearly puzzles them. Then, I march out the data:
National Assessment of Educational Progress (NAEP), the Sec-
ond International Mathematics and Science Study (SIMSS), the
Third International Mathematics and Science Study (TIMSS),
and other credible test data all suggest that mathematics instruc-
tion is not working for the vast majority of American students.
More generally, in an exhaustive meta-analysis Paul Black and
Dylan Wiliam have shown that improving the quality of class-
room feedback offers the greatest performance gains of any single
teaching approach: “There is a body of firm evidence that forma-
tive assessment is an essential component . . . and that its devel-
opment can raise standards of achievement. We know of no other
way of raising standards for which such a strong prima facie case
can be made.”47 A score, by itself, is the least useful form of
feedback; rubrics provide a great deal more, and specific com-
ments in reference to the rubrics—contextual feedback—provide
still more.48

The National Academy of Sciences recently released a set of sum-
mary findings on how people learn, in which they concluded:

Students develop flexible understanding of when, where,
why, and how to use their knowledge to solve new problems
if they learn how to extract underlying principles and themes
from their learning exercises. [But m]any assessments mea-
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sure only propositional (factual) knowledge and never ask
whether students know when, where, and why to use that
knowledge.49

The most telling research stems from the TIMSS teaching study,
summarized in The Teaching Gap.50 J. Stigler and J. Hiebert
present striking evidence of the benefits of teaching for under-
standing in optimizing performance (as measured by test scores).
When correlated with test results, the data clearly show that al-
though Japanese mathematics teachers in middle school cover
fewer topics, they achieve better results. Rather than defining
themselves as teachers of “skills” in which many discrete skills are
covered (as American teachers identify themselves and as videos of
their classes reveal), the primary aim in Japanese middle school
classes is conceptual understanding. Other data confirm this view:
Japanese teachers teach fewer topics in greater depth than do
American teachers. They emphasize problem-based learning, in
which rules and theorems are typically derived, not merely stated
and reinforced through drill.

How did Japan develop such a sophisticated conception of in-
struction in mathematics? The authors answer: the key is a con-
tinuous-progress group professional development research pro-
cess called Lesson Study. The phrase sums up a long-standing
tradition in Japan whereby K–8 teachers work all year in small
teams to study student performance and develop, refine, and teach
exemplary lessons to improve results. The process involves con-
stant experimentation and peer review:

1. Group defines problem and plans lesson

2. A group member teaches the lesson

3. Group evaluates and revises the lesson

4. Another member teaches revised lesson

5. Evaluation by entire faculty

6. Share results in print and at “lesson fairs”

With respect to the next to the next-to-last step, the authors note:

Evaluating and Reflecting, Again. This time, it is common for
all members of the school faculty to participate in a long
meeting. Sometimes an outside expert will be invited to at-
tend as well. . . . Not only is the lesson discussed with respect
to what these students learned, but also with respect to more
general issues raised . . . about teaching and learning.51

Is it any wonder, then, if this process is customary, that the typical
Japanese teacher would develop more sophisticated curricular and

assessment designs? Stigler and Hiebert ironically note that one
reason the Japanese process works is that the teachers’ research,
unlike university research, is done in their context, i.e., research
leading to “knowledge that is immediately usable.”52 Interest-
ingly, many educators in our workshops readily admit that local
faculty are not yet ready for such a system, given the American
norm of individual isolationism.

An unflinching view of the situation suggests that many of the
problems that have led to the current concern with QL are of the
Pogo variety: we have met the enemy and it is us. But that is also
good news, because it is in our power as educators to change
things. Let us begin in an obvious place: with explicit design
standards for assessment and curriculum to counter habit, many
models of exemplary design, and policy-based incentives to honor
the standards.

Who, then, might drive this reform, if we are in danger of having
the blind leading the blind? My Swiftian modest proposal, based
on the Pogo caution: Do not let mathematics teachers and pro-
fessors dominate the discussion. If realistic assessment is what we
want and school rarely offers it, let us go beyond school and
college walls to the obvious source of contextual insight: people
who work and live in the many QL contexts of the wider world.
Such a strategy is implied in the case statement in which the
“expressions of quantitative literacy” sketch out dozens of venues
from which assessment could be taken.53

Interestingly, this is what all vocational teachers in New York
State must do. They assemble a team of people in their trade, in
what is termed a Consultant Committee. The group discusses the
teacher’s curriculum and assessments twice a year (as well as job
placement issues). Why not require all academic departments to
do this? In mathematics, let us assemble teams composed of engi-
neers, mapmakers, software designers, baseball statisticians, ma-
chine workers, accountants, lab technicians, etc., to advise math-
ematics educators on how their subject is really used and on what
persistent problems they encounter concerning their workers’
abilities. Mathematics educators then could tweak draft designs
based on these findings into useful assessments. Finally, to com-
plete the process, we could turn to teams of academics and prac-
titioners for peer review of the designers’ work.

The core message of The Teaching Gap54 is that ongoing teacher
research and development is the key to local improvement in all
facets of teaching. According to Stigler and Hiebert, the typical
Japanese teacher is now far more sophisticated and focused than is
the typical American teacher. Why? Because in Japan the culture
of the school and the daily demands of the profession make re-
search and development part of the job. Let us base the process of
reform on this axiom: to be valid, of high quality, and credible to
all key constituencies, assessment requires collaboration in design,
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the making public of all design work, and peer review against
design standards.

Finally, let us never forget that although the issues here seem
technical and political, at bottom they are moral. The aim in any
realistic assessment process is to gather appropriate evidence and
render a considered judgment, much like what the judge has to do
in a civil trial. The analogy is useful because such a judgment is
always fraught with uncertainty; it is never neat and clean; it is
always in context. The evidence is weighed, considered, argued
about. The standard for conviction is that there be a preponder-
ance of evidence of the right kind. To “convict” a student of
understanding similarly requires compelling and appropriate evi-
dence and argument: the student should be considered innocent
of understanding unless proven otherwise by a preponderance of
evidence. That is a high standard, and appropriately so—even
though impatient teachers, testers, and policymakers may wish it
were otherwise. Alas, for too long we have gotten away with ver-
dicts in mathematics education using highly circumstantial, indi-
rect evidence. It is high time we sought justice.
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Statistics and Quantitative Literacy
RICHARD L. SCHEAFFER

With contributions from Beth Chance, California Polytechnic State University; Cathryn Dippo, Bureau of Labor
Statistics; Thomas Moore, Grinnell College; Jerry Moreno, John Carroll University;

and Jeffrey Witmer, Oberlin College.

Because much of the early work in quantitative literacy was led by statisticians—indeed, many K–12 programs in
probability and statistics are named “quantitative literacy”—statistics bears a very special relation to quantitative
literacy, with respect to both substance and education. This essay provides a perspective by leaders of statistics education
on issues raised in the other background essays prepared for the Forum on quantitative literacy.

Setting the Stage
Who would disagree that college graduates, not to mention high school graduates, should be able to
understand and correctly interpret disease or unemployment rates, the comparative costs of car or
apartment rental agreements, and trends in the composition of the country’s population? Yet many
graduates are mystified by quantitative arguments, a mystification that ranges from minor confusion
in some to functional innumeracy in others. Just as the information age is making the world more
quantitative, however, the ability of people to deal with numerical issues of practical consequence is
shrinking. It is past time to take seriously the challenge of improving the quantitative skills of
graduates of U.S. high schools and colleges.

Before examining the role of statistics in the movement to improve quantitative literacy, it is wise to
consider definitions of the key terms under discussion because there have been many different
interpretations, even among enlightened readers. In fact, at the level of education under consider-
ation here (high school and undergraduate) what some would call “statistics” might be termed “data
analysis” or “statistical thinking” by others. We need to sort out the definitions of at least three
different terms, all dealing with the same substance.

Statistics often is thought of as the keeper of the scientific method (although this may sound a little
presumptuous to physical scientists) because it is the discipline that studies how to understand the
world through the rubric of setting hypotheses, collecting data relevant to those hypotheses, analyz-
ing the data, and drawing conclusions about the hypotheses from analysis of the data. Here “data” is
to be understood broadly, because it well may include judgments of experts as in a Bayesian analysis.
Although statistics has many elegant theories, its practice usually outstrips theory in the sense that
many practical problems do not fit nicely into the assumptions of any theory.

This difficulty leads directly to data analysis, which can be thought of as following the rubric of the
scientific method but with emphasis on answering real questions rather than trying to fit those
questions into established theories. In data analysis, exploratory techniques stand alongside confir-
matory techniques. Empirical evidence that a technique works often is taken as “proof” among data
analysts who might choose to use such a technique in practice. “An approximate answer to the right
question is better than an exact answer to the wrong question” is one of the mantras of the data

Richard L. Scheaffer is Professor Emeritus of Statistics at the University of Florida and in 2001 was President of the
American Statistical Association (ASA). Scheaffer served as the first Chief Faculty Consultant for the College Board’s new
AP Statistics course. He has written extensively in statistical education and on sampling theory and practice. For many years
Scheaffer has been active on ASA education committees where he has fostered joint work with NCTM in statistics
education.
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analyst, the supreme example of whom is the late John Tukey
(Tukey 1962). In today’s complex world, data analysis is what
most statisticians actually practice, and so it is quite appropriate
that the subject be referred to as data analysis in standards and
guidelines.

In reality, full-bore data analysis is more than most people need to
deal with the statistical issues of everyday life and work. As a result,
the third term, statistical thinking, comes into play. Statistical
thinking is essential for anyone who wants to be an informed
citizen, intelligent consumer, or skilled worker. It is the backbone
of the contemporary emphasis on quality improvement because
all levels of employees in a firm, from the CEO to the janitor, must
have some notion of statistical thinking if a firm is to operate
optimally. Using a quality-improvement definition, statistical
thinking involves viewing life as made up of processes and viewing
all processes as having variation. Once understood, variation can
be broken down into that which can be reduced and that which
must be managed.

This most basic of the three statistical terms might sound the most
abstract, but we must keep in mind that processes can be simple
and the sources of variation fairly obvious. Figuring out the gas
mileage of a car is a process subject to variation, the most obvious
sources of which are perhaps the grade of gasoline used and the
style of driving. A person’s health is likewise subject to variation,
but here the sources of variation are many and sometimes difficult
to detect. It is statistical thinking that keeps people from making
rash decisions when accidents increase this month over last or one
school has a slightly lower test score average than another school.
The inherent variation in processes must be considered to deter-
mine whether change can be attributed to any cause other than
pure chance.

Some might further differentiate between statistical thinking and
statistical literacy, giving the latter a less formal definition than one
involving processes and their variation. The ability to read a news-
paper critically often is used as an attribute of a statistically literate
person. The books by David Moore (2001) and Jessica Utts
(1999) are good references for courses on statistical literacy, as is
the Web-based Chance course (see www.dartmouth.edu/
�chance). Because statistical thinking and statistical literacy are
so close in the larger scheme of things, this essay uses the term
statistical thinking when referring to this level of statistical educa-
tion (which also may reduce the confusion over the many uses of
the word literacy).

As to the definition of quantitative literacy (QL), two of the many
possibilities adequately cover the topic for purposes of this essay.
The British report Mathematics Counts (Cockcroft 1982) popu-
larized the term numeracy and defined it in part as “an ‘at home-
ness’ with numbers and an ability to make use of mathematical

skills which enables an individual to cope with the practical de-
mands of everyday life”(Cockcroft 1982, 11). More recently, the
International Life Skills Survey, as quoted in Mathematics and
Democracy: The Case for Quantitative Literacy (Steen 2001), offers
a slightly broader definition of quantitative literacy as an “aggre-
gate of skills, knowledge, beliefs, dispositions, habits of mind,
communication capabilities, and problem-solving skills that peo-
ple need in order to engage effectively in quantitative situations
arising in life and work” (Steen 2001, 7).

There are strong ties between statistical thinking, data analysis,
and quantitative literacy in terms of historical developments, cur-
rent emphases, and prospects for the future. As pointed out in
Mathematics and Democracy (Steen 2001), the American Statisti-
cal Association (ASA) conducted a National Science Foundation-
funded project called Quantitative Literacy in the mid-1980s that
produced materials and workshops to introduce mathematics
teachers at the middle and high school levels to basic concepts of
data analysis and probability. The project was built around a
hands-on, active learning format that involved student projects
and appropriate use of technology.

The ASA QL program was motivated by the Schools Project in
England that had introduced statistics into the national curricu-
lum, using the report Mathematics Counts (Cockcroft 1982) as
one of the supporting documents. This report noted that statistics
is “essentially a practical subject and its study should be based on
the collection of data . . . by pupils themselves.” To this end it
urged “in-service training courses on the teaching of statistics not
only for mathematics teachers but also for teachers of other sub-
jects” as well as “teaching materials which will emphasize a prac-
tical approach” (Cockcroft 1982, 234). Even then, 20 years ago,
the Cockcroft commission recognized that “micro-computers . . .
offer opportunities to illuminate statistical ideas and techniques”
(Cockcroft 1982, 235). All these points were taken to heart by the
ASA QL team, and all are still valid concerns.

The emphasis on statistical thinking and data analysis that was
introduced in Britain migrated to Canada and was picked up as a
main theme for U.S. K–12 education by a Joint Committee of the
ASA and the National Council of Teachers of Mathematics
(NCTM). The ASA-NCTM QL project served as a model for the
data analysis and probability strand in Curriculum and Evaluation
Standards for School Mathematics published by NCTM (1989), a
strand that is even stronger in the updated edition (NCTM 2000).

The movement to include data analysis and probability in the
school mathematics curriculum thus has some of the same histor-
ical roots as the current QL movement, and has similar emphases.
Properly taught, statistical thinking and data analysis emphasize
mathematical knowledge and skills that enable an individual to
cope with the practical demands of everyday life. They also de-
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velop knowledge, beliefs, dispositions, habits of mind, communi-
cation capabilities, and problem-solving skills that people need to
engage effectively in quantitative situations arising in life and
work. It is no accident that almost all of the examples given in the
opening paragraphs of Mathematics and Democracy (Steen 2001)
are statistical in nature.

Simultaneous with the K–12 effort, many statisticians began em-
phasizing statistical thinking at the college level. As mentioned
above in the discussion of statistical literacy, excellent textbooks
and other materials as well as numerous college courses have been
developed around this theme. These deal with issues of quantita-
tive literacy in much more authentic ways than almost any math-
ematics text seems to.

Because statistics and quantitative literacy share so much in com-
mon, we hope that statisticians and mathematics educators will
work together to build a strong emphasis on QL in the school and
college curriculum. Many statisticians would probably disagree
with the statement in Mathematics and Democracy (Steen 2001)
that QL is “not the same as statistics.” Indeed, many think that a
very large part of QL is statistics (statistical thinking or data anal-
ysis), just as the Cockroft commission thought that statistics was a
large part of numeracy. In what follows, we take a more detailed
look at the common ground between statistics and QL and sug-
gest ways of building on that commonality for the good of all.

QL and Citizenship
Patricia Cline Cohen, quoting Josiah Quincy, notes in her essay
that one of the duties of responsible government is to provide
statistical knowledge about the general welfare of its citizens. Hard
data “are to be sought and ought to be studied by all who aspire to
regulate, or improve the state of the nation. . .” (Cohen, see p. 7).
In fact, the very word “statistics” derives from its use to collect
information on and about the state. A good example of the growth
of statistics in government can be seen in the development and
expansion of the U.S. Census Bureau over the years and the wide-
spread uses to which its data are put. Developing an informed
citizenry is one of the tasks of public education and, in light of the
emphasis on data within the government, a large part of that task
involves improving the quantitative literacy of all citizens. That
statistics can be misused by politicians (and others) is one of the
reasons citizens need some skill in statistical thinking and reason-
ing with data.

According to Cohen, statistics are a powerful tool of political and
civic functioning, and at our peril we neglect to teach the skills
required to understand them. In large measure, Cohen equates
quantitative literacy with statistics and makes a strong case for
including statistics in everyone’s education. With this, statisticians

certainly can agree. They would not agree, however, with Cohen’s
statement that “statistics has become a branch of mathematics.”
Statistics has many roots, including business, engineering, agricul-
ture, and the physical, social, and biological sciences; it deals with
many issues that would not be considered mathematical. Empha-
sis on context is one such issue; emphasis on the design of studies
is another. Although statistics uses mathematics, the key to statis-
tical thinking is the context of a real problem and how data might
be collected and analyzed to help solve that problem. Some would
say that the greatest contributions of statistics to modern science
lie in the area of design of surveys and experiments, such as the
demographic and economic surveys of the Census Bureau and the
Bureau of Labor Statistics and the experiments used in many
health-related studies.

In fact, statistics has much broader uses than its mathematical
roots might suggest, and many, including the federal government
itself, are attempting to enlighten citizens about the proper col-
lection, analysis, and interpretation of data. One example of this is
the effort of the FedStats Interagency Task Force to develop a
statistical literacy program for users of the Federal Statistical Sys-
tem. A related effort is embodied in a recent report from the
National Research Council entitled Information Technology Re-
search for Federal Statistics, which talks about the importance of
literacy, visualization, and perception of data:

Given the relatively low level of numerical and statistical
literacy in the population at large, it becomes especially im-
portant to provide users with interfaces that give them useful,
meaningful information. Providing data with a bad interface
that does not allow users to interpret data sensibly may be
worse than not providing the data at all, . . . . The goal is to
provide not merely a data set but also tools that allow making
sense of the data. (NRC 2000, 20)

These and other efforts by the federal government to improve statis-
tical literacy are supported by Katherine Wallman, chief statistician of
the US government, who said in a 1999 speech (Wallman 1999):

Electronic dissemination is truly a boon to national statistical
offices anxious to make their data more accessible and use-
ful—and to user communities equipped to handle the wealth
of available information. But this technology remains to a
degree a bane, for while we have taken monumental strides in
making our nation’s statistics electronically available, atten-
tion to documentation in electronic media has lagged. And I
continue to argue, as I have for almost a decade, that the gap
between our citizens’ computer literacy and their “statistical
literacy” remains significant.

Citizens encounter statistics at every turn in their daily lives. Of-
ten, however, they are ill-equipped to evaluate the information
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presented to them. Fortunately, quantitative literacy initiatives
show prospects of enhancing the statistical literacy of the next
generation. Our ideal would be students who can use statistics to
keep their fingers on the pulse of humanity, as envisioned by the
great Belgian statistician and social scientist Adolph Quetelet:

I like to think of the constant presence in any sound Republic
of two guardian angels: the Statistician and the Historian of
Science. The former keeps his finger on the pulse of Human-
ity, and gives the necessary warning when things are not as
they should be. The Historian . . . will not allow humanity to
forget its noblest traditions or to be ungrateful to its greatest
benefactors. (Walker 1945, 10)

QL and the Workplace
Everyone agrees that business needs workers with QL skills, but
according to Linda Rosen and her colleagues in their essay, it is not
at all clear what those skills are or how urgently they are needed. In
fact, the types of skills needed vary from business to business, and
it may require some serious research to sort out the best set of skills
for the workforce of tomorrow. Rosen offers sound advice, em-
phasizing notions of communication and cooperation that are
similar to skills that often are seen as part of QL itself. In partic-
ular, she urges advocates of quantitative literacy to better docu-
ment the existing level and anticipated need of QL in the work-
place, to raise general awareness about the importance of QL in
today’s workplace, and to engage educators to help upgrade the
QL skills of the workforce based on identified quantitative needs
(Rosen et al., see pp. 43–52).

These recommendations fit well with current efforts in the statis-
tics community to build bridges between the academic commu-
nity and business, industry, and government to ensure an effective
statistics education for the workforce of the future. Somewhat
surprisingly, however, the level of skills attached to quantitative
literacy varies greatly among those quoted by Rosen, ranging from
merely knowing basic arithmetic to making “judgments grounded
in data.” If such judgments are thought of in the sense of statistical
thinking and data analysis, they are much deeper than basic math-
ematical skills and require an educational component that is not
found in traditional mathematics courses. Statistical thinking has
a stochastic component (could this variation be caused by chance
alone?) that is essential to intelligent study of business, industry,
and government processes.

It is important to realize that data, information, and knowledge
are a part of a hierarchy: an event yields observations called data,
which are collected and processed into information, which is ana-
lyzed and combined with human intelligence to produce knowl-
edge. Wisdom is the product of knowledge, judgment, and experi-

ence. Such taxonomies are important in new fields such as data
mining—the process of discovering knowledge through data. As
these fields become increasingly important to society, the statisti-
cal aspects of thinking intelligently about data and its uses (and
misuses) become critical. Most often, the teaching of statistics
only reaches the information stage because moving to the higher
stages of knowledge and wisdom requires setting the information
inside a framework in which to make intelligent judgments. If
statistical thinking is a part of the framework, issues such as con-
text (including the surrounding science) and variation are taken
into account. How to go beyond the information level in under-
standing the world around us is one way to phrase the key intel-
lectual challenge of QL. Statisticians surely agree with those cited
by Rosen who argue that the core mathematics curriculum must
be “something more than arithmetic proficiency.”

Although business leaders may be confused about the details of
what QL is and how much of it they want, as Rosen suggests, most
enlightened leaders of business and industry see the advantages of
quantitative thinking quite clearly in at least one area, that of
quality control and productivity improvement. The total quality
management (TQM) effort is giving way to the Six Sigma im-
provement initiative, which has become extremely popular in the
past several years. In addition to generating a great deal of discus-
sion within statistics and quality-control circles, it has been one of
the few technically oriented initiatives to generate significant in-
terest from business leaders, the financial community, and the
popular media. Hitching the QL wagon to the Six Sigma star
would be one way to move QL higher on the agenda of business
leaders.

QL and Curriculum
A central theme of QL is that the meaning of “literate” must be
expanded to include quantitative literacy and that the latter, like
the former, must be addressed across the curriculum. This theme
is clearly stated in the essay by Randall Richardson and William
McCallum, who enunciate two main criteria for a QL curriculum:
it must go beyond the basic ability to read and write mathematics
to the development of conceptual understanding, and it must be
engaged with a context, be it humanities, business, science, engi-
neering, technology, or everyday life (Richardson and McCallum,
see pp. 99–106).

Richardson and McCallum argue, along with many others, that
QL cannot be regarded as the sole responsibility of teachers of
mathematics, whether in high school or college. It is the respon-
sibility of those in other disciplines to help provide basic tools and
conceptual understanding and to model the use of mathematics as
a way of looking at the world. In short, QL should be the focus of
mathematics across the curriculum. The nurturing of QL across
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the curriculum, however, requires strong administrative support
and significant institutional change.

Those experienced with teaching statistics suggest that one way to
garner administrative support and foster institutional change is to
tie much of QL to the statistics curriculum, everywhere it is
housed. The very lifeblood of statistics is context, and the current
teaching of statistical thinking and modern data analysis is built
around conceptual understanding (calculations are done by ma-
chine). Because it is used across the curriculum, in most colleges
and universities statistics already is taught across the curriculum. It
would make practical as well as pedagogical sense to anchor the
expansion of QL to the statistics teaching efforts of colleges and
universities. Indeed, some postsecondary institutions ranging
from liberal arts colleges (Mt. Holyoke) to large research univer-
sities (Ohio State) have centered much of the quantitative reason-
ing component of their general education requirements on statis-
tics courses.

QL and Mathematics
Closely related to the issue of curriculum is the relationship be-
tween QL and mathematics. Deborah Hughes Hallett asserts in
her essay that QL is the ability to identify and use quantitative
arguments in everyday contexts, that it is more a habit of mind
than a set of topics or a list of skills. QL is more about how
mathematics is used than about how much mathematics a person
knows. For this and other reasons, a call to increase QL is a call for
a substantial increase in most students’ understanding of mathe-
matics. It is, therefore, not a dumbing down of rigor but an in-
crease in standards. According to Hughes Hallett, this increase is
essential because “the general level of quantitative literacy is cur-
rently sufficiently limited that it threatens the ability of citizens to
make wise decisions at work and in public and private life”
(Hughes Hallett, see p. 91).

Statisticians will find it interesting (and gratifying) that probabil-
ity and statistics are the only subject areas that Hughes Hallett
mentions specifically. Indeed, she finds the absence of these sub-
jects in the education of many students remarkable given that they
are so “extensively used in public and private life.” Simply requir-
ing more students to study advanced mathematics is not the an-
swer: they actually must be taught QL by solving problems in
context. Courses must demand “deeper understanding,” which
will require a coordinated effort to change both pedagogy and
assessment.

Although there is much to agree with in Hughes Hallett’s essay,
statistics educators would probably disagree with the claim that
“. . . the teaching of probability and statistics suffers from the fact
that no one can agree on when or by whom these topics should be

introduced.” The statistics community played an important role
in developing the NCTM standards (1989, 2000) and offers
strong support for the data analysis and probability strand con-
tained in these recommendations. Similarly, ASA has been in-
volved in the expansion of the data analysis and probability sec-
tion of the National Assessment of Educational Progress (NAEP)
framework for the 2004 examination. The NCTM recommenda-
tions for all grade levels, which are reflected in the NAEP frame-
work, call for instructional programs from prekindergarten
through grade 12 that enable all students to:

. . . formulate questions that can be addressed with data and
collect, organize, and display relevant data to answer them;
select and use appropriate statistical methods to analyze data;
develop and evaluate inferences and predictions that are
based on data; understand and apply basic concepts of prob-
ability (NCTM 2000, 48).

With NSF support, ASA has developed a series of supplemental
materials for teaching modern data analysis in the elementary,
middle, and high school grades called, respectively, Exploring
Statistics in the Elementary Grades, Quantitative Literacy, and
Data Driven Mathematics. (See the education section at
www.amstat.org or the Dale Seymour section of Pearson Learning
at www.pearsonlearning.com.) These materials support and en-
hance the NCTM recommendations, and thus also the kinds of
quantitative literacy that Hughes Hallett seeks.

The Advanced Placement (AP) Statistics course has become quite
popular among high school teachers and students; its course de-
scription (see http://apcentral.collegeboard.com/repository/
ap01.cd_sta_4328.pdf ) reflects modern trends in data analysis
that now are being emulated in some college courses. Statistics
educators discovered long ago that classroom activities, laboratory
activities, and group projects really work. The Mathematical As-
sociation of America (MAA) publication Teaching Statistics: Re-
sources for Undergraduate Instructors showcases many examples of
materials and programs that support this approach (Moore 2000).
That the statistics community has rallied around these ideas is
evidenced by the promulgation of good resources for hands-on,
active teaching of statistics at both the school and college levels.

At the college level, both ASA and MAA have prepared guidelines
concerning the undergraduate teaching of statistics. The ASA
“Curriculum Guidelines for Undergraduate Programs in Statisti-
cal Science” encourages a broad range of programs that offer all
students useful options beyond the traditional introductory course:

Undergraduate statistics programs should emphasize con-
cepts and tools for working with data and provide experience
in designing data collection and in analyzing real data that go
beyond the content of a first course in statistical methods.
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The detailed statistical content may vary, and may be accom-
panied by varying levels of study in computing, mathematics,
and a field of application. (ASA 2001, 1)

Reports from the MAA (CUPM 1993) recommend that all un-
dergraduate mathematical sciences majors should have a data-
centered statistics course. Taken together, the standards, guide-
lines, and curriculum materials fashioned by the statistics community
(with support from the mathematics community) give solid evi-
dence that many pieces of the “coordinated effort” needed to
improve quantitative literacy are in place. The QL reform that
may be coming should make good use of the projects and related
ideas already afloat within the statistics education community.

To be honest, however, many statistics courses still are taught in a
manner that misses the QL point. This is partly because tension
always exists between breadth of coverage and deep understand-
ing—the latter of most importance to QL. Although the statistics
education community may have reached consensus on how to
deal with the tension, this consensus does not always play out
easily in the classroom. Courses serve many clients, some of whom
demand coverage of many specific topics in statistical inference.

Jan de Lange’s paper, also about QL and mathematics, introduces
two new and important ideas (de Lange, see pp. 75–89). First, it
extends the definition of quantitative literacy to the term “math-
ematical literacy” because of the indisputable fact that much more
in mathematics is useful besides numbers. Indeed, many aspects of
statistical thinking (which de Lange includes under the name
“uncertainty” as one of his core phenomenological categories) are
not about numbers as much as about concepts and habits of mind.
For example, the idea of a lurking variable upsetting an apparent
bivariate relationship with observational data is a conceptual idea,
part of statistical thinking but not particularly about numbers.
The notion that designed experiments are more reliable than ob-
servational studies is another very important nonquantitative idea.

De Lange‘s second important idea is that if mathematics were
properly taught, the distinction between mathematical content
and mathematical literacy “would be smaller than some people
suggest it is now.” The issue is part of the aforementioned tension
between breadth of coverage and depth of understanding, but it
also suggests a resolution of the dilemma of QL courses. Separate
courses in QL create serious problems. First, students are pigeon-
holed into those capable of taking “real mathematics” and those
who will only need QL, thereby entrenching two classes of stu-
dents in a structure that serves the nation poorly. Second, al-
though all students need to be quantitatively literate, there is
growing evidence that those who take regular mathematics
courses (and who in a segregated system may not encounter much
QL) are not learning many of the critical thinking skills they need.

QL and Articulation
Articulation of the K–16 mathematics curriculum is difficult to
attain because it involves inextricably linked political and policy
issues. Michael Kirst’s essay (Kirst, see pp. 107–120) outlines the
main areas of political tension: between professional leadership
and political consensus, between flexible and specific standards,
between dynamic standards and reasonable expectations for
change, between professional leadership and public understand-
ing of standards, between expectations and requirements. Progress
toward improving articulation requires a clear signal up and down
the line as to what is required. Part of that signal should be a clear
message about QL.

As subject-matter standards and examinations have evolved in
recent years, one of the widespread changes has been increased
emphasis on data analysis and statistics; however, one of the main
limiting factors is the quality of materials for teachers. “Any at-
tempt to change mathematics curriculum,” Kirst observes, “must
involve rethinking textbook creation and adoption policies.” An-
other limiting factor is the ever-present standardized examination.
Multiple-choice basic skills tests do not adequately emphasize
complex thinking skills such as statistical inference and multistep
mathematical problem solving.

The statistics community would argue that an emphasis on statis-
tics and QL in the mathematics curriculum could help alleviate
some of these tensions. The movements to infuse school mathe-
matics with data analysis and to enhance undergraduate statistics
offerings owe much of their success to the fact that leaders from
business and industry supported the efforts. It helped, of course,
that these efforts began when quality improvement was a high
national priority; that theme is still important for garnering sup-
port for statistics among business and political leaders. Another
theme that allows statisticians to enter doors that might be more
difficult for mathematicians to open is data: everyone is collecting
tons of it and few know what to do with it. The public under-
stands something of these issues. Indeed, many see the need for
statistics education much more clearly than they see the need for
mathematics education (although they might view statistics as a
part of mathematics).

Will college faculty buy into an articulated program in mathemat-
ics education that includes a strong component of QL? Statistics
faculty are likely to do so, if the success of the AP Statistics course and
the support for the changes promoted by the NCTM standards and
the NAEP framework are any indication. A QL emphasis would not
look as radically new to a statistician as it might to a mathematician.
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QL and Assessment
Many of the exhortations in the background essays about the
importance of assessment to a successful QL program are sub-
sumed in the comprehensive and detailed paper by Grant Wiggins
(Wiggins, see pp. 121–143). In Wiggins’ view, echoed by others,
“we have often sacrificed the primary client (the learner) in the
name of accountability.” Wiggins seeks to put the interests of the
learner back in the center of assessment.

Assessment plays a central role in QL reform. Wiggins argues for
a realignment of assessment with QL that puts more emphasis on
open-ended, messy, and “authentic” assessment tasks. Much of
this realignment will require challenging changes in the focus of
traditional instruction, including much more formative (diagnos-
tic) assessment. To develop reliable examples of high-quality as-
sessment strategies that are focused on a few big ideas will require
significant collaboration. In addition, instructors will need train-
ing to design, administer, and grade these new types of assessment.

Wiggins makes much of “context” but seems to use the term in at
least two different ways. One relates to determining the source of
a problem (who is asking the question, how was the information
gathered, who is the answer for, what are relevant issues in the
discipline that may affect the solution). Another suggests a more
philosophical, historical point of view (where do laws or theorems
come from, are they debatable, can you understand the history
and how it affects our present state of knowledge). Although his-
torical perspective is important, Wiggins seems to overemphasize
the role of this type of context for beginning students. To statis-
ticians, the first definition of context is absolutely essential for any
problem; the second, although helpful for some problems, is not
nearly as essential.

Data analysis problems usually have a built-in context that may
make them easier for teachers to attack (although not many such
examples are found in Wiggins’ essay). They have less of the
baggage of the years of formalism that has accompanied mathe-
matics instruction and that can be difficult for new teachers to
break free from.

Wiggins differentiates between “meaning making” and “statistical
reasoning,” whereas statisticians would not see these as so differ-
ent. His interpretation of “meaning making” as “what is mathe-
matics and why does it matter” seems a bit narrow. Many levels of
reasoning and conceptual understanding are important in math-
ematics even when historical perspective is incomplete. The focus
should be on students’ abilities to reason with their own knowl-
edge and “understand how it works,” even if their ability to ques-
tion and debate is limited. Mathematics that is relevant to stu-
dents’ direct experiences is more meaningful to many beginning

students than philosophical debates. The important message is that
different experiences are meaningful to different students, and teach-
ers need to be ready to provide students with a variety of contexts.

One of the main goals of mathematics education reform surely
should be, as Wiggins claims, to make assessment design “more
public, collaborative, and subject to ongoing peer review.” This
cannot be overemphasized, but teachers need more examples of
how to do this, particularly for lower-level students. Although
many of Wiggins’ examples are quite grand, what teachers need
are simpler tasks that could be assigned on a daily basis to help
students learn to interpret and test their understanding. Fortu-
nately, statistics educators have been thinking about authentic
assessment for some time; B. L. Chance (1997) and J. B. Garfield
(1994) give good overviews of current thinking on authentic as-
sessment.

Conclusion
Statistics and quantitative literacy have much in common. Al-
though few would disagree with this, statisticians would probably
argue that QL is mainly statistics while mathematicians and math-
ematics educators tend to argue that QL is only partly statistics.
Statistics emphasizes context, design of studies, and a stochastic
view of the world. Although statistics is clearly not the same as
mathematics, nor even a part of mathematics, it uses mathematics
as one of its main tools for practical problem solving. Being one of
the most widely used of the mathematical sciences, statistics is well
entrenched in many places across the curriculum. At the K–14
level, statistics already has embarked on a program that empha-
sizes active learning, much in the spirit recommended by modern
cognitive science. All this suggests that students will reap divi-
dends if the two disciplines work together.

Although statistics education has gained acceptance (even respect)
over the past 15 years as a key component of the K–12 mathemat-
ics curriculum, this acceptance does not always translate into class-
room practice. The taught curriculum is far from reconciled with
the recommended curriculum. In addressing this challenge, sta-
tistics and QL should be mutually reinforcing. Simply put, statis-
tics has opened the door for quantitative literacy. In his back-
ground essay on curriculum in grades 6–12, Lynn Arthur Steen
argues that in a balanced curriculum, “[D]ata analysis, geometry,
and algebra would constitute three equal content components in
grades 6 to 8 and in grades 9 to 11” (Steen, see p. 66). “Real work
yielding real results,” he emphasizes, “must begin and end in real
data” (see p. 59).

On the pedagogical side, statistics educators have learned to em-
phasize both engagement and relevance. There is ample evidence
that both teachers and students like a hands-on, activity-based
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approach to data analysis (the type recommended earlier in this
essay), and that students learn better through this approach. Two
teachers using data analysis materials in an algebra course and a
teacher of AP Statistics have noticed how data analysis not only adds
valuable content to the curriculum but also improves attitudes:

The [data analysis] materials allow the students to construct
knowledge based on their experiences, and these materials
provide activities and experiences to guide the students to
good concept-based skills. The students understand what
and why they are doing things.

* * *

Almost all of the students were amazed by the fact that some
of the mathematical concepts that they study (logs and expo-
nentials) are actually used in such situations. I must also say
that I find it very exciting to engage in these topics as well!

* * *

I would like to echo the comments about the value of an early
statistics education. Yesterday, our AP Psychology teacher
told me how much difference she sees between students with
a stats background and students without. She said the differ-
ence was like “night and day,” especially with project work.
Our science teachers are saying the same thing. I guess what I
am saying is what a lot of us already believe: a knowledge of
statistics enriches every other discipline and life in general.
Three cheers for statistics!

At the college level, statistics is one of the most widely required or
recommended courses in the mathematical sciences, and the same
emphasis on data analysis with hands-on activities and laboratory
experiences is permeating these courses. AP Statistics is widely ac-
cepted, even emulated, by many college programs and can form one
of the paths for articulating a QL message between schools and col-
leges. Strong ties between ASA and MAA can help cement the path.

As noted above, Adolph Quetelet emphasized the importance for
science of both statisticians and historians of science. It seems
appropriate, then, to end this review with a relevant observation
from a historian of science, Theodore Porter:

Statistical methods are about logic as well as numbers. For
this reason, as well as on account of their pervasiveness in
modern life, statistics cannot be the business of statisticians
alone, but should enter into the schooling of every educated
person. To achieve this would be a worthy goal for statistics
in the coming decades. (Porter 2001, 61) (Italics added.)
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Articulation and Quantitative Literacy:
A View from Inside Mathematics

BERNARD L. MADISON

Various voices concerned with K–16 educational alignment1 recently have called for greater coher-
ence in U.S. education to make it easier and more efficient for students to pass from one level to the
next, especially from school to college. Driven in part by demands for greater accountability, about
half the states have created K–16 policy units that have produced curriculum frameworks, a plethora
of standards, and high-stakes testing largely aimed at the K–12 sector (Kirst, see pp. 107–120).
These K–16 efforts aim at aligning higher education expectations, placement testing, and curricula
with K–12 curricula, standards, and testing.

Nonetheless, U.S. colleges and universities continue to operate as 3,000 or so independent contrac-
tors that unwittingly wield considerable influence on K–12 education—on parents and students
through coveted spots in freshman classes and on curricula through the influence of the academic
disciplines. In no part of U.S. education are the problems caused by disunity (or lack of articulation)
greater than in mathematics. Only language and writing compete with mathematics for prominence
in K–16 curricula, and no other discipline creates as many difficulties for students as mathematics.

A principal cause of the transition problems in U.S. mathematics education is the lack of an
intellectually coherent vision of mathematics among professionals responsible for mathematics
education. Mathematicians similarly lack a coherent vision. The sometimes heated and often public
disagreements about the nature of mathematics and about effective ways to teach it have led to a
bewildering variety of curricular and pedagogical approaches.2 Much of this confusion in curricula
and pedagogy occurs near the critical transition from school to college.

As the United States has moved toward universal postsecondary education, mathematics education
has become more critical and complex, especially in grades 11–14 and in the transition from school
to college. This change has been driven largely by a rapid increase in the need for quantitative skills.
Computers have created piles of data and myriad ways of interpreting these data. Almost daily,
ordinary citizens confront data and numbers they need to understand for personal decisions, at the
same time as they face increasing risk of being duped by those who misinterpret and misuse data.
Quantitative Literacy (QL) is the ability to understand and use numbers and data in everyday life.
Education for QL falls on all disciplines in K–16 but most heavily on mathematics and statistics,
which are no longer tools only for scientists and engineers; everyday living requires that everyone
have them.

This requirement poses daunting new challenges to mathematics3 education —both K–12 and
higher education. Most mathematics curricula, especially in higher education, are not designed to
meet this requirement. Throughout high school and college, a single sequence of courses—geom-
etry, algebra, trigonometry, and calculus (GATC)—dominates the mathematics curriculum. For
several decades, success in mathematics has meant staying in this linear and hurried sequence. Those
who do not stay in, approximately three of four, leave with disappointment (or worse) and frag-
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Mathematics and Dean of the J.W. Fulbright College of Arts and Sciences. During 1985-89, Madison directed the MS2000
project at the National Research Council, including the 1987 Calculus for a New Century symposium. Madison has worked
in various roles for the Advanced Placement program, including serving as Chief Faculty Consultant for AP Calculus and
as a member of the Commission on the Future of AP.
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mented mathematics skills that are not readily useful in their
everyday lives. In effect, the GATC sequence sifts through mil-
lions of students to produce thousands of mathematicians, scien-
tists, and engineers. Not surprisingly, this system produces the
world’s best-educated and most creative scientists and engineers
while at the same time yielding a quantitative literacy level that
ranks near the bottom among industrialized nations (OECD
2001).

As the goal of the GATC sequence, calculus serves as a surrogate
for a powerful force that controls much of school and college
mathematics—the need to produce mathematicians, engineers,
and scientists. Underwritten by large enrollments of science and
engineering students, calculus has become the gateway to ad-
vanced mathematics. Its influence, conveyed mainly through the
GATC sequence, reaches far down to middle school. Largely be-
cause of the Advanced Placement (AP) Calculus Program,4 calcu-
lus has become the capstone of high school mathematics. As such,
it is now a proxy for the American yearning for badges of excel-
lence. As a consequence, calculus also has become a lightning rod
for criticism of the lack of emphasis on general education in K–16
mathematics. Clearly, what is needed is a K–14 curriculum that
prepares students both for advanced mathematics study and for
using mathematics in the myriad ways that it now presents itself in
everyday life. To achieve that goal, major changes are needed in
mathematics curricula.

Changes also are needed well beyond the mathematics curricu-
lum. The experiences of GATC dropouts in other disciplines—
the sciences, social sciences, and humanities—likely will not re-
pair the holes in their quantitative abilities; indeed, the data
analyses and quantitative measures studied in various disciplines
are isolated from one another by different terminologies and con-
texts. Discipline-dominated college curricula offer little synergism
with quantitative education.

Many of the problems with mathematics and quantitative educa-
tion are problems of articulation, mismatches that place unneces-
sary bumps in students’ paths as they navigate through school and
college. Some articulation issues are vertical issues—those associ-
ated with the fit of various components as students move from
grade to grade; others are horizontal—those associated with inter-
actions between components at approximately the same grade
level. In addition, there are issues of environmental articulation
between the curricula in school and college and the world external
to the academy. Are our curricula up to date? Are students learn-
ing what they need to know to be successful in the outside world?
Do curricula meet the needs of society?

Historically, vertical articulation has been given more attention
because it involves moving from one major component of U.S.
education (school) to another (college). Consequently, this paper

is dominated by issues of vertical articulation. Nonetheless, hori-
zontal and environmental articulation likely are more important
levers in improving U.S. education, especially in quantitative lit-
eracy.

Forces that Shape Introductory
College Mathematics
The cultures of the three components of grades 11 to 14 mathe-
matics (high school, two-year colleges, and four-year colleges and
universities) differ greatly. In spite of these differences, in mathe-
matics the four-year sector wields considerable influence over the
other two. In turn, the values of mathematics graduate programs,
dominated by research, are imprinted on faculty throughout col-
lege mathematics. Consequently, the culture of research mathe-
matics has considerable influence on college and university math-
ematics, even down to the introductory level.

THE CULTURE OF MATHEMATICS

Mathematics research is the principal activity of what Paul Hal-
mos called the “mathematics fraternity,” which he described as a
“self-perpetuating priesthood.” “Mistakes are forgiven and so is
obscure exposition—the indispensable requisite is mathematical
insight” (Halmos 1968, 381). Prestige in mathematics is gained
through manifestations of mathematical insight—developing
new mathematics—and those who have prestige wield the greater
power over academic mathematics.

Mathematics research is a demanding taskmaster requiring dedi-
cation, concentration, even obsession. Although most mathemat-
ics research does not aim at immediate applications, the history of
unanticipated uses of mathematics provides strong support for its
value to society. Consequently, educating mathematicians and
creating new mathematics often dominate educating people to use
mathematics.

Mathematicians see great value and power in abstract mathemat-
ical structures and seek students who can master advanced math-
ematics. This strongly influences views of the goals of mathemat-
ics courses and curricula, and those views are reflected in school
and college mathematics. Anthony Carnevale and Donna Desro-
chers argue that the implicit trajectory and purpose of all disci-
plines is “to reproduce the college professoriate at the top of each
disciplinary hierarchy” (Carnevale and Desrochers, see p. 28).
Mathematics, as they go on to analyze, is no exception. Lynn
Arthur Steen has compared mathematics teachers’ concentrated
attention on the best students to hypothetical physicians who
attend primarily to their healthiest patients (Steen 2002).

The efficiency of the path to calculus and advanced mathematics
has led to rigid linearity of the GATC sequence. No other disci-
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pline, save perhaps foreign language, exhibits such linearity. For-
eign language education is built on using the language, however,
whereas students’ use of mathematics is usually far in the future.
Most students in the GATC sequence never get to any authentic
uses for what they learn.

Fortunately, there are some signs that the mathematics fraternity
is turning its attention and vast talents to issues other than its own
reproduction and expansion. Among the most recent signs are
three publications: Towards Excellence: Leading a Mathematics De-
partment in the 21st Century from the American Mathematical
Society5 (Ewing 1999); Adding It Up: Helping Children Learn
Mathematics from the National Research Council6 (Kilpatrick et
al. 2001); and Mathematical Education of Teachers from the Con-
ference Board of the Mathematical Sciences7 (CBMS 2001).

THE FIRST TWO YEARS OF COLLEGE MATHEMATICS

The current CBMS survey8 reported nearly three million U.S.
postsecondary mathematics enrollments in fall semester 2000.
Nearly three-fourths of these were either remedial9 (982,000) or
introductory (1,123,000) enrollments. In contrast, calculus-level
enrollments totaled 700,000 and advanced mathematics enroll-
ments only 100,000. Comparable data have been reported every
five years since 1980. They document that almost three-quarters
of all students in college mathematics courses never take a calcu-
lus-level mathematics course and that only about 1 in 30 enrolls in
a course beyond the calculus level (Lutzer et al. 2002).

Over half of the three million undergraduate mathematics enroll-
ments are in algebra or combinations of algebra and arithmetic,
trigonometry, or analytic geometry. Algebra enrollments domi-
nate because college algebra is a prerequisite not only for calculus
but also for most general education mathematics courses, casting
college algebra as a general education course.

Some states, Arkansas and Mississippi for examples, have made
college algebra part of state higher education policy. In Arkansas,
legislation requires that mathematics courses taken for college
degree credit be at least at the level of college algebra, a testament
to the perceived linearity of school and college mathematics offer-
ings. For that reason, some courses, such as mathematics for lib-
eral arts students, were dropped from college curricula because
they were judged not up to the level of college algebra. The prin-
cipal criterion for judging the level of a mathematics course be-
came the level of the mathematics taught in the course rather than
the sophistication of the applications of the mathematics. That
approach, of course, makes it difficult for courses aimed at the use
of mathematics to measure up as college courses.

The institutionalization of college algebra as a core general educa-
tion course is fraught with misconceptions. Making college alge-

bra a requirement for some majors—e.g., for prospective elemen-
tary teachers—is even more misguided. The traditional college
algebra course is filled with techniques, leaving little time for
contextual problems. Students, many of whom have seen this
material in prior algebra courses, struggle to master the tech-
niques; three of four never use these skills and many of the rest find
that they have forgotten the techniques by the time they are
needed in later courses. No wonder the course is uninspiring and
ineffective. Success rates are very low—often below 50 percent—
and student dissatisfaction is high. Fortunately, many faculty and
administrators realize this and reform efforts are growing. The
task is nonetheless monumental.

College Influences on High School
Mathematics
Multiple and complex forces shape high school mathematics.
Some of these forces are matters of policy, some are circumstan-
tial, and some are cultural. Policy forces include state and district
standards for curricula and testing. Circumstantial forces include
textbooks, teacher preparation, and the influence of higher edu-
cation. The last is the focus of interest here.

In addition to being the locus of teacher preparation, higher edu-
cation has strong influence through statements of expectations for
entering students, college entrance testing (primarily the SAT and
ACT), college placement testing, and national college-oriented
programs. The national program with the most impact on school
mathematics is the College Board’s AP Program. Other national
programs include the International Baccalaureate (IB) and the
College Board’s Pacesetter program. These national programs are
discussed below.

COLLEGE STATEMENTS ON EXPECTATIONS IN MATHEMATICS

Comprehensive and useful statements from higher education in-
stitutions about mathematics expectations for entering students
are rare. In spring 2001, with the help of the Education Trust, I
requested from a number of states whatever statements concern-
ing mathematics content were available from colleges and univer-
sities about expectations for the mathematics knowledge and skills
of entering students. I received responses from 11 states, seven of
which had such statements. The other four states had processes or
policies that addressed the transition from school to college math-
ematics, but these did not include statements on mathematics
learning, content, or skills.

The seven statements of college expectations range from compre-
hensive documents that look very much like a set of complete
standards for grades 9–12 mathematics to explanations of skills
(mostly algebraic) needed to survive in entry-level courses. Cali-
fornia’s expectations are of the first type, Maryland’s and Nebras-
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ka’s of the second. The latter are focused on specific entry-level
courses, for example, what students should be able to do if they
begin with college algebra. Because the most likely entry-level
courses are intermediate algebra, college algebra, or algebra and
trigonometry, these statements necessarily are heavy on algebra-
based skills.

College mathematics faculty are the natural source of statements
on expectations for entering students. Very often, first attempts of
this kind aim far too high; college mathematicians are inclined to
describe the student they would prefer to teach rather than the
student that is possible and practical to find within the education
system. Very often, too, statements generated by mathematics
faculty are not consistent with other institutional statements
about expectations or requirements. For example, many colleges
use ACT scores as a criterion for entry and sometimes for place-
ment. ACT publishes a list of mathematics competencies that
various levels of ACT Mathematics test scores indicate. In one
state, the mathematical competencies described by a committee of
college faculty as expected of all entering students contained com-
petencies and knowledge that were not included on the ACT list
until the mathematics score far surpassed the ACT score level
chosen by that state as an indication of readiness for college math-
ematics. Obviously, inconsistencies of this kind confuse schools,
teachers, and students.

The National Council of Teachers of Mathematics (NCTM)10

Standards (NCTM 1989, 2000) have had considerable influence
on school mathematics, even though they (or localized state ver-
sions) have been implemented in different schools in different
ways. These various statements describe expectations for K–12
mathematics far better than any comparable statement for college
mathematics. Reliable statements of college expectations would
have great influence on school mathematics, and many in school
mathematics would welcome such statements. There are pockets
of efforts11 to generate statements of college expectations and to
align those with school standards and transitional testing, but as of
now there are almost no models that have wide acceptance.

COLLEGE PLACEMENT TESTING

In recent years, college placement testing has come under increas-
ing scrutiny as an issue in the transition from school to college
mathematics. The CBMS 2000 survey reported that almost all
two-year colleges (98 percent) required mathematics placement
tests of first-time students. The same survey found that 70 percent
of four-year colleges and universities offered placement tests and
that the tests were required of first-time students by 49 percent of
these institutions. Most such tests are locally written by the user
departments, but some come from the Educational Testing Ser-
vice (ETS), ACT, the Mathematical Association of America
(MAA),12 and other external vendors.

Critics of college placement tests argue that these tests do not
measure a student’s learning in high school and are too focused on
algebraic skills. An analysis reported by the Education Trust
showed that some nationally available placement tests do indeed
focus on algebraic skills (Education Trust 1999). Further, critics
point to cases in which students are not allowed to use calculators
on placement tests after having used them in school. Those who
defend placement tests point to the purpose of the tests: to place
students in a college mathematics course that they are prepared
for. The CBMS 2000 survey reported that over 85 percent of the
colleges that offered placement tests periodically assessed the ef-
fectiveness of these tests. Nonetheless, some criticism is more fun-
damental, based on doubt that isolated examinations of isolated
skills can ever be a reliable indicator of student success. Testing
experts universally advise against making important judgments
based only on single test scores.

Placement testing has become more controversial with widespread
use of technology and the consequent potential de-emphasis on
algebraic manipulation skills. Notwithstanding considerable dis-
agreement over what manipulation skills students should possess,
faculty in individual departments often decide what skills their
students need to succeed in their entry-level courses. These skills
then are tested on placement examinations. It turns out that,
surprisingly, many students who have done well in school math-
ematics are weak on such skills. Add to this the timing of many
placement tests (often at summer orientations), the absence of the
calculator the student is accustomed to using, and the lack of any
pre-test review by students, and the results may very well be both
questionable and disquieting. (Of course, placement tests and
placement testing conditions—e.g., with or without technol-
ogy—are likely to reflect entry-level courses and teaching condi-
tions. If so, criticisms of placement tests and testing conditions are
actually criticisms of college mathematics curricula and peda-
gogy.)

Many colleges and universities have no systematic way of commu-
nicating their expectations about the mathematics that entering
students should know and be able to do. Consequently, the con-
tent of placement tests, although narrowly aimed at basic skills for
initial success in entry-level courses, takes on a broader meaning.
There are, however, partial solutions to these problems. Colleges
should explain clearly the purpose of placement tests, describe
what material will be tested and under what conditions, and en-
courage students to review the material before sitting for the tests.

TEACHER PREPARATION: FROM COLLEGE TO SCHOOL

During various periods in the past, college and university mathe-
matics faculty have played significant roles in supporting school
mathematics. During the 1960s, research mathematicians were
involved in developing new school curricula and in conducting
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workshops for in-service teachers. Shortly after, in the wake of
problems with the “new math,” mathematicians largely withdrew
from school mathematics and the preparation of teachers. Discus-
sions following the introduction of standards for school mathe-
matics in 1989 by NCTM caused many mathematicians to re-
engage with school mathematics. Throughout the 1990s, this re-
engagement took various forms, including some rather
contentious debates about fundamental approaches to mathemat-
ics education. The 2001 CBMS report on the mathematical edu-
cation of teachers seemed to signal that the re-engagement is real
and constructive (CBMS 2001). Further, the MAA has planned a
multifaceted, multiyear effort, Preparing Mathematicians to Ed-
ucate Teachers, to help implement the recommendations of the
CBMS report.

For many years, stronger teacher preparation has been the head-
line recommendation from several national reports on how to
improve mathematics and science education (National Commis-
sion 2000). If articulation issues are to be solved, and if QL edu-
cation is to be improved, teachers—elementary, middle, and sec-
ondary—will need extensive training in teaching mathematics
and statistics in context. Going one step beyond that, college
faculty who teach these future teachers, which means most college
faculty, also will need preparation for teaching in context.

From School to College: Mismatches
and Overlaps
There are two very different views on the vertical articulation
between school and college mathematics. One view reveals mis-
matches in both curricula and pedagogy. The other reveals that
the content of school mathematics and college mathematics is
largely the same. From this latter perspective, the articulation
problem is one of repetition and ineffectiveness, not mismatches.

THE MISMATCHES BETWEEN SCHOOL AND COLLEGE

The NCTM standards (NCTM 2000) offer a widely accepted
blueprint for both curriculum and pedagogy for school mathe-
matics. Most state standards are generally consistent with the
NCTM standards, which encourage the use of technology, pro-
mote highly interactive classrooms, and outline a reasonably
broad curriculum aimed at conceptual understanding. On the
other hand, college mathematics is not governed by written stan-
dards and, very often, teaching methods are determined by indi-
vidual instructors. The American Mathematical Association of
Two-Year Colleges (AMATYC),13 Crossroads in Mathematics:
Standards for Introductory College Mathematics Before Calculus
(AMATYC 1995) offers one set of college guidelines for mathe-
matics before calculus, but its effect has been muted by the influ-
ence that four-year colleges have on two-year institutions, partly
driven by the need for transferability of credit. Every 10 years since

1960, the MAA’s Committee on the Undergraduate Program in
Mathematics (CUPM) has issued guidelines for the mathematics
major, but only in the revision now being drafted are guidelines
offered for undergraduate mathematics outside the major courses,
now about 95 percent of all enrollments.

Many college mathematics faculty disagree with parts of the
NCTM standards, especially those that are characteristic of recent
reform projects. For example, many do not think that technol-
ogy—calculators or computers—helps in teaching introductory
college mathematics. Further, many college faculty adhere to tra-
ditional lecture and testing methods and place heavy responsibil-
ity on students for their learning. This has increased variety in
college mathematics, more so in pedagogy and the tools used in
learning than in course content.

Introductory course content is pretty standard. Students moving
from school to college are likely to find the content of courses
familiar, although the material may be presented in a different way
and at a faster pace; technology may be used, tolerated, or banned;
and students likely will be left more on their own to learn and
demonstrate that learning on traditional tests. The mismatch in
the articulated curriculum between school and college consists
primarily of a narrowing of broader school mathematics to a lim-
ited set of introductory college courses dominated by algebra and
pre-calculus. The narrowing is most notable in the absence of
geometry, data analysis, and probability in mainline introductory
college mathematics.

THE DILEMMA OF SCHOOL MATHEMATICS TRACKS

The strongest cultural force shaping school mathematics is the
widespread tradition of tracking, which is especially prevalent in
high schools. There often is no easy way to move from the “lower”
track to the college preparatory track. Unfortunately, especially
for QL education in which applications of everyday mathematics
can be quite challenging, the use of the adjective “consumer” or
“general” as a code for second-rate courses has done general edu-
cation a grave disservice.

There are some glimmers of hope. Elimination of the “general
mathematics” track was one of the major goals of the 1989
NCTM standards (NCTM 1989). Data from the 1999 State
Indicators of Science and Mathematics Education showed that
the proportion of U.S. high school students enrolled in general or
consumer mathematics dropped from about 20 percent in 1990
to about 8 percent in 1998 (CCSSO 2002). The 2000 version of
the NCTM standards reinforced the 1989 standards by prescrib-
ing a “common foundation of mathematics to be learned by all
students” (NCTM 2000).
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Unfortunately for QL education, the college preparatory track has
preparation for calculus as its goal and does not include significant
contextual uses of mathematics. Measurement, geometry, data
analysis, and probability—all parts of most school mathematics
curricula—have strong QL themes, but with calculus as the goal
these get shortchanged. By attempting to articulate well with col-
leges, schools narrow the coverage of mathematics to what is
needed to succeed in calculus. The majority of high school stu-
dents who never make it through a calculus course—about three
of four—never reap the benefits of this narrowed mathematics
curriculum.

On the other hand, students who are in a noncollege preparatory
mathematics track are often shortchanged by the lower level of the
courses and find themselves unprepared for college mathematics.
When they arrive at college, as many do, they are likely to enter the
wasteland of remedial courses.

OVERLAPS: TOO MUCH OF THE SAME THING

A second way of looking at school and college mathematics shows
that there is enormous overlap, especially in the content of college
courses with large enrollments. As indicated above, the CBMS
2000 survey showed that approximately 60 percent of the math-
ematics enrollments in four-year colleges and 80 percent of those
in two-year colleges were in courses whose content is taught in
high school. (Although calculus is taught in high schools, it is not
included in these calculations. If it were, the 80 percent would rise
to 87 percent and the 60 percent to 77 percent.) On the other
hand, the fastest-growing enrollment in high school mathematics
is in courses for college credit. Though seemingly antithetical,
these two phenomena are related, and aspects of this overlap are
seriously impeding students’ learning of mathematics.

The GATC topics covered in high school geometry, algebra, and
trigonometry align quite well with the corresponding college se-
quence, especially elementary, intermediate, and college algebra.
In one sense, there is too much agreement, because many if not
most students repeat much mathematics in moving from high
school to college. This repetition is not only inefficient, it is dis-
couraging to many students, and learning suffers. Other students
mistakenly welcome the repetition, thinking it will lead to an easy
A. As described earlier, much of the repeated material is devoted to
algebraic and trigonometric methods, with little time for applica-
tions because the students are already deemed to be behind sched-
ule. Because most of this material is preparation for later study
that eludes most students, such courses are often dull and depress-
ing for both teachers and students.

Remedial mathematics in college—accounting for one of three
enrollments—is often the most depressing of all. Remedial math-
ematics is almost always arithmetic or high school algebra. Con-
sequently, except for returning students who have been away from
school for some time, students in remedial courses are repeating
material they failed to learn in earlier, possibly multiple, efforts.
Having to repeat work, not making progress toward a degree, and
studying uninspiring—and to students, illogical—subject matter
makes remedial mathematics courses unusually dreary. The sub-
ject matter of these courses is the kind of content—much of it
algebraic methods—that appears to be best learned with attentive
practice the first time through. Misunderstanding and bad habits
are hard to undo. Consequently, the proportion of students who
are unsuccessful in remedial mathematics courses is often high, in
the range of one-half to two-thirds.

About 20 years ago when I was chair of the department of mathe-
matical sciences at the University of Arkansas, I was struggling with
ways to reduce enrollments in intermediate algebra, the one reme-
dial mathematics course we taught. The state was pressuring us to
reduce remedial enrollments, but my most pressing reason was to
reduce the range of courses we had to cover. We were the only
doctoral and research institution in the state and our resources were
stretched very thin, covering responsibilities from high school alge-
bra to postgraduate seminars.

My local school system, which had one high school (from which
both my son and daughter later graduated), was revising its math-
ematics offerings and I was invited to meet with the superintendent
and associate superintendent to give them advice. I took the oppor-
tunity to talk about how they could help reduce our remedial en-
rollments.

Typically, they were offering two tracks of mathematics. One was a
college preparatory track with the usual courses—geometry, Alge-
bra I and II, trigonometry, and AP Calculus—actually a very strong
offering. The second track was general or business mathematics, I
don’t remember the exact terminology. I asked why they offered
this clearly weaker track and why they didn’t keep all the students
on the track that would prepare them for college-level mathematics,
since at the time, any student who graduated from high school
could enroll at the University of Arkansas. Because we did not
require that they had followed a college preparatory track, students
from this weaker track would almost surely land in remedial algebra.
My superintendent and his associate were very frank: they were not
going to take the heat for students failing. I noted that they were
passing that heat on to us at the university and they did not disagree.
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DUAL CREDIT COURSES

The enormous overlap between college and high school mathe-
matics has fueled the recent growth of dual credit14 courses in high
schools. The expansion is typified by this common scenario: A
two-year college enters into an agreement with a high school to
give college credit to high school students for specific courses
taken in the high school that also count for high school credit
(whence the term “dual” credit). Agreements of this type have
been made for college credit in most disciplines. In mathematics,
dual credit is being awarded in courses from beginning algebra up
through calculus. These agreements are generating considerable
college credit in courses taught in high schools by high school
teachers, and most dual credit programs have nothing similar to
the AP Examinations to validate their quality. The CBMS 2000
survey reported that 15 percent of all sections of college algebra (or
algebra and trigonometry) taught in two-year colleges in fall 2000
were for dual credit.

A recent national survey estimated that one-half of all juniors and
seniors in U.S. high schools (approximately 3.5 million) are en-
rolled in courses that carry credit for both high school graduation
and college degrees (Clark 2001). Some of these courses are in the
examination-based programs of AP and IB in which college credit
depends on scores on national or international examinations and
not merely on high school grades. According to the data in this
report,15 however, most dual credit enrollees (57 percent) are in
courses that, unlike AP and IB, have no uniform examination.
Because the recent growth of dual credit has been so large, there
are no good data on how students with this credit fare in college,
but if nothing significant has changed except the awarding of

college credit, the knowledge gained by many of these students
will be insufficient for success in subsequent college courses. Will
they then re-enroll in courses for which they already have credit?
Standards for this practice are urgently needed, lest we push the
line between college and school mathematics—if there still is to be
one—well below what it should be.

The largest examination-based dual credit program is AP,16 a
50-year-old program of the College Board aimed at providing
opportunities for advanced study in high school with the possibil-
ity of receiving credit or advanced placement in college. AP has
been growing by about 10 percent per year for the past 20 years
and now offers 34 courses and examinations. Approximately 1.5
million AP Examinations will be given in 2002 to over a million
high school students, mostly juniors and seniors. About 200,000
of these will be in AP Calculus and about 50,000 in AP Statistics.

AP Calculus has become the goal of ambitious mathematics stu-
dents because it is a hallmark of high school success. To enroll in
AP Calculus by grade 12, students must take Algebra I by grade 8.
The lure of AP Calculus has accelerated the high school mathe-
matics sequence and consequently reduced the time for teaching
mathematics in context. Although contextual teaching was one of
the goals of calculus reform, and the AP Calculus Course Descrip-
tion issued in 1998 represented a consensus on a reformed calcu-
lus course, AP Calculus is still short on the kinds of contextual
problems needed to develop QL.

The AP science and social science courses do offer contextual
problems, but like the college disciplines they emulate, these AP
Course Descriptions and examinations are developed indepen-
dently with no special efforts toward synergism in learning. Be-
cause AP courses constitute a large portion of college general ed-
ucation core requirements for many students, AP courses need to
contribute significantly to crosscutting competencies such as QL.
This will clearly require closer coordination among the various AP
courses.

Notwithstanding its public prominence, AP Calculus represents
only a fraction of high school calculus courses. Enrollments in all
kinds of high school calculus courses are approximately 600,000
each year, roughly half of which are in courses called AP Calculus,
but only about 200,000 students take an AP Calculus examina-
tion and about two-thirds of these qualify for college credit. That
leaves about 450,000 students with a calculus course that likely
will be repeated in college. Contrary to what we might expect, a
high school calculus experience that does not result in college
credit or advanced placement is likely to cause the student diffi-
culty in college mathematics.

This problem of calculus articulation was addressed years ago by a
CUPM Panel on Calculus Articulation consisting of four high

In the mid-1970s, I was named director of the mathematics com-
ponent of the Academic Skills Enhancement Program (ASEP) at
Louisiana State University. The goal of the program was to increase
the success rate of students in remedial mathematics. We instituted
a moderately complex system of four courses, each a half-semester
long, whereby students would progress to the next course or start
over based on the results of the previous course. I taught several of
these classes, including one section of the first course in which all the
students had failed to progress on their first try.

Never have I had a more challenging assignment. I was helping
college-age (and older) students to succeed in ninth-grade mathe-
matics after they had all failed to do so in the previous eight weeks.
It was there that I learned the many different reasons why students
have trouble with elementary algebra. I also learned why remedial
algebra in universities faces almost insurmountable obstacles given
the levels of success expected in most academic enterprises. Perhaps
30 years later, with the use of technology, the obstacles can be
overcome.
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school teachers and three college teachers (CUPM 1987). Their
report concluded that a successful high school calculus course
requires a qualified teacher with high but realistic expectations, a
full year of study based on something equivalent to the AP Course
Description, and students who are willing and able to learn. The
report described two models of high school calculus courses that
are unsuccessful: one is a partial year “highlights of calculus”
course and the second is a year long, watered-down version that
does not deal with the concepts of calculus in any depth. One of
the panelists was quoted as describing the effects in college of the
highlights course as “like showing a 10-minute highlights film of
a baseball game, including the final score, and then forcing the
viewer to watch the entire game from the beginning—with a quiz
after every inning.” Reports such as this one provided background
for a joint statement from the MAA and NCTM in 198617 rec-
ommending, in part, “that all students taking calculus in second-
ary school who are performing satisfactorily in the course should
expect to place out of the comparable college calculus course.” A
2002 National Research Council study reached a similar conclu-
sion, recommending that “all calculus taught in high school
should be at the college level” (Gollub et al. 2002, 537).

The huge overlap between school and college mathematics com-
plicates the school-to-college transition, partly because the line
between the two systems is so blurred. There is nothing inherently
wrong with students learning calculus in high school or learning
algebra in college. There is something very wrong with students
repeating the same material, whether it is arithmetic, algebra, or
calculus. Repeating and failing are the culprits in this overlap.
Schools and colleges must concentrate more effort on students’
learning, success, and progress. There is little value in weak
courses that do not lead to progress. Moreover, repeating courses
when previous experience has failed is often a barrier to success.

COLLEGE MATHEMATICS AS A FILTER

One of the headlines of the calculus reform movements was the
phrase “a pump, not a filter,” expressed by National Academy of
Engineering President Robert White in his opening remarks to
the Calculus for a New Century Colloquium in 1987 (White
1988). Unfortunately, college mathematics still is widely used as a
filter.

There are two different reasons for using mathematics as a filter.
Some disciplines require particular analytical and critical thinking
skills that are best learned in mathematics courses. In such cases,
mathematics courses are legitimate prerequisites and necessarily
serve as filters. In many cases, however, mathematics is used as a
filter only because the courses are difficult and only the best pre-
pared and most dedicated survive. This type of filtering misuses
mathematics and abuses students.

Unfortunately, many mathematics faculty accept the long tradi-
tion of their discipline as a filter and expect a large number of
students to fail. This expectation casts a pall that hangs over many
mathematics classrooms, causes additional students to fail, and
increases resentment toward mathematics.

STATISTICS ARTICULATION

In most colleges, statistics courses are spread across several depart-
ments including statistics, mathematics, engineering, social sci-
ences, agriculture, and business. By and large, college statistics is
taught to support majors in other disciplines, often by faculty
whose appointments are in the disciplines served. Statistics has
been viewed as a research method in agriculture and the social
sciences—consistent with Richard Scheaffer’s characterization of
statistics as “keeper of the scientific method” (Scheaffer et al., see
p. 145). In many institutions, there is little interaction or synergy
among the statistics courses taught in various disciplines. Partly
because of this dispersion, college statistics departments have
never had sufficient enrollments to justify large departmental fac-
ulties. Measured by degree programs, statistics is largely a graduate
discipline.

But now statistics is also a high school discipline. The AP Statistics
course, first offered in 1997, has grown remarkably fast, with
about 50,000 examinations in 2002. Ten years ago, when the
College Board’s AP Mathematics Development Committee was
first asked to make a recommendation about developing AP Sta-
tistics, they were stymied because there was no typical first college
course in statistics, which was necessary for the standard prototype
of an AP course. This lack of a standard first college course was
indicative of the dispersion of statistics teaching in higher educa-

When I was a new chair of the department of mathematical sciences
at the University of Arkansas, I was introduced at a social event to
the dean of the college of business administration. As we chatted, I
mentioned the recent increase in the mathematics requirements for
business majors to two courses—one in finite mathematics and one
in polynomial calculus. I said that I hoped the students would do
well and that we didn’t want these courses to reduce his college’s
enrollment. He immediately said that reduction of enrollment, that
is, filtering out students, was a major purpose of the requirement.
So, like my school superintendent, the business dean was passing
the heat on to me.

Later, as dean of my college for 10 years, I learned a lot more about
the role of mathematics courses as filters. I heard about it from
faculty and administrators in architecture, business, engineering,
agriculture, and education, and from my own faculty, including
premedical advisers, science faculty, humanities faculty, and fine
arts faculty. Some were for filtering and some were against it, but all
recognized it as a key role played by mathematics.
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tion. Therefore, in a reverse of the traditional pattern, AP Statis-
tics, which was developed by college and school faculty outside the
muddled arena of college statistics, has become a model for a first
college course in statistics. This history illustrates the degree of
difficulty in changing college curricula without outside impetus.

The position of AP Statistics in school and college curricula differs
from AP Calculus in that the former does not sit in an established
sequence of prerequisite and succeeding courses. This freedom
promotes access to AP Statistics and does not affect students’
course choices nearly as dramatically as does AP Calculus. AP
Statistics has been well served by the introduction of a strand on
data analysis and probability in the K–12 mathematics standards,
which has increased the visibility of statistics to students and
teachers.

One explanation for the weakness of quantitative literacy at the
college level is that many undergraduate degrees do not require
statistics. Even when there are program requirements, they are
aimed at using statistics as a research method (in the social sciences
and agriculture) or are very bound up with the jargon and prac-
tices of professional education (in business and engineering).
Rarely are statistics courses required for general education, where
their goal would be to help students use statistics to make deci-
sions concerning public issues or personal welfare.

A little bit of elementary statistics—perhaps a chapter or two—
does appear in some introductory mathematics courses. Some
appears in courses on finite mathematics that often are required
for business majors and sometimes are part of a general education
core. There also is some in the mathematics courses for prospec-
tive elementary school teachers; it is essential there because of the
presence of the data analysis and probability strand in the K–12
mathematics standards. As we have noted, however, college
courses change very slowly and college faculty are neither attuned
to changes in K–12 curricula nor much inclined to be guided by
forces external to their discipline or department.

In 1991, CUPM recommended that every mathematical sciences
major should take at least one semester of probability and statistics
at a level that requires calculus as a prerequisite (CUPM 1991),
but this recommendation by mathematicians for mathematics
majors is somewhat inconsistent with statisticians’ data-oriented
view of statistics. The CUPM report acknowledged that in one
course it is difficult to cover an introduction to probability and
also convey an understanding of statistics. Consequently, a math-
ematics graduate is likely to have very little statistics education,
and many graduate programs in mathematics do not correct this
deficiency. Thus both secondary school mathematics teachers and
college mathematics faculty are likely to have weak training in
statistics, leaving them unprepared to teach courses in data anal-
ysis and probability. These deficits in articulation, along with the

virtual absence of statistics in statements of college expectations
for mathematics preparation (including the content of placement
tests), weaken significantly the emphasis on data analysis and
probability in school mathematics. To improve statistics educa-
tion in the schools, it must be strengthened in colleges and become
a more prominent part of general education.

TEACHING ACROSS THE CURRICULUM:
SYNERGISM IN EDUCATION

The most important area of horizontal articulation in education is
teaching crosscutting competencies in all curricular components.
The most notable example of this is “writing across the curricu-
lum,” a practice that has been successfully implemented in a num-
ber of colleges and universities. Many believe that a similar model
will be required for effective QL education.

Teaching QL across a college curriculum will require considerably
more coordination among the disciplines than currently exists at
most institutions. The independence of disciplines is strong. Ac-
cording to Carnevale and Desroches (see p. 21), “academic spe-
cialization that creates virtually impregnable barriers between the
discrete disciplinary silos of mathematics, science, and the human-
ities.”

ARTICULATION WITH THE ENVIRONMENT

In his paper “Mathematics for Literacy” (see pp. 75-89), Jan de
Lange makes several observations about what is needed to gain
mathematical or quantitative literacy:

● The mathematics that is taught should be embedded in the
real world of the student.

My experience confirms these barriers. I was a double major in
college, in mathematics and physics. I took 12 or 13 mathematics
courses and an equal number of physics courses. Mathematics was a
part of all the physics courses, and occasionally some physics con-
cept would emerge in a mathematics course. Aside from elementary
applications of calculus concepts—mostly the derivative—I rarely
recognized any of the mathematics from my mathematics courses in
the mathematics I saw in physics courses. They were two parallel
worlds, occasionally touching but never merging or synergistically
promoting understanding.

In my Ph.D. studies in mathematics I minored in physics, taking 12
hours of graduate work. As in my undergraduate experience, physics
and mathematics were still worlds apart. And physics and mathe-
matics should be the easiest subjects to integrate. My years of college
teaching tell me that my experience is not unusual; there is very little
synergy in teaching mathematics across college disciplines.
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● Mathematical literacy will lead to different curricula in differ-
ent cultures.

● The content of [mathematics] curricula will have to be mod-
ernized at least every five to 10 years.

U.S. mathematics curricula, both in high school and college, fail
badly in meeting de Lange’s criteria. Although high school and
introductory college mathematics do include some so-called real-
world problems, these very often are not embedded in the world of
any student. Some national needs are cited as reasons for stronger
mathematics education, but the duties of citizenship in a democ-
racy—perhaps the most fundamental need of the country—are
rarely considered when teaching mathematics. The school curric-
ulum may have been modernized once in the past 50 years, de-
pending on the interpretation of “modernize,” and introductory
college mathematics currently may be undergoing some reform,
but there is no systematic way to modernize college offerings.
Every five to 10 years seems beyond the pale.

Beyond a lack of connection to real-world applications, there is an
additional mismatch between the mathematics curriculum and
available jobs. According to Carnevale and Desrochers, “too many
people do not have enough basic mathematical literacy to make a
decent living even while many more people take courses such as
geometry, algebra, and calculus than will ever actually use the
mathematical procedures taught in these courses in high school”
(see p. 25).

How Did We Get Here and How Do
We Get Out?
The foregoing paints a clear picture of an enormously inefficient
and ineffective system of introductory college mathematics. The
GATC sequence, driven by the needs of scientists and engineers,
controls the system, but the system now serves—or more accu-
rately, disserves—a much larger population. In the interest of
efficiency, we have gathered together largely uninspiring algebraic
methods and created courses with a singular, dominating goal of
preparation for calculus, the gateway to the use and further study
of mathematics. Those who do not survive are left on the side of
this narrow road with fragmented and often useless methodolog-
ical skills. The system produces millions of such students every
year, at least three of four entering college students.

Two major corrections are needed. First, the rigid linearity of the
route to advanced mathematics must be abandoned. Second, col-
lege mathematics courses must have independent value and not be
only routes to somewhere else.

Similar to mathematics research, learning mathematics at the col-
lege level need not be linear. Students can learn mathematical
concepts and reasoning through combinatorial mathematics,
through data analysis, and through geometry, as well as through
calculus. Even fundamental concepts of calculus—rate of change,
approximation, accumulation—can be understood outside the
infrastructure of calculus methodology. A major impetus for the
calculus reform movement was a 1983 conference convened to
discuss discrete mathematics as an alternative gateway to college
mathematics (Douglas 1986). By developing multiple intercon-
necting pathways to the advanced study of mathematics, intro-
ductory college mathematics can become more appealing and
more useful to students. Further, a broader view of college math-
ematics can support a broader school mathematics curriculum
and remove much of the emphasis on a failed system of courses
dominated by algebraic methodology.

Because of their easy experience learning mathematics, most
mathematicians do not relate well to a student struggling with
factoring quadratics or mangling the addition of algebraic frac-
tions. We mathematicians see the larger algebraic architecture and
the logic underlying the operations; however, some of us can
identify with that bewildered student by reflecting on how we first
use a new graphing calculator or software package. Here the ar-
chitecture and underlying logic of the hardware or software are
obscure. So what do we do? We begin to use the calculator or the
software package and refer to the manual primarily when needed.
No one would first spend days pouring over the manual trying to
commit to memory procedures or keystrokes to accomplish thou-
sands of unconnected operations. Many of our students see col-
lege algebra and trigonometry in this same illogical light. Every
operation is new and independent, making retention of skills until
the end of the semester unlikely and until the next year almost
impossible.

Just as computer software and calculators are useful to all of us, so
is algebra. For education to be effective, these uses of algebra must
be given priority over techniques, not only to accomplish tasks
that use algebra but also to master algebra. This approach may
help break the rigid GATC verticality and can increase access to
and success in both mathematics and its applications. And tech-
nology can surely help.

Much of the GATC sequence consists of learning skills that can be
performed by technology. Unfortunately, mathematicians do not
agree on what manual (paper-and-pencil) skills are essential or on
how technology helps; some even ban technology. Mathemati-
cians know their own algebraic skills served them well, so when
they see students falter because of poor algebraic skills it reinforces
the beliefs that help maintain the GATC stranglehold.
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Both the NCTM Standards and AMATYC Crossroads have fully
endorsed using technology in mathematics education. Nonethe-
less, the mixed attitudes of college and university mathematics
faculty toward technology have created a dual system in school
mathematics: first teach and test it with technology, then teach
and test it without technology. The AP Calculus Examinations
display this duality—one part with calculators and one part with-
out. No doubt this model has strengths, but we can no longer
afford these strengths; there is too much else to do. We can teach
and test mathematical skills and concepts using graphing and
computer algebra systems (CAS) technology. Computers are part
of the world of our students. It is past time to use them regularly
in teaching mathematics.

By focusing introductory college mathematics courses on learning
by using, especially learning by using technology, these courses
can extend school mathematics at the same time they fill in gaps in
learning. We can stop the treadmill of repeated failures in repeti-
tious courses. We can stop telling students that they will need
algebra later, perhaps in calculus and its applications. Instead, we
can show students why algebra is important and what they need to
master. With wise use of technology and learning-by-doing, the
GATC sequence in college can be replaced by courses that en-
hance the use of mathematics in other disciplines, prepare stu-
dents for the quantitative demands of everyday life, and support
the study of advanced mathematics. In this way, introductory
college mathematics can become a pump, not a filter.

Notes
1. The Bridge Project, housed at the Stanford Institute for Higher

Education Research, has as its aim “to improve opportunities for all
students to enter and succeed in postsecondary education by
strengthening the compatibility between higher education admis-
sions and placement requirements and K–12 curriculum frame-
works, standards, and assessments.”

The Education Trust was created to promote high academic stan-
dards for all students at all levels, kindergarten through college. The
Education Trust publishes Thinking K–16, an occasional newsletter
that contains discussions of issues in K–16 education and how they
are being addressed by various coalitions. See www.EdTrust.org.

The American Diploma Project (ADP) is aimed at aligning high
school academic standards with higher education and the needs of
the new economy. ADP is sponsored by Achieve, Inc., the Education
Trust, the Thomas B. Fordham Foundation, and the National Alli-
ance of Business.

2. Personal communication. Attributed to William Schmidt by Alfred
Manaster.

3. Because statistics is a part of the mathematics curriculum in K–12,
mathematics at this level is often interpreted to include statistics. In
this paper, the more inclusive “mathematical sciences” often will be
abbreviated to “mathematics.”

4. Advanced Placement Calculus is a program of the College Board that
provides a course description and national examinations whereby
students can earn college credit or advanced placement in college
courses while still in high school.

5. The American Mathematical Society (AMS) is a professional society
of mathematicians that focuses on issues in research and graduate
study in mathematics.

6. The National Research Council (NRC) is the operating arm of the
National Academy of Science, the National Academy of Engineer-
ing, and the Institute of Medicine.

7. The Conference Board of the Mathematical Sciences (CBMS) is a
confederation of presidents of 17 professional organizations in the
mathematical sciences.

8. Every five years since 1965, CBMS has surveyed college and univer-
sity mathematical sciences departments on curricula, enrollments,
and instructional practices. The CBMS 2000 survey was conducted
in fall 2000.

9. Remedial mathematics often is called developmental mathematics
and consists of courses in arithmetic, beginning algebra, and inter-
mediate algebra. “Remedial” often indicates that college degree
credit is not awarded.

10. NCTM is the National Council of Teachers of Mathematics, a pro-
fessional organization that focuses on K–12 mathematics education.

11. The American Diploma Project cited above is one such effort.

12. MAA is the Mathematical Association of America, a professional
organization that focuses on undergraduate mathematics. The MAA
Placement Test Program, established in 1977, was discontinued in
1999 but some of the tests still are being used.

13. AMATYC is the American Mathematical Association of Two-Year
Colleges, a professional association primarily of two-year college fac-
ulty.

14. Other terms used to describe these courses are “dual enrollment” and
“concurrent enrollment.”

15. The report gave the number of students in AP as 1.2 million in 2000;
however, this was the number of examinations taken. The number of
students was closer to 800,000. The estimate of 300,000 U.S. stu-
dents in IB also seems too large. Using these better estimates, the
percentage of students in courses that do not have national exami-
nations is probably higher than the 57 percent cited.

16. The author has considerable experience with the AP Program, in-
cluding a term as Chief Faculty Consultant for AP Calculus (1995–
1999) and as a member of the Commission on the Future of the
Advanced Placement Program (1999–2001).
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17. Reprinted as Appendix B of the Statement on Competencies in
Mathematics Expected of Entering College Students, endorsed by
the Intersegmental Committee of the Academic Senates, California
Community Colleges, California State University, and University of
California. Sacramento, California, 1997.
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Addressing Societal and Workforce Needs
DAVID F. BRAKKE

Educational landscapes are often largely disaggregated collections of units with little connection
between them. Educational institutions at the same level are rarely linked to one another and
articulation between different levels generally is haphazard. Although there have been some serious
attempts to build bridges from secondary to postsecondary education and from community college
to university, with some attention paid to alignment, poor articulation remains a concern. Even in
mathematics, perhaps the most vertical of disciplines in its range from kindergarten to graduate
school, the transitions are not seamless. The teaching of mathematics is often isolated. Although
mathematics is a consistent part of the curriculum throughout the various educational levels, it is
increasingly disconnected from other subject areas as grade levels rise. Further, with the rapid
expansion of mathematics offerings in high schools, students enter community colleges and univer-
sities with widely varying backgrounds.

The relatively poor integration of mathematics with other disciplines occurs in spite of the rich
context for mathematical and statistical applications in the world around us and the increasing
demand for a workforce that can think, analyze, and compute. Reasoning in a world awash in
numbers and data requires quantitative analysis. Using mathematics and statistics to make decisions
and solve problems in real-world settings not only provides the context for mathematics but also
demonstrates its essential value. Mathematics as a discipline can be examined for its own intricacy
and beauty, while its societal significance lies in its application.

As someone who has been involved in scientific studies that relate to policy issues and who teaches
a course on environmental science and public policy, I first want to provide a context for the kinds
of quantitative approaches that are necessary to address issues we face in understanding and man-
aging natural resources. If science is to inform policy, we must ask the right question, collect
appropriate data, and conduct analysis in a decision-making framework. Such a process naturally
involves design, sampling, error, estimation, and uncertainty. We might consider rates, variability,
predictability, scales, and limits. We might need to evaluate actual and perceived risks and find ways
to manage those risks. Ultimately, we must communicate the results. How do we best communicate
the results of an assessment of risk, especially when a public comfortable with probabilities in
weather forecasts expects science to have certain answers? Informed decision making in a world full
of data requires quantitative reasoning.

A second example of the application of quantitative analysis comes from a consideration of science
and the courts. From DNA fingerprinting, to what constitutes evidence or who is an expert, to how
we interpret various acts passed by Congress, e.g., the Wilderness Act or the Endangered Species Act,
the courts have not done an adequate job. Some would call the performance lousy, while others
might go so far as to suggest that there is no real role for science in the courts or that scientific
evidence rarely determines outcomes. If the latter is in part the case, it is likely due to the inability of
the judicial process to incorporate effectively scientific and numerical information in deliberations.
A broad examination of the role of numeracy in our legal and policymaking frameworks is war-

David F. Brakke is Dean of Science and Mathematics at James Madison University. A limnologist, Brakke has studied
ecosystem assessment, lake management, and climate change in the U.S., Canada and northern Europe. He has been
actively involved with professional organizations concerning science and mathematics education, teacher preparation, and
undergraduate research. Brakke also writes a quarterly column on science and society for the Association of Women in
Science (AWIS) Magazine.
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ranted. We ask large questions as a society and should expect
reasoned answers that consider evidence, recognizing that values
also play an important role in setting policy.

If we look at higher education institutions, we often find students
doing relatively poorly in quantitative courses regardless of the
discipline in which they are offered; the problem is not limited to
mathematics courses. Simply teaching statistics in a psychology
department is not an answer to providing context. As I consider
the reasons why student performance is not better, I can identify at
least nine factors on my own campus, and they apply to quanti-
tative courses in most areas. Some of the reasons relate to affective
behavior, both with respect to the student and the instructor. We
must examine the ways we can improve student performance in
quantitative courses and prepare students for decision making that
involves considering, analyzing, and communicating quantitative
information. I suggest that greater focus on improving perfor-
mance, recognizing success, and identifying rich examples of prac-
tice may prove more helpful than focusing on what is wrong.
Mathematics and statistics are interesting and practical.

We may want to consider defining learning outcomes for students
with the goal of aligning those outcomes with societal and work-
force needs. For example, if I look at my own institution, James
Madison University, it has large and strong programs in five areas
that are vital to the future of Virginia’s economy: science, math-
ematics, and technology; information technology; health profes-
sions; business; and teacher preparation. As we talk to employers,
we find they are asking for students who are broadly educated and
have a number of critical skills and desirable attitudes, including
the ability to communicate and work effectively in groups. Our
programs in science and mathematics are concerned with content
but also with developing a way of thinking. We provide experi-
ences, develop skills, emphasize the use of information technology
and communication, and work to enhance critical thinking and
quantitative reasoning. These efforts are also applicable to the
other four areas mentioned above.

We can also look at changes in various disciplines that require new
or different analytical and quantitative approaches. For example,
in the world of biology we have become data rich, with new
horizons requiring new sets of skills. We have genomics, nano-
technology, biomaterials, DNA computing, neuroscience and
cognition, and environmental science (or biocomplexity) in all
dimensions and on all scales. This has led the National Science
Foundation (NSF) to describe “The New Biology” or “Biology for
the 21st Century,” which is multidimensional and collaborative,
multidisciplinary, information-driven, and education-oriented.
Modeling, managing with information, recognizing patterns in
vast amounts of data, all require sophisticated mathematical and
computational skills. Mathematics, statistics, and computational

science have become essential elements of biology, determining
anew what quantitative skills are needed.

We need not focus on workforce needs to design programs, but
neither should we ignore them. Preparation for the twenty-first
century workforce must be part of our educational agenda. We
can respond by developing or modifying programs to enhance
skills and foster cognitive development. We also can shape atti-
tudes, improve habits, and develop a level of facility in the use of
mathematics and statistics as a necessary part of reasoning. To
achieve quantitative literacy in our students, we must enhance the
ability to ask questions, including the development of healthy
skepticism. We can establish learning outcomes for students as
explicit, measurable goals and provide a learning experience that is
rich in application in multiple settings.

Quantitative skills development must be seen in relation not only
to mathematics and other disciplines but also in relation to com-
prehension and communication. Quantitative approaches are
part of reasoning and thinking processes rather than something
uncoupled and solely mathematical. Perhaps this is illustrated
succinctly by the observation that often the students who struggle
in statistics are not careful readers or clear writers. Their perfor-
mance in statistics can be improved by attention first to critical
reading, which is also essential to problem-solving skills. Quanti-
tative reasoning involves numbers and words in a context.

As we respond to these issues across institutions, it may be neces-
sary to focus our discussion of quantitative reasoning separately on
three populations of students: the enhancement of quantitative
reasoning for all students, for those students entering K–12 class-
rooms as future teachers, and for students in the disciplines and
professional programs. I see each of these tasks as different and as
requiring separate strategies. “For all students” speaks to issues of
society and civic responsibility—those abilities necessary for an
educated citizen to make informed decisions. Separate attention
to preparing future teachers recognizes the fundamental need for
quantitative approaches in all areas of the K–12 curriculum, not
just in mathematics. The third area of attention, quantitative rea-
soning in the disciplines and professional programs, is essential if
we are to move to increasing levels of sophistication in application.
At least from my perspective, education in quantitative reasoning
will not succeed if it is restricted to general education or limited
solely to mathematics. It must be a goal of all institutions, defined
as a learning outcome for all graduating students, and assessed
directly as part of the evaluation of students’ major programs.

Gone are the days when we required a course but did not build on
it in the major programs. Why not require major programs to set
explicit goals for quantitative reasoning, develop plans for enhanc-
ing quantitative skills beyond basic required mathematics and
statistics courses, and then report on the results as part of their
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program assessments? This approach would contribute greatly to a
dialogue and ultimately to significant cooperation between math-
ematics, statistics, and the disciplines and professional programs
in achieving overall goals for students. Appealing to the disciplines
for their assistance in addressing quantitative reasoning is essen-
tial. It would also be transformative, expanding what we expect in

coordinated learning outcomes across an institution and in the
process redefining a rich, liberal education. A true liberal educa-
tion should demand the consideration of quantitative reasoning
beyond the department of mathematics and recognize and cele-
brate the need and utility of quantitative approaches in thinking
and reasoning.
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Making Mathematics Meaningful
ARNOLD PACKER

The organizers of this Forum picked an opportune time to bring mathematics education to wider
attention. Congress has mandated third- to eighth-grade tests in the new Elementary and Secondary
Education Act, Leave No Child Behind. Students in a number of states already are facing high school
exit examinations, and other states are likely to follow suit. Students who fail will be denied their high
school diplomas. Unless the situation changes quickly, the failure rate and the number of denied
diplomas will be too high. As a result, the entire standards movement will be put in jeopardy.

If history is any guide, many of those denied will have failed their mathematics examination. Even
today, many students interested in college programs leading to degrees in a technology field are
denied entrance because of weakness in mathematics. Results of the National Assessment of Edu-
cational Progress (NAEP) document the difficulty American students—especially black and His-
panic students—have in learning mathematics. Results of the National Adult Literacy Survey
(NALS) document continuing difficulty beyond adolescence.

As indicated by the NAEP, the test likely to be used to calibrate state standards, current practices in
mathematics education are clearly failing at least half of our students, including a majority of blacks
and Hispanics. An examination of the tests and textbooks clearly shows why: they are too abstract.
Moreover, when the test questions are put in context, the context is often so odd that it may make
matters worse. The book Humble Pi (Smith 1994) lays out some of the contexts that make up the
majority of algebra word problems: trains or planes crossing in the night, mixes of two different-
colored jelly beans at two different prices, the age of a relative or pet as an algebraic function of
another (“Aunt Jo is twice as old as Uncle John’s dog. . .) and, of course, rowing a canoe upstream
or downstream.

No wonder a majority of college students need extra help in mathematics and take only the easiest
and required course, proclaiming after the final “Thank God I’ll never have to take another math
course in my life.” No wonder few students, even very good ones, can apply mathematics to real
problems. No wonder gatekeepers establish mathematics as the screen to engineering and medical
school, and that calculus serves as an effective screen for many. It is, however, a greater wonder that
mathematics educators tolerate this state of affairs and resist change with so much vehemence.

Quantitative literacy, in my judgment, can save the day, not by being added to the curriculum but
by altering required mathematics. National Science Foundation (NSF) director Rita Colwell makes
the analogy of understanding a clock (Colwell, see p. 247). Some people need to know how to make
a good timepiece and some need to understand how a clock’s mechanism keeps time. But everyone
needs to know how to read a clock’s face and tell time.

Similarly, a few—a very few—need to know mathematics well enough to be researchers in the field.
A much larger number—but still only a small percentage of the nation’s labor force—need to know
enough mathematics to be research scientists and engineers. But the majority of those who are going

Arnold Packer is Chair of the SCANS 2000 Center at the Institute for Policy Studies, Johns Hopkins University. An
economist and engineer by training, Packer has served as Assistant Secretary for Policy, Evaluation, and Research at the U.S.
Department of Labor, as co-director of the Workforce 2000 study, and as executive director of the Secretary’s Commission
on Achieving Necessary Skills (SCANS). Currently, his work is focused on teaching, assessing and recording the SCANS
competencies.
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to have successful careers need to have quantitative literacy, as
does everyone who is going to be a participating citizen.

“How will students know whether they want to be mathemati-
cians or research engineers unless they are exposed to abstract
mathematics early?” some will say. “Yeah,” replies the quantita-
tively literate after looking at some data, “as if students—espe-
cially minorities and women—are beating down the doors to
graduate from mathematics departments now.” The current sys-
tem clearly needs to be radically improved.

Adding courses in quantitative literacy will not do; formal school-
ing already takes too long. Instead, we must change basic mathe-
matics education, at least until grade 14. What does that mean in
practical terms? Replacing trigonometry with data analysis and
statistics as the first post-algebra course is one step. De-emphasiz-
ing calculus is another.

Even more radically, eliminate the use of x’s and y’s as variable
names until the junior year in college. Eliminate x and y in the
NAEP exams. Move understanding the transferability power of
mathematics to the end of the chapter—where the applied prob-
lems now languish—to be learned after students see how mathe-
matics can solve relevant problems. “See, now that you under-
stand how rates of change apply to prices to produce measures of
inflation, you can use similar equations to determine the speed of
tennis serves or changes in the incidence of AIDS.” The hallmark
of quantitative literacy (QL), in my judgment, is its emphasis on
learning in a meaningful context. The Humble Pi algebra examples
are not meaningful contexts, and neither are most “consumer
math” problems.

I do not mean to denigrate the importance of “transferability” and
the power of mathematics in this regard. The issue of transferabil-
ity is quite complex but data clearly indicate that the majority of
students do not transfer what they learn in mathematics class to
problems in the outside world. A full conversation would bring us
into the field of learning theory, which I hardly understand. I do,
however, suggest How People Learn: Brain, Mind, Experience, and
School by the Committee on Developments in the Science of
Learning of the National Research Council, which reviews recent
developments (Bransford et al. 2001). The authors make the fol-
lowing pertinent points:

1. Learners build on what they know and unfamiliar principles
are difficult to learn in unfamiliar contexts.

2. What learners already know may get in the way of new learn-
ing (for example, in ordering fractions).

3. The only reason for schooling is to transfer the lessons beyond
the classroom.

4. Transfer rarely occurs unless explicitly shown and too narrow
a context inhibits transfer.

Our work at the Secretary’s Commission on Achieving Necessary
Skills (SCANS) 2000 Center at Johns Hopkins University tends
to focus on education for careers. For us, meaningful contexts are
jobs paying more than the median wage. Thus, Algebra I students
develop marketing plans for a tourist agency. This requires that
they deal with a line whose slope changes when the printing price
changes from 25 cents per 100 (for quantities under 1,000) to 10
cents per 100 (for greater quantities). Algebra II students develop
a business plan for a mall and deal with trade-offs through spread-
sheet simulations and probability through developing an inven-
tory strategy. It is not rocket science (where they may need calcu-
lus) but it is plenty rigorous, certainly more rigorous than trying to
find out where the two trains meet, or than lightweight consumer
mathematics.

More important, students in our programs learn the stuff, at least
as compared to their peers. In schools that have graduation rates
under 25 percent, students taking our courses are graduating at
about a 90 percent rate. Compared with other non-dropouts,
their mathematics grades are one-half grade point higher (al-
though still only a “C”). Even more significantly, students in these
programs are one-third more likely to take and pass Algebra II.

The background essay I prepared for this Forum (see p. 33) de-
scribes a “canon” of issues in mathematics education that I will not
discuss at length here. But I will mention a few issues in career
education that come from SCANS. The commission listed five
broad problem domains; career success is likely to require compe-
tence in a few of them. One of the SCANS problem domains, for
example, is planning or resource allocation. This leads to budget
problems as illustrated by the business plan project mentioned
above. The planning domain also includes space problems, staff
assignments, and scheduling. In addition to converting from En-
glish to metric measure (still, unfortunately, rare for Americans), a
quantitatively literate person should be able to convert hours and
days into minutes (for example, to determine when a heat-treated
part should be removed from an oven). This is a career-relevant
problem using a number system based on 60 rather than 10.

Let me reiterate five points:

1. Too many students—especially minority students and young
women—are poorly served by the current practices in math-
ematics education.

2. The standards movement, especially the adoption of high
school exit examinations, makes change in this situation im-
perative.
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3. Quantitative literacy is a way out of the current dilemma.
This implies more data analysis and statistics and less trigo-
nometry.

4. Mathematics needs to be taught in relevant contexts of real-
life problems that productive workers and engaged citizens
need to be able to solve.

5. One way to achieve this is to eliminate x’s and y’s from math-
ematics until the junior year in college and from the NAEP
and other high school exit examinations.

The aim of the first 13 years of mathematics education should be
to equip students with the tools and desire to continue learning

mathematics. By this criterion, current programs clearly fail many
students. There is some evidence that quantitative literacy will
succeed.
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Grounding Mathematics in
Quantitative Literacy

JOHNNY W. LOTT

We owe our children no less than a high degree of quantitative literacy and mathematical
knowledge that prepares them for citizenship, work, and further study. (NCTM 2000, 289)

Quantitative literacy (QL) is a major goal of the National Council of Teachers of Mathematics
(NCTM) for the teachers of mathematics in this country and in Canada. It is worth emphasizing
that “our children” means all children. Equity is a core principle for NCTM as well: “All students,
regardless of their personal characteristics, backgrounds, or physical challenges, must have oppor-
tunities to study—and support to learn—mathematics” (NCTM 2000, 12).

Equity does not mean identical instruction for all, but it does mean that all students need access each
year to a coherent, challenging mathematics curriculum taught by competent and well-supported
mathematics teachers. “Well-documented examples demonstrate that all children, including those
who have been traditionally underserved, can learn mathematics when they have access to high-
quality instructional programs that support their learning” (NCTM 2000, 14).

As we think about quantitative literacy (or more broadly mathematical literacy), we must acknowl-
edge that the mathematics community as a whole has provided neither access to nor a “coherent
challenging mathematics curriculum” for all students. In fact, underserved groups include not only
students from poor communities but also those from affluent communities that are college-bound.
If anything, college-bound students may have been the most ill-served. Locked into a mathematics
curriculum that has calculus as a single-minded focus, these students have been denied the most
elementary understanding of mathematical literacy. Only in selected schools with a selected curric-
ulum might we find the rudiments of mathematics that lead to quantitative literacy.

Since the release of Curriculum and Evaluation Standards for School Mathematics (NCTM 1989),
NCTM has worked to make mathematics a foremost consideration in this country whenever
education is debated. The Curriculum and Evaluation document focused attention on the need to
improve the mathematical knowledge of all students. That document and its successor, Principles
and Standards for School Mathematics (NCTM 2000), have become magnets for criticism from
certain members of the higher education mathematics community. It is my hope, and that of
NCTM, that this Forum will set the stage for a common national push for mathematical literacy.

Mathematical literacy is a responsibility of precollege mathematics teachers, but it is not their
responsibility alone. A mathematical literacy curriculum must begin early in students’ school careers,
long before high school; otherwise it is doomed to failure. Many students do not take mathematics
beyond the tenth grade, and some have dropped out of school by that age. Thus, a major portion of
mathematical literacy must be achieved in grade school and early high school.

Johnny W. Lott is Professor of Mathematics at the University of Montana and President of the National Council of
Teachers of Mathematics (NCTM). Lott served as co-director of the SIMMS project that developed a new mathematics
curriculum for grades 9–12 called Integrated Mathematics: A Modeling Approach. An author or co-author of several books
and many articles, Lott has been chair of the editorial panels for three NCTM periodicals.
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If mathematical literacy is important before students have reached
grade 10, we need to examine who can teach what is needed.
Many elementary teachers may not be comfortable with the nec-
essary mathematics because of their own backgrounds. Middle
school teachers have mixed mathematics backgrounds, and sec-
ondary teachers are typically more comfortable with traditional
mathematics than with the mathematics presented in a quantita-
tive literacy program. Teacher preparation programs therefore
must change. Without such change, a quantitative literacy move-
ment has little chance of success. Expecting that teachers other
than mathematics teachers either know or understand what might
be considered quantitative literacy is equally unrealistic.

To succeed in the schools, quantitative literacy must have the
blessing of postsecondary education, organizations representing
postsecondary faculty, and business interests. Without a strong
common vision from above, QL will become the general mathe-
matics of the beginning of this century. If quantitative literacy is to
be a legitimate goal for education in this country, all segments of
the mathematics and science communities must demonstrate that
it is important. If it is truly a goal, it must be valued on a par with
calculus. This means that it must be an integral part of high school
expectations, college admissions tests, and university placement
tests. It cannot stand apart as something for those who cannot do
“real mathematics.”

A central question for precollege teachers is, “How well are the
tasks, discourse, and environment working to foster the develop-
ment of students’ mathematical literacy and power?” Professional
Standards for Teaching Mathematics (NCTM 1991, 62). Consider
the tasks. Any mathematical literacy curriculum should be more
than a collection of activities: it must be coherent, focused on
important mathematics, and well articulated across pre-K–16.
The topics must be context-based and built around important
mathematics.

Curricular topics required for an individual to be mathematically
literate are well represented in the background essays prepared for
this Forum (e.g., de Lange, see p. 75; Steen, see p. 53). From an
NCTM standpoint, a student must be grounded in number and
operations, algebra, geometry, measurement, and data analysis
and probability. Can this grounding be more of the same mathe-
matics as in the past? The answer is a resounding “no” for each of
these strands.

The number strand must include, among other topics, an under-
standing of large and small numbers and of matrices. Large num-
bers can be considered in terms such as distances the space shuttle
travels, the national budget and debt, and the cost of the war in
Afghanistan. Small numbers can be considered by thinking about
the size of an anthrax spore, the time it takes to send an e-mail
message across the country, and so on. Matrices are commonly

used to record inventory as it comes in and out of a warehouse or
when insurance companies study the effects of claims on premi-
ums. The primary focus is not on the mathematics of matrices but
on how blocks of data are treated and operated on in real life.

The algebra strand must include an understanding of how algebra
is applied outside the classroom. It must include recursive pro-
cesses such as those used in spreadsheets, one of the most common
computer tools employed in the business world. For example, the
recursive procedure used in the Fill Down command of most
spreadsheets is comprehensible to very young children. Also,
when blocks of data are used as the input of a Fill Down com-
mand, a different mathematical use of variables is illustrated than
what most people commonly think of. The study of recursive
formulas provides an impetus for the study of interest earned on
savings accounts and easily leads to more mathematics if desired.

The geometry strand must include an understanding of three
dimensions. Students must learn that no maps (whether they are
two-dimensional or on a globe) are accurate. Evidence of this need
is seen, for example, in the common misunderstanding of most
people concerning routes that planes fly and how to measure
house lots when the ground is not flat.

The measurement strand must include the notions of precision,
tolerance, accuracy, and approximate errors. Students should un-
derstand which digits in numbers are worth considering. In to-
day’s manufacturing processes, in which components are built all
over the world, accuracy in measurement is vital. In addition,
understanding the difference between “yards” of carpet and
“yards” of concrete requires a basic understanding of units of
measurement.

In the area of data analysis and probability, students must learn
how to handle data and how to use probabilities. We do not need
more generations of people who think that a lottery is the answer
to all problems, from individuals’ winning in order not to work, to
raising money to support schools. Both the probability of winning
and an understanding of the population from which a winning
number is drawn are vital to quantitative literacy.

Finally, in all efforts toward mathematical literacy, we should be
teaching mathematical reasoning and problem solving. These are
as basic to an understanding of future mathematics and literacy as
knowing when calculators or computers are necessary tools for
computing.

A quantitative literacy curriculum must offer experiences that
show powerful mathematical uses for modeling and predicting
real-world phenomena. Knowing what is meant by a 40 percent
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chance of rain, a batting average of .322, or an ad for a product
that is “a silly millimeter longer” requires both connections to the
real world and a basic knowledge of mathematical concepts. Such
curricula exist today. See, for example, SIMMS/MCTM Inte-
grated Mathematics: A Modeling Approach Using Technology (Mon-
tana Council of Teachers of Mathematics 1996).

An intelligent, mathematically literate citizen should never de-
clare, “I can’t do mathematics” just as they should never say, “I
can’t read.” The NCTM standards set the stage for mathematical
literacy for all students. How can we work together to make it a
reality?
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Quantitative Literacy:
A Science Literacy Perspective

GEORGE D. NELSON

I begin with a note of personal bias: I believe that the mathematics goals of the American Association
for the Advancement of Science (AAAS) are closer to the quantitative literacy (QL) goals discussed
in Mathematics and Democracy: The Case for Quantitative Literacy (Steen 2001) than either the goals
of the new National Council of Teachers of Mathematics (NCTM) standards or current school
science or mathematics curricula. Indeed, Benchmarks for Science Literacy, published by AAAS, has
many of the same QL goals—they are just not called by that name (Project 2061 1993). In one
respect, therefore, QL is very much part of what we think good science teaching should be about.

On the other hand, Principles and Standards for School Mathematics (NCTM 2000) abandoned, for
many reasons, the vision of the original standards (NCTM 1989) that described both the mathe-
matics important for all students to learn and the mathematics that goes beyond basic literacy
important for those students going on to higher education or technical careers. Principles and
Standards for School Mathematics is a notable and useful description of the goals of school mathe-
matics, but it goes well beyond the goals of QL (QL may be an undefined subset) and may be an
unrealistic vision of the mathematics that all children can learn in 13 years. (I am willing to make the
same statement about the amount of science content in the AAAS Benchmarks and the National
Science Education Standards (NRC 1995).)

I also must point out that Mathematics and Democracy is very mathematics-centric, even as it makes
the case for the interdisciplinary nature of quantitative literacy. The references are almost all from the
field of mathematics and mathematics education, not from the places where QL really lives—the
natural and social sciences. QL is not something new, nor is it something that exists in isolation. It
exists in many places but always in specific contexts. Yet for lack of appropriate contexts, QL rarely
is seen in school classes.

For example, mathematics in science classes is typically independent of mathematics in mathematics
classes. In school science, there is almost no consideration of mathematics’ “scope and sequence,”
nor is much effort made to use consistent terminology and symbols. Typical science classes make
little effort to reinforce mathematical concepts or to demonstrate their application in scientific
inquiry. Mathematics classes, in turn, may employ a science setting (e.g., counting whales or planets)
but not science content appropriate to the local scope and sequence. Current mathematics classes
abound in inappropriate, inconsistent, or unrealistic situations and data. Units, when necessary, are
often absent or incorrect. QL-type applications are rare. On an optimistic note, some of the new
“reform” or “standards-based” K–8 curriculum materials in mathematics do a much better job of
offering realistic and appropriate examples and contexts.

The knowledge and skills that make up quantitative literacy can be defined through careful sets of
learning goals, specific concepts and skills that together paint a coherent and complete picture. There
are two types of goals: targets for adult knowledge and skills such as those in Science for All Americans

George D. Nelson is Director of the Science, Mathematics and Technology Education Center at Western Washington
University. Immediately prior to assuming this position, Nelson directed Project 2061, a national initiative of the American
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(AAAS 1989) (targets), and benchmarks to monitor progress to-
ward the adult goals (NCTM 1989, AAAS 1993) (steps along the
way, or standards). We need both. Benchmarks are especially im-
portant as a strategy to reach our targets because they define the
content around which curricula can be designed and built. So far,
most of what we have in QL are targets without standards. And
those targets span the disciplines.

Where does QL live, or where might it thrive? School mathemat-
ics is typically formal and theoretical, thus not yet a welcoming
environment for QL. In comparison with the NCTM standards,
QL involves the sophisticated use of elementary mathematics
more often than elementary applications of advanced mathemat-
ics. Although science can be data-rich, natural science often is
taught more like what Arnold Packer and others call “x, y math.”
Because the contexts of QL are most commonly personal or social,
the social sciences may offer the most natural home. Of course,
this assumes that curriculum developers, teachers, and teacher
educators in the social science disciplines are willing to take on the
responsibility for helping students build on the prerequisite math-
ematics to learn QL skills and concepts and that the sum of any
student’s experience totals a coherent vision of QL.

Recommendations:

● QL has a strong partner and advocate in the science commu-
nity. Read and criticize the mathematics in Science for All
Americans (Project 2061 1989), Benchmarks for Science Liter-
acy (Project 2061 1993), and the Atlas of Science Literacy
(Project 2061 2001).

● Consider engaging the social sciences (let them lead or share
the lead) in the quest for QL.

● Adopt detailed and specific goals with benchmarks for
progress.

● Coordinate QL across disciplines by making QL part of fac-
ulty development.

● Promote the pedagogical advances that the K–12 mathemat-
ics community has made through its curriculum development
work.

● Develop reliable and valid assessments of experiments in cur-
riculum and instruction that target QL (i.e., do science). And
publish the results.
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Learning and Working in Context
WILLIAM G. STEENKEN

My formal introduction to quantitative literacy began only six months ago at a meeting of the
Mathematical Sciences Education Board (MSEB) when Rikki Blair, a faculty member at Lakeland
Community College was informing the board of the planning efforts that led to this Forum. At some
point in her presentation, I asked her “What the hell is quantitative literacy?” I could not see the
problem and she could not provide an answer that satisfied me. In frustration, she sent me a copy of
Mathematics and Democracy: The Case for Quantitative Literacy (Steen 2001). After reading this
publication, reviewing some recent events of which I was part, and reflecting on my personal
progression to becoming “quantitatively literate,” I can now say, “Professor Blair, I get it!”

My approach to quantitative literacy is governed by my training as an engineer who worked in the
aircraft propulsion industry—a high-technology industry—for almost 35 years and by my more
recent efforts to help foster systemic and sustainable improvements in pre-K–16 mathematics and
science education in Ohio. My remarks address the importance I attach to learning in context and
the status of quantitative literacy in a high-tech industry such as the design and manufacture of
aircraft engines. I end with some rather disquieting remarks about attempts to improve the level of
quantitative literacy (QL) in the pre-K–12 student pipeline in Ohio.

First, I want to establish what I mean by QL. Mathematics and Democracy defines being quantita-
tively literate as:

● Arithmetic: Having facility with simple mental arithmetic; estimating arithmetic calculations;
reasoning with proportions; counting by indirection (combinatorics).

● Data: Using information conveyed as data, graphs, and charts; drawing inferences from data;
recognizing disaggregation as a factor in interpreting data.

● Computers: Using spreadsheets, recording data, performing calculations, creating graphic dis-
plays, extrapolating, fitting lines or curves to data.

● Modeling: Formulating problems, seeking patterns, and drawing conclusions; recognizing
interactions in complex systems; understanding linear, exponential, multivariate, and simula-
tion models; understanding the impact of different rates of growth.

● Statistics: Understanding the importance of variability; recognizing the differences between
correlation and causation, between randomized experiments and observational studies, be-
tween finding no effect and finding no statistically significant effect (especially with small
samples), and between statistical significance and practical importance (especially with large
samples).

● Chance: Recognizing that seemingly improbable coincidences are not uncommon; evaluating
risks from available evidence; understanding the value of random samples.
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● Reasoning: Using logical thinking; recognizing levels of rigor
in methods of inference; checking hypotheses; exercising cau-
tion in making generalizations.

(Steen 2001, 16)

I would venture to say that the business world would be ecstatic if
students graduating from secondary schools and entering the
workforce possessed these skills. Unfortunately, they do not even
come close.

First, a note of caution. Those of us at this Forum and those whom
we represent are a very, very small percentage of the U.S. popula-
tion: we talk very well to one another (or at least we think we do).
Most of the population, however, is like the typical adult de-
scribed by Project 2061. Paraphrasing material from this project,
the typical adult is a person over 18 years of age with no mathe-
matics or science training beyond high school. The typical adult
would recognize computation beginning with whole numbers,
then fractions, and integers, and later involving algebraic and
possibly trigonometric formulas as mathematics (Blackwell and
Henkin, 1989, 1). Thus, it is no wonder that the general popula-
tion equates being quantitatively literate with being mathemati-
cally knowledgeable. Quoting from the Forum essay by Deborah
Hughes Hallett, “. . . there is, therefore, an important distinction
between mathematical and quantitative literacy” (Hughes Hallett,
see p. 92). As we all know, one does not imply the other. On the
other hand, the foundations of quantitative literacy lie in mathe-
matical literacy.

Becoming Quantitatively Literate
I have been quantitatively literate for almost as long as I can
remember. I attribute this literacy to my training as an engineer.
From the moment I entered engineering school, every course I
took outside of my mathematics courses required analyses that
ended with a quantitative result—that is the nature of engineer-
ing. Analyze a situation; choose, modify, or develop a suitable
algorithm; and produce a result that tells you whether stresses in a
structure will be exceeded, whether the heat transfer rate is too
little or too much, whether the thermodynamic cycle is efficient
enough, whether the current-carrying capacity of wire will be
exceeded, whether pipes can handle the desired flow rate, whether
jet engines produce enough thrust to overcome the drag of the
aircraft, and so on. Graphs, spreadsheets, extrapolation, interpo-
lation, statistics, probability, gathering data, and modeling new
situations are all tools of the engineer every day.

Becoming quantitatively literate occurred across a wide array of
courses—thermodynamics, heat transfer, fluid mechanics, electri-
cal network theory, materials science, statics and dynamics of

structures, and it goes on. It did not happen in one course or one
place but slowly became a way of life that was continually honed
over a long career that continues to this day. I am always looking
for a better way to present complicated numerical results that can
be easily understood by a broad array of audiences.

Learning in Context
I probably gained most of my mathematical literacy from the
engineering courses that I took and the subsequent need for solu-
tions to problems encountered in my daily work. I found what I
call “xyz” mathematics difficult throughout my education—pri-
mary, secondary, undergraduate, and graduate. Now as I read
works written by many of you in this audience, I am beginning to
understand why. If I had had the privilege of studying under some
of you when my schooling was starting, I suspect my knowledge
and appreciation of “xyz” mathematics would be far greater. I see
great beauty in how concepts are now being developed for stu-
dents and I smile to myself as I read about them, thinking “Oh, if
only I could have started that way.” To quote Hughes Hallett
again, “One of the reasons that the level of quantitative literacy is
low in the U.S. is that it is difficult to teach students to identify
mathematics in context, and most mathematics teachers have no
experience with this” (see p. 94).

Let me illustrate context with an example from my field. Consider
the following equation:

X � C1Y
2 � C2

where X and Y are variables, and C1 and C2 are constants.

To me, this equation, showing that X must decrease in proportion
to the increase in the square of Y or vice versa is quite abstract and
sterile.

But if P (pressure) is substituted for X and V (velocity) for Y, and
if we let C1 � �/2gc where � is density and gc is the gravitational
constant, then the Bernoulli equation for incompressible flow is
obtained:

P � (�/2gc)V
2 � C2

This says that the sum of the static pressure and the velocity head
are constant along a fluid streamline. It shows that if the velocity
of a fluid increases, there must be a concomitant drop in pressure.
For example, if steady flow in a pipe moves from a section of large
diameter to one of smaller diameter, the flow velocity in the
smaller-diameter section must increase and the static pressure
must decrease.
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In context, the symbols come alive for me because they are asso-
ciated with usually measurable and understood physical properties
or quantities. They excite me intellectually, they hold my interest,
and they make me think about how they relate. They are not
simply “xyz.”

To summarize, I quote again from Mathematics and Democracy
“. . . skills learned free of context are skills devoid of meaning and
utility” (Steen 2001, 16). I could not agree more.

Quantitative Literacy in the
Professional Workforce
What I have been saying may seem self-evident, namely, that
quantitative literacy is an integral part of engineers’ output; how-
ever, the wide use of quantitative literacy skills continues as an
employee advances in a corporation and addresses administrative
and personnel issues. I often found myself quite naturally using
trend charts to track planned and actual income and planned and
actual expenses for my projects. By watching for deviations and
changes in slope of the “actual” curves, I knew more about the
state of the business for which I was responsible than by trying to
interpret virtually indecipherable reams of tabulations. In reality,
such detailed information, although necessary, does not provide
the “big-picture” overview necessary for good administration.

Similarly, and as part of a merit pay system, I tracked salaries as a
function of degree and years of experience and examined the
spread between high and low performers within the same labor
classification. Such detail was necessary to maintain the integrity
of the merit pay system and to ensure that reward was tied to
contribution. If deviations occurred outside the given parameter
range, it was appropriate to question and search for the reason for
the deviation. Because successively higher levels of management
reviewed all merit pay recommendations, possession of such anal-
yses and trend curves helped to gain support for my rationale.

I have always been concerned that being quantitatively literate
brings added responsibilities; this became especially apparent dur-
ing my tenure as an elected school board member. It always
seemed to me that if anything had gone wrong that could be
attributed to inattention to numbers, I would have shouldered
more of the burden and would have had less ability to be severed
from a legal action. It would have been easy to show that “I should
have known or would have been able to know” had I undertaken
due diligence analysis using the skills associated with quantitative
literacy. In some quarters, I was viewed as a pain in the a__
because I demanded that numbers be reduced to easy-to-follow
graphs, percentages, “deltas,” ratios, etc. for use in comparison
with past data. In this way, deviations from trends could easily be
spotted and explanations readily sought. Based on my knowledge

of cases of fraud in industry and government, had those in posi-
tions of responsibility been quantitatively literate, fraud could not
have succeeded and careers would not have been ruined.

Turning from professionals to skilled craftsmen, the need for
quantitative literacy has increased enormously: operators of man-
ufacturing cells need to know when and how many parts need to
be delivered to their position so they can maintain flow in their
part of the production chain; watch tolerances so their parts do
not fall outside the limits of variability; understand the trends in
variation curves and know which tool needs to be replaced; and be
responsible for self-inspecting their production and reporting the
results.

One last comment about the place of quantitative literacy in the
high-technology workplace. Most of you are probably aware of
the Six Sigma (less that 3.4 defects per million) quality initiative
originated by Motorola and instituted by many other companies.
General Electric was one of the latter. Knowledge of Six Sigma
technology was deemed so important that an extremely large
training effort was undertaken to give almost all employees an
understanding and appreciation of variability in our products and
processes. Jack Welch, the chairman of our board, drove this
change, for he recognized very early that to be the number one
supplier in a field and be profitable, one had to drive out defects as
never before and shorten the order–manufacture–delivery cycle.
There was no better way to accomplish these objectives than to
give every employee the tools needed to perform analyses in sup-
port of Six Sigma goals. Thus ordered bar graphs (Pareto charts) to
determine which parameters had the biggest impact (you tackle
them first), statistical analysis spreadsheet tools, tests for signifi-
cance, flow charting to improve processes, etc., all became daily
tools in our corporate lives.

Instituting Six Sigma technologies has done more than anything
else to raise the overall level of quantitative literacy in corporate
America. Regrettably, nothing in the school curricula gives stu-
dents this type of knowledge nor do I see it happening during the
next decade. This brings me to my final point.

Mathematics Standards
Ohio has been writing mathematics standards for the K–12 grades
for the past two or three years. I had the opportunity to be a
member of a business team that reviewed the proposed standards.
None of this group of approximately 20 businessmen—represent-
ing small to very large businesses—had any problems with the
content of the standards, but the discussion was dominated by
comments regarding the perceived lack of required quantitative
skills and demonstration of them. Businessmen wanted graduat-
ing students to be able to understand profit-loss sheets (the basis
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for our capitalistic economy), compound interest and mortgage
rates, taxes, balancing checkbooks, and yes, to be able to do arith-
metic. I thought to myself: they are asking that students be quan-
titatively literate. But our standards-writing people did not get it.
In fact, writers on the standards team explained that it all was
really right there; they could point to the underlying “xyz” math-
ematics, but they could not see the need for context. I was told that
for those things, students should “take a business mathematics
course.”

Thus, as a businessman, I see a significant chasm between math-
ematical literacy and quantitative literacy. I am hoping that the
discussion at this Forum will help us identify and elucidate the
problems that stand in the way of having both. Identifying the
problems or barriers is the first step in moving forward to produce

quantitatively literate students. Only when school graduates are
quantitatively literate will the public believe that students “know
mathematics” and only then will we have the opportunity to ben-
efit from the gains in mathematical literacy that we all know are
necessary if our workforce is to be internationally competitive and
an enduring economic asset.
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Of the Teachers, by the Teachers,
and for the Teachers

ROGER HOWE

Mathematics for me is a means for understanding the world, and therefore quantitative literacy is an
important part of mathematical activity. I believe it is so for many mathematicians. As a rule, I do not
watch television, but when America started bombing in Afghanistan, I developed a temporary
addiction to CNN. As part of the contemporary trend toward multitasking, CNN runs “footlines”:
as reporters and their guests talk on center screen, brief summaries of breaking news stories trail
across the bottom of the screen as if on a ticker tape. (The New Yorker calls these snippets the “CNN
crawl”.) One day while I was watching, sandwiched between messages giving updates on ground zero
and Osama bin Laden, I read a helpful hint about car theft: nearly one-third of all car thefts occur on
Friday and Saturday.

Not long after, the Committee on Education of the American Mathematical Society held its annual
meeting. In my opening remarks, by way of illustrating the national need for improved mathematics
education, I shared the CNN story. As soon as I stated it, the whole room of 50 or so people broke
out in spontaneous laughter. Although some aspects of quantitative literacy as laid out in Mathe-
matics and Democracy (Steen 2001) are probably possessed fully only by a rare few, I take the reaction
of my audience as evidence that mathematicians are, on average, fairly quantitatively literate. I doubt
very much, however, that they have had special quantitative literacy (QL) training outside their
mathematics courses. This leads me to suspect that there are certain skills that are to some extent
context free and that support the ability to deal with quantitative information in a variety of contexts.
Rather than deny the existence of such skills, I hope that those who wish to promote QL would try
to identify them and investigate how instruction can support them. Below, I hazard guesses as to
what a couple of these skills might be.

The focus of the essays in Mathematics and Democracy (Steen 2001) of the background essays written
for this Forum, and indeed, the title of the Forum, is upper high school and early college. Although
this focus is certainly worthy of some attention, I believe that, in relation to the question of how to
develop a mathematically or quantitatively literate population, it is too narrow. In fact, the temp-
tation is nearly irresistible to call it quantitatively illiterate. The first eight grades of school, over
two-thirds of a student’s K–12 career, are devoted to learning arithmetic. This is where we would
expect the seeds of QL to be sown. Although the precise nature and extent of full-fledged QL has yet
to be defined, comfort with numbers has to be a foundational skill for any type of QL that deserves
the name; and comfort, or discomfort, with numbers is learned early. There is abundant evidence
that for many students and many numbers, it is discomfort.

As an example, I cite a question on a recent National Assessment of Educational Progress (NAEP)
examination for eighth graders (Kilpatrick et al. 2001):

Roger Howe is Professor of Mathematics at Yale University; his research focuses on symmetry and its consequences. A
member of the National Academy of Sciences, Howe is chair of the Committee on Education of the American Mathematical
Society. Previously, Howe served on the Mathematical Sciences Education Board and as a member of steering committees
that produced two recent reports on mathematics education: Adding It Up (National Academy Press, 2001) and The
Mathematical Education of Teachers (CBMS, 2001).

185



Which is closest to 7/8 � 12/13 ?

(a) 1 (b) 2 (c) 19 (d) 21

If you are comfortable with numbers, you notice that each of the
two fractions to be added is slightly less than 1, so the sum must be
close to 2, and the correct choice is answer (b). You may wonder
why such outlandish answers as 19 and 21 are even offered as
possibilities. Who would guess them? It turns out over half the
students chose one of these answers. The majority of 13-year-olds
apparently have no effective techniques for dealing with approxi-
mation of fractions, and perhaps little intuitive grasp of what a
fraction means. This level of understanding provides a weak foun-
dation for using numbers to deal with the world.

The call for quantitative literacy is part of a broader movement of
mathematics education reform that has been growing since the
publication of the National Council of Teachers of Mathematics
(NCTM) Curriculum and Evaluation Standards (NCTM 1989).
Certainly there are good reasons for changing the mathematics
curriculum. What used to be key skills have became much less
important, and a host of new capacities is required to deal with the
diverse numerical data with which we are presented on a daily
basis; however, a major lesson of mathematics education research
during the 1990s is that, to enable significant change in mathe-
matics instruction, we must attend closely to what teachers know
and can do (Ball 1991; Kilpatrick et al. 2001; Ma 1999; Confer-
ence Board of the Mathematical Sciences (CBMS) 2001). Failure
to emphasize this point was in my view a major failing of the 1989
Standards and a significant contributor to the “math wars” in
California and elsewhere. Such failure is the more regrettable be-
cause it is frequently cited as a reason for the earlier failure of the
“New Math” of the 1960s, and because the standards were pro-
duced by a combination of mathematics educators and teachers,
who might have been presumed to know better.

I believe that calls for quantitative literacy that ignore the contri-
bution of the elementary years, and the need for attention to
capacity-building among teachers, are unlikely to be widely effec-
tive. The capacity of the teaching corps is not a peripheral issue, to
be resolved after formulation of the ideal curriculum. It is a central
issue.

To illustrate some of the challenges to building a QL-friendly
curriculum, I call attention to number skills that I believe are
important to support numeracy. Three very important skills are:

1. Understanding order of magnitude.

2. The habitual tendency to round off (i.e., estimation).

3. Understanding of error (both absolute and relative).

(I should be clear that, although here I am emphasizing estimation
as a key skill, I do not want to downgrade exact arithmetic. I
suspect that confidence in estimation is based on a sure under-
standing of exact arithmetic. We must, however, go beyond exact
arithmetic to achieve numeracy.)

Especially important in this connection is the understanding that,
in most circumstances, if you care about more than the leftmost
three or four digits of a decimal number, you are probably a
number theorist. At four-decimal-place accuracy, the “radius of
the earth” does not make sense because the earth cannot be treated
as a sphere to this degree of accuracy. Even seemingly clearly
defined whole number quantities such as the population of a town
are difficult to pin down to four decimal places of accuracy, and
five is nearly impossible.

Consider a town of 100,000 people. Between 1,000 and 2,000
babies should be born there each year and a comparable number
will die. People will move in and move away. The population
numbers are fluctuating on a daily basis. In the world as a whole,
with its six billion or so people, about 100 million are being born
each year, which makes several each second; however, it takes
several minutes for each to be born. When do you add a baby to
the count?

Attention to the appropriate level of accuracy is a poorly devel-
oped habit, even among curriculum developers, mathematics ed-
ucators, and professional purveyors of data. Here are several ex-
amples illustrating this point. The first example is from the
National Science Foundation (NSF) sponsored middle school
curriculum “Connected Mathematics.” I do not offer it to con-
demn the curriculum, but simply to show the difficulties that
exist:

In 1980, the town of Rio Rancho, located on a mesa outside
Santa Fe, New Mexico, was destined for obscurity. But as a
result of hard work by its city officials, it began adding man-
ufacturing jobs at a fast rate. As a result, the city’s population
grew 239 percent from 1980 to 1990, making Rio Rancho
the fastest-growing “small city” in the United States. The
population of Rio Rancho in 1990 was 37,000.

a) What was the population of Rio Rancho in 1980?

b) If the same rate of population increase continues, what will
be the population in the year 2000?

In the first Teacher’s Edition for the series, the answer to a) was
given as follows:

Let P be the population in 1980. Then 2.39P � 37,000, so
P � 16,481 people in 1980.
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The first remark is that this calculation is for a population that is
239 percent of its original population, not a population that has
increased by 239 percent, so there is a misuse or misunderstanding
of terminology in this answer. (It may, of course, have been inad-
vertent. We mention also that Rio Rancho is a suburb of Albu-
querque, not Santa Fe.) Someone pointed out the error and a
correction was made, as follows:

Let P be the population in 1980. Then 2.39P � P � 37,000,
so P � 10,914.45428, or approximately 10,914 people in
1980.

I would say that “approximately” 10,914 people is an unreason-
able answer. The indicated population growth entails an annual
growth of about 13 percent, which even in the first year when the
population was smallest means an increase of about 1,400 for the
year, or three or four people per day. It makes no sense to report
population figures accurate to single persons—the nearest thou-
sand would be more reasonable, especially because it appears that
the reported 1990 population is rounded to the nearest thousand.
Giving the answer as a nearest integer rounded off from a number
with five places to the right of the decimal point makes clear that
mindless calculator use went on here. Reviewing the problem in
light of these considerations, we also are led to question the ap-
propriateness of stating 239 percent as the amount of growth: a
better choice would have been 240 percent. The difference is only
about 100 persons, considerably less than the uncertainty in the
1990 population.

Such misleading accuracy is not restricted to curriculum develop-
ers. Professional data handlers sometimes indulge in similar prac-
tices. For example, here are selected population data for California
and Washington, according to the Bureau of the Census:

For the reasons described above, and others connected simply
with the counting and recording process, it is absurd to imagine,
and absurd of the Census Bureau to pretend, that they have found
the exact number of people living in either of these states in any
one of the years. Determination even to the nearest 10,000 would
have been a remarkable achievement. We would guess from the
recent debates about the use of statistical sampling methods to
improve the accuracy of the census that we are very lucky if these
numbers are accurate even to three significant figures. This would

mean that, in California, a small city could be lost or be counted
without affecting the figures.

As became clear in the 2000 presidential election, even in such a
seemingly cut-and-dried, closely controlled, and well-defined pro-
cess such as an election, accurate counting is difficult to achieve.
(And beyond the counting, there is considerable evidence that in
some Florida counties, the ballots were sufficiently confusing that
the recorded vote may not always have reflected the actual prefer-
ence of the voter.) Even if the Census Bureau reports unrealisti-
cally accurate numbers, this does not justify the uncritical use of
these figures by others, especially mathematicians and mathemat-
ics educators. My source for these numbers is not the Census
Bureau itself, however, but a data analysis exercise in a draft of a
text intended for teacher development. The “data” could have
served as a pretext for discussion of reasonable degrees of accuracy,
but they were presented without comment, as grist for a number-
crunching exercise.

These simple examples of inattention to appropriate accuracy in
various real-world contexts may seem more like peccadilloes than
mortal sins, but they illustrate inattention to the issue of accuracy.
If the same insensitivity to appropriate accuracy affects computa-
tions done with these numbers, errors can get magnified to the
point where they dominate information, and reported numbers
become meaningless, not in their rightmost decimal places but in
their entirety.

These examples show the pervasiveness of insensitivity to the lim-
its of accuracy, even among curriculum developers, teacher edu-
cators, and professional purveyors of data. How then can we ex-
pect our teachers to inculcate appropriately skeptical thinking
habits? The evidence suggests that the teaching corps reaches its
limits of numeracy long before these issues are addressed (Ball
1991; Kilpatrick et al. 2001; Ma 1999; CBMS 2001; Post, et al.
1991). To a considerable extent, today’s curriculum is more or less
what today’s teachers can deliver. If you want major changes, you
have to work with teachers to improve their capacity to deal with
mathematics. Having a teaching corps, especially at the elemen-
tary level, with low numeracy and quantitative literacy skills
means mathematics and QL achievement below what might be
possible under better learning conditions. The costs include ex-
tensive remediation, low achievement, inadequate skilled labor,
and impoverished political discourse. I would guess that these
costs are huge.

It is possible to substantially improve the situation, but doing so
will require major changes in the current education system as well
as significant resources to support sustained effort. The most di-
rect action would be to raise QL expectations for teachers through
a system of requirements and incentives. Features of a stronger
system for QL would include mathematics specialists in all grades,

Population California Washington

1890 1,213,398 357,232

1940 6,907,387 1,736,191

1990 29,785,857 4,866,669
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at least as support for elementary teachers but preferably as the
main deliverers of mathematics instruction; increased mathemat-
ics requirements and more effective courses for pre-service teach-
ers; expectations of continuing mathematics and QL development
for in-service teachers both through formal course work and col-
legial interaction; and appropriate incentives to make the expec-
tations feasible (CBMS 2001).

These actions would require both resources and changes in prac-
tice. Perhaps the most effective way of marshalling support for
these efforts would be to develop convincing estimates of the costs
of not implementing them. The case has to be made that it is not
cost effective to have a teaching corps, including an elementary
teaching corps, without strong mathematics and QL skills.
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Impediments to and Potentials for
Quantitative Literacy

J. T. SUTCLIFFE

We can all agree that we want students to be productive citizens, well prepared for the world of work.
Whether we wear the hat of mathematician, scientist, business person, or educator, we can also all
agree that we want students to understand numbers in context and be able to interpret information
presented in a wide variety of modes of representation (words, tables, charts, graphs, etc.). In
contrast, there appears to be little agreement when discussions turn to the specifics of what a student
should know or be able to do. This lack of agreement is exacerbated by the fact that there is no clear
understanding of what is meant by “numeracy” or “quantitative literacy” (QL).

Many at this Forum spoke eloquently about specific mathematical competencies valued, even
required, by their profession; however, high school students generally are oblivious to or unrealistic
about what their future careers might be. If students entered school already preprogrammed for
career choices, it would be much easier to develop a personalized high school experience that helped
them develop the specific competencies required for their future career. But students do not come
preprogrammed. Thus a responsible high school teacher must try to meet more general goals,
namely, to help his or her students develop:

● General mathematical competencies that will allow them to successfully learn more specific
competencies as, later, their career goals come more clearly into focus; and

● An appreciation for the power of mathematics coupled with a confidence that they are capable
of learning and applying it.

Teachers who are not well trained in their content area (true of a significant percentage of middle and
high school teachers of mathematics) tend to teach what they feel most comfortable with (usually
skills) and what the end-of-course test assesses (usually skills and procedures, with some concepts).
They are least likely to use multiple representations or mathematics in context or to help students
gain the confidence with numbers and graphs and charts that seems to be a shared vision at this
Forum.

Many teachers of mathematics are currently doing a truly outstanding job, sometimes under ex-
tremely difficult circumstances, of preparing their students for the world of work or advanced studies
beyond school. These teachers are well-trained in mathematics and use a variety of pedagogical
approaches to make mathematics accessible to their students. They supplement the textbook and
course syllabus with rich explorations that make use of multiple approaches to mathematics. Stu-
dents of teachers like these receive sufficient mathematical grounding to know what questions to ask
and to have the confidence to seek and find answers in new numerical settings. They become
mathematically competent, thus quantitatively literate. Although they may not have been taught
Bayes’ theorem or other specific applications they might require in the future, they are confident and
competent learners who will be able to pick up new concepts or skills as needed.

J. T. Sutcliffe holds the Founders Master Teaching Chair at St. Mark’s School of Texas in Dallas. A recipient of the
Presidential Award for mathematics teaching, as well as Siemens and Tandy Technology Scholars awards, Sutcliffe has
served as a member of the AP Calculus Test Development Committee and as an AP Calculus Exam Leader. Sutcliffe also
helped develop Pacesetter: Mathematics with Meaning, a teacher professional development project for the College Board.
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The real question we face, therefore, is not how to make a bulleted
list of skills students must have or specific questions they should be
able to answer, but how to help teachers help students understand
numbers in context. Our goal may be to produce well-prepared,
mathematically literate students, but we will not succeed if we do
not first reach K–12 teachers.

Several Forum participants offered a different approach: eliminate
courses such as Advanced Placement (AP) Calculus that, in their
view, do not sufficiently support QL. I believe such action would
be disastrous. When schools make a serious attempt to provide AP
or International Baccalaureate (IB) courses for their students
(whether for sound educational motives or politically prompted
ones), it generates some wonderful repercussions that directly af-
fect the outcomes we seek:

● Money and time are invested in AP teacher training; countless
teachers will attest to the value of this training. AP training
helps teachers develop both a new level of conceptual under-
standing and effective pedagogical approaches to implement
in their classrooms. AP training also contains a strong equity
component.

● Teachers have a variety of venues for AP training. They can
select from one- or two-day institutes throughout the year
and from weeklong institutes over the summer. Many teach-
ers attend multiple institutes over a period of several years. In
these institutes, they meet with other teachers to discuss
mathematics and to share frustrations as well as success sto-
ries. These collegial contacts benefit all aspects of their teach-
ing.

● Although AP mathematics institutes focus on specific courses
(calculus or statistics), teachers find that much of what they
have learned applies to other courses as well. They become
better teachers of mathematics for all students and they affect
positively the entire mathematics program at their school.

Eliminate AP and you eliminate more than just a high-standards
mathematics course. You also eliminate a nationally recognized
professional development program that offers mathematics teach-
ers an opportunity to gain both content training that takes them
to high standards and pedagogical training that extends to all
students they teach. The training teachers receive from AP thus
promotes this Forum’s vision of quantitative literacy.

Notwithstanding the potential benefits of AP training, many hur-
dles stand in the way of preparing quantitatively literate students
under the guidance of teachers who understand content and prac-
tice sound pedagogical techniques:

● Many teachers come to the mathematics classroom with no
background in mathematics. Moreover, few students in either
high school or university plan to teach mathematics. Thus few
well-trained teachers will be available to fill the teacher vacan-
cies that are being generated at an extraordinary rate.

● Teachers tend to teach what they were taught, imitating the
way they were taught. Those who are less confident with
mathematics tend to focus on skills, which are too frequently
separated from a meaningful context that would support
quantitative literacy.

● Most states have standards (to which end-of-course assess-
ments are tied) that resemble the table of contents from a
typical textbook. State end-of-course assessments that deter-
mine whether students are able to clear a minimum bar are
often very high stakes for teachers and for students.

● Many teachers teach only what will be assessed on high-stakes
examinations. Because problem solving and reasoning are sel-
dom assessed on such examinations, it stands to reason that
problem solving and reasoning are seldom taught.

The challenge of preparing citizens who are more quantitatively
literate will not be accomplished easily, especially in the face of the
above realities; however, the situation is not entirely hopeless. We
can do some things that will leverage the realities of our current
situation:

1. Because many teachers do not have strong content and ped-
agogical training in mathematics, they tend to rely heavily on
a page-by-page textbook–driven pedagogy. Stronger leader-
ship from textbook publishers to incorporate QL as a stan-
dard and a goal therefore would help bring QL ideas and
problems to many more students.

2. Teachers are both guided and restricted by standards set by
local districts and states; thus local and state departments of
education must accept some responsibility for setting stan-
dards to increase students’ quantitative literacy. As standards
tilt in the direction of QL, so will classroom instruction.

3. Teachers teach according to what will be assessed on high-
stakes tests. If those in charge of designing the blueprint for
such tests increase the proportion of QL-like items, more QL
will be taught in the schools.

4. Most mathematics educators acknowledge the importance
for learning of using multiple representations, student com-
munication, group learning, and technology. Nevertheless,
although students are often seated in groups, they seldom
engage in rich mathematical conversations; although they are
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encouraged to “do mathematics” with their calculator, they
often have little sense of what the mathematics means; al-
though they are often asked to speak and write, they are
seldom asked to speak or write about effective ways to ap-
proach or apply the mathematics they are studying. These
disconnects between belief and effective action could be re-
duced by offering more teacher professional development op-
portunities, similar to AP workshops, that emphasize strate-
gies for building quantitative literacy, conceptual
understanding, and applications of mathematics.

Although QL does not have a clear definition with consensus
agreement, its goal is widely shared: to prepare students with the
ability to think quantitatively in a variety of contexts. To accom-
plish this goal, we clearly need better and more uniformly trained
teachers . This will take time, money, and sustained leadership,
especially from K–12 and university educators, professional soci-
eties, policymakers, and leaders in the business world.
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Say What You Mean
(and Mean What You Say)

JANIS I. SOMERVILLE

Much of the discussion at this Forum has focused on the importance of quantitative literacy (QL)
together with various strategies for elevating the place of QL in education. I am no expert on
curricular issues, but I do bring to this conversation a certain degree of experience with an issue of
arguably equal importance: the policy implications of different curricular options.

I speak from the perspective of a long-time college administrator responsible for undergraduate
education who is currently facilitating a network of state education systems through which leaders of
K–12 and higher education (both two- and four-year institutions) are developing more powerful
collaborations to raise achievement and close gaps among students from K–16.

So I look at the question of how and where to place QL in the undergraduate curriculum—within
mathematics, across the curriculum, in place of college algebra—through a special lens. I ask: Which
of the options will bring about greater alignment in content and instruction between K–12 and
college expectations for students? Which option will best help smooth the transition from high
school to college for all students? Which may increase turbulence in this crucial passage?

From this perspective, what I have heard at this Forum is confusing. I must say, I would love to take
the kinds of QL courses described and taught by many speakers. Further, the case presented for QL
is compelling. But as we all know, QL is not part of current policy priorities, either at K–12 or in
higher education. Therefore, the question confronting this panel—What are the policy implica-
tions?—is clearly the key to the success or failure of the QL initiative.

The dominant strategies discussed so far have been about spreading the adoption of QL in disciplines
across the institution, to avoid having QL seen as “simply mathematics” (or worse, “simple mathe-
matics”). This makes sense as one part of a strategy. But frankly, I am puzzled by the relative silence
in these discussions about first making clear the place of QL in mathematics departments. Here is
why: A perspective that gives priority to the impact of policies on students must take into account the
expectations concerning mathematics that are currently in place for students entering college.
Simply put, what mathematics faculty determine is important for students to know and be able to do
to begin college-level study exerts a very powerful influence on K–12 curriculum and instruction.

To see why this is so important, consider some data that provides a national perspective on the flow
of students from secondary school to higher education. A lot has changed in the years since most of
us finished high school. Today, three of every four high school graduates go on to postsecondary
education within two years—45 percent to four-year colleges, 26 percent to two-year colleges, and
4 percent to other postsecondary institutions.

But as we all know, many first-year college students are not fully prepared for higher education.
Nearly 30 percent must take remedial courses when they enter college, and most of those (24

Janis I. Somerville is staff officer at the National Association of College and University System Heads (NASH) and directs
the State K–16 Network that is jointly sponsored by NASH and Education Trust. Previously, Somerville led Maryland’s
Partnership for Teaching and Learning K–16, helped found the Philadelphia Schools Collaborative, and served as the senior
academic officer for undergraduate education at Temple University and at the University of Pennsylvania.
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percent) are in mathematics. Moreover, remediation is most
heavily concentrated in colleges with high minority enrollments:
in these institutions, 43 percent of entering students require some
remediation, 35 percent in mathematics. Not surprisingly, stu-
dents who require extensive remediation graduate at significantly
lower rates than other students. In fact, those needing three or
more remedial courses graduate at one-third the rate of students
who enter college fully prepared.

Clearly, students and parents have understood that in today’s
world virtually all students need to graduate from high school
prepared to go on to postsecondary education. Indeed, as these
data show, students are entering college in ever larger numbers,
but they are clearly not mathematically prepared at an appropriate
level. I would argue that the human and financial costs of the
disconnect between standards for high school graduation and
what we require for college readiness are no longer tolerable.

Especially powerful for students, and for the high school teachers
who teach them, are expectations in mathematics and English
language arts for college admission, credit, and placement. I am
not talking just about test scores, but about the expectations of
knowledge and skills that we choose to measure and on which we
base decisions about student achievement.

The Education Trust has gathered panels of faculty from K–16—
both nationally and in several states—to look at high school exit
and college admissions expectations. These include the major as-
sessments being used for both high school graduation and college
admissions and placement. Here is what we found:

● State assessments of high school mathematics focus primarily
on elementary algebra and geometry, but increasingly include
also at least some data analysis.

● At the same time, admissions assessments (the SAT-II and
ACT) emphasize a more rigorous pre-calculus sequence (Al-
gebra I, Algebra II, Trigonometry/Precalculus) and little, if
any, geometry or data analysis.

● Placement assessments are almost universally administered by
colleges once students have enrolled. Whether campuses use
commercial tests (e.g., Accuplacer or Compass) or locally de-
veloped tests, the content is remarkably consistent: the stan-
dard pre-calculus sequence. Most often the missing link be-
tween state K–12 graduation standards and college-level
placement is Algebra II.

Perhaps the content of these placement tests reflects a time when
their intended use was simply to determine where to place stu-
dents on the way to calculus. In many states now, however, public
four-year and community college systems use performance on

these assessments to determine whether students can begin credit-
bearing versus remedial courses or even whether they can enter a
four-year college at all. And as national transcript studies indicate,
the more remedial courses students have to take the less likely they
will even make it to the sophomore year, much less complete a
college degree. High stakes indeed.

In addition to tests, many states also specify Carnegie unit require-
ments that students must complete to meet college admissions
requirements. Once again, whenever specific courses are named,
these requirements are all about algebra and geometry.

The obvious conclusion is that higher education—more specifi-
cally, the higher education mathematics community—is sending
very clear and consistent messages about the important mathe-
matical knowledge and skills that students should have to succeed
in college, and this message is not at all about QL. For those of us
who are particularly concerned about closing achievement gaps
among poor and minority students who are especially vulnerable
to weak or mixed signals, the clarity of this message is especially
important. To be ready for college, you need Algebra II.

Thus as a matter of policy, school districts must focus curriculum
and instruction on courses that ensure that high school graduates
are prepared to meet these “college-ready” algebra requirements.
Needless to say, enabling all students to achieve levels of perfor-
mance previously reserved only for a few requires intensive teacher
development as well as instructional support for teachers and stu-
dents, support that is not focused in the direction of QL.

So my first recommendation is to think very hard about what
represents college-ready mathematics and where, or if, QL fits in.
If you really believe that QL is essential for all students, that it is
more than just an add-on elective for some, then you cannot duck
this issue. It is not enough to say “by the way, here is something
new that you might like to add if there is time.” QL advocates
must be very clear about what all students need to know and be
able to do, starting with where QL fits in the mathematics pro-
gram.

Related to this is the issue of high school students who meet the
minimum college-ready standard early. Right now we rush stu-
dents to Advanced Placement (AP) Calculus, a course that has
become the universal answer to rigorous school mathematics. For
many politicians, enrollment in AP Calculus is thought of as a
measure of the quality of school mathematics.

Of course, we all know better. Paradoxically, the fastest-growing
part of the high school curriculum is college-level study, while the
biggest part of our college mathematics program is remedial, that
is, high school course work. And it is not clear that either of us
does the other’s work particularly well. More important, in high
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schools across the country, the scarce resource of experienced,
qualified teachers is being distracted to teach AP Calculus when
we need our strongest teachers in the core high school curriculum.
In informal discussion, several of the mathematicians at this Fo-
rum have told me that calculus should be left to the colleges. If
that is what you mean, say it loudly so that all can hear.

And that leads to my final observation. My K–16 work has taught
me anew that the commitment of participants at this Forum to
build a consensus for action is very important. Our K–12 col-

leagues have been able to muster substantial consensus at the state
level about core knowledge and skills. Whether or not we agree on
the specifics of these recommendations, mathematics and English
language arts are at the core of state K–12 expectations. And there
is little question that higher education can, and does, exert con-
siderable leverage on K–12. We should recognize this and act on
it. By the seemingly simple act of agreeing on what we mean by
college ready, we can strongly influence both K–12 mathematics
education and our own undergraduate mathematics programs.
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Educational Policy and Decision Making
MARGARET B. COZZENS

Quantitative literacy (QL) is not just about mathematics and should not be viewed as such. Quan-
titative literacy is a much more inclusive term than mathematics and specifically includes working
and reasoning with numbers and data in a contextual framework. Most people would argue that our
society needs to be quantitatively literate, but because QL is generally undefined, each person has a
different notion of what it may mean. Similarly, mathematics as a discipline is viewed differently by
those who use it in occupations, those who study it, and those who simply use calculation skills often
associated with school mathematics. To look at policy issues in the context of these ill-defined goals,
I pose and partially answer three key questions.

How do we create an environment that supports quantitative literacy education in a way that does not
recreate the “math wars” at another level?

Part of the answer comes from Zalman Usiskin in Mathematics and Democracy: The Case for Quan-
titative Literacy, “We may be able to obtain public support for attention to quantitative literacy if we
emphasize that quantitative literacy is an essential part of literacy itself” (Usiskin 2001, 85). Literacy,
of course, is the responsibility of many others besides mathematics teachers and mathematicians; so
too is quantitative literacy. (If this looks like the new, new, new mathematics, we are doomed before
we start.)

How do we provide for quantitative literacy education in an already full curriculum in high schools and
colleges, both in mathematics and in other courses?

The answer to this question, I believe, is different if you are talking about high school students than
if you are talking about college students. For high school students, to say that quantitative literacy
education goes beyond mathematics education does not imply any neglect of quantitative literacy in
mathematics curricula. Most of the topics suggested for quantitative literacy are topics listed in the
National Council of Teachers of Mathematics (NCTM) Principles and Standards for School Math-
ematics (NCTM 2000). Newer instructional materials all include extensive treatment of data analysis
and provide for mathematical problem solving using real-world problems (that is, mathematics in
context).

To engage teachers in particular, we need to build on what we have. Fortunately, the NCTM
standards and newer curricular materials provide this foundation, as do some very good quantitative
literacy materials produced by the American Statistical Association. Teachers should not be expected
to launch into new professional development efforts for quantitative literacy, especially since many
have just begun to understand how to implement the standards through professional development
opportunities. Teaching quantitative literacy across the high school curriculum is not possible in an
already full curriculum in which teachers traditionally know little about anything but their major
discipline. Reinvention takes too long and is too costly; however, universities and colleges directly
control expectations for students through their admissions and placement activities.

Margaret B. Cozzens is Vice Chancellor for Academic and Student Affairs and Professor of Mathematics at the University
of Colorado at Denver. Previously Cozzens served as director of the Division of Elementary, Secondary and Informal
Science Education at the National Science Foundation and as Chair of the Department of Mathematics at Northeastern
University. She is a member of the American Council on Education’s Task Force on Teacher Preparation, and served as
co-chair of the Technical Review Panel for TIMSS-R, the recent repeat of TIMSS.
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College students select the courses they take to complete major,
minor, and general education requirements. Quantitative literacy
is not currently a part of the common core in most higher educa-
tion institutions. A few liberal arts colleges do have such a require-
ment and some, such as Dartmouth, and Trinity in Connecticut,
operate Quantitative Literacy Centers. When there is a college
mathematics requirement it is most often satisfied by college al-
gebra, a repeat of second-year high school algebra. Statistics is
usually allowed, but it is typically taken only by those who are
required to complete a statistics course for their major.

Thus, an opportunity exists in higher education to institute quan-
titative literacy across the curriculum, similar to writing across the
curriculum. Better yet, quantitative literacy can become part of
the core or general education requirements, satisfied by courses in
numerous departments. Faculty in the social, natural, and applied
sciences will have less difficulty defining quantitative literacy in
their courses than those in the arts and humanities and will need
less help. But even these latter fields offer some opportunities.
Students will then see their course work in many areas through a
quantitative lens. Mathematics and statistics departments usually
will have to take the lead in such an endeavor, but development of
such a program should include faculty from many departments.

How do we engage the stakeholders: teachers, faculty, other disciplines,
administrators, business and industry, and parents?

Engaging stakeholders is the hardest and most critical step in
developing a quantitative literacy initiative, and it must begin
now. We live in an increasingly quantitative world but quantita-
tive literacy, as important as it is, will still be competing with other
areas of the curriculum in both high schools and colleges. Even
with teachers, faculty, and administrators aligned on the goals of
quantitative literacy, if parents and political figures are not on the

same page nothing will happen, or worse, if it does, it will be
stopped dead never to be revived.

It is critical for this latter group that we define quantitative literacy
well and show what it is and what it is not, why it is necessary, and
how it can be accomplished without diminishing other valuable
parts of the curriculum. Parents in particular, when confronted by
something they do not understand, revert to what they themselves
learned in school.

Business and industry leaders are our greatest allies. They do not
like what education systems currently provide to students at all
levels in the areas of problem solving and working with data, and
most are very willing to get behind a campaign to change the
paradigms. Clear, concise messages are essential. To create a
shared definition and vision is going to require the best minds in
the country working together with representatives of the stake-
holder groups to test this definition and vision.

This Forum moves in the right direction but we are a long way
from even getting the definition right. It will require a small group
of people working long hours and on many weekends before we
can begin to have the type of national discourse necessary to effect
change.
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Policies on Placement and Proficiency
Tests: A Community College’s Role

SADIE BRAGG

Many U.S. students leave high school with quantitative skills far below what they need to function
well in a postsecondary institution or in the workforce. It is these students who most often enter
community colleges. Coley (2000) noted that in 1995–96, the U.S. Department of Education
reported that only 40 percent of community college entrants took either the SAT or ACT exami-
nations whereas nearly 90 percent of entrants to four-year institutions took one of these college
entrance tests. Not surprisingly, community college students were more likely than their four-year
counterparts to score in the bottom quartile on these tests.

The mission of community colleges is often described as providing access to postsecondary education
programs and services that lead to stronger, more vital communities. In general, these institutions give
students, regardless of their high school achievement or college placement scores, the opportunity to
attend college. In many cases, community colleges give some students a chance to transfer into four-year
colleges that are more selective than those they could have enrolled in directly. Hence, based on their mission,
community colleges play a significant role in democratizing education (Coley 2000).

Because community colleges are positioned between the last two years of secondary education and
the last two years of postsecondary education, articulation with grades 11 to 12 and grades 15 to 16
is imperative. This paper addresses how Borough of Manhattan Community College (BMCC), a
community college within the City University of New York (CUNY), collaborates with New York
City public schools and senior colleges within CUNY to facilitate the transition to and from
community colleges and in the process enhances students’ quantitative skills.

Basic Skills Requirements
With some exceptions, all students entering CUNY must take the CUNY/ACT Basic Skills Tests in
reading and writing and a locally developed CUNY mathematics test. The Reading Skills Test, the
COMPASS, measures reading comprehension as a combination of referring and reasoning skills.
The CUNY/ACT Basic Skills Test in writing includes two parts: the ASSET Writing Skills Test, a
36-item, 25-minute objective test, and the Writing Sample, a 60-minute essay test. The CUNY
Mathematics Skills Assessment Test consists of 80 multiple-choice questions and is divided into five
parts: arithmetic, elementary algebra, intermediate algebra, trigonometry, and pre-calculus. Place-
ment into required basic mathematics courses is based on the results of the arithmetic (20 questions)
and elementary algebra (20 questions) sections. At CUNY, the maximum score for these two parts
is 40 and the minimum passing score is a composite score of 25. Some colleges set their own
minimum passing score in elementary algebra. For example, at BMCC, the minimum passing score is
15 out of 20. Placement into more advanced mathematics courses is based on the results of the CUNY
intermediate algebra, trigonometry, and pre-calculus tests, as well as campus-based mathematics tests.
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According to recent CUNY policy, students who do not meet the
university’s basic skills standards are redirected to community
colleges such as BMCC, which has over 16,000 students. At
BMCC, about 60 percent of its freshmen with high school aver-
ages ranging from 43 to 96 come from the New York City public
schools. As with many community colleges, BMCC offers basic
skills courses to these students in the areas of reading, writing,
arithmetic, and elementary algebra. In a given year, 87 percent of
the students at BMCC take one or more basic skills courses. Ap-
proximately 13 percent of BMCC students graduate and transfer
to a senior college within CUNY.

Part of BMCC’s response to the university’s policy on basic skills
was to develop collaborative programs, one reaching students
while they are still in high school, the other helping students make
the transition to two CUNY senior colleges. Both programs ad-
dress the need to improve the literacy and quantitative skills of
potential students who plan to enroll in a community college or a
senior college in the university.

BMCC’s College Now program, based on a partnership between
CUNY and the New York City Board of Education, is designed to
prepare high school students for the college experience and to
enhance their self-esteem by offering them college-level work in
high school. College faculty teach special courses in mathematics
and social sciences for high school students, who must meet the
college’s requirements to take these courses. Faculty also conduct
workshops to help prepare students to pass their New York State
Regents’ examinations. In addition, the faculty conduct work-
shops for high school juniors who do not meet the CUNY/ACT
Basic Skills requirements in reading, writing, and mathematics.
The purpose of each workshop is to improve the writing skills and
the quantitative literacy skills of the participants.

The Prelude to Success program allows first-time freshmen who
wish to enter a CUNY senior college and who have passed at least
one of the three CUNY/ACT Basic Skills Tests to earn college
credits in introductory courses through BMCC. At the same time,
students are improving their basic skills in reading, writing,
and/or mathematics. BMCC collaborates with Hunter College
and with the City College of New York to offer the Prelude to
Success program on each of the participating campuses. Most
courses in the program are taught by BMCC faculty. On comple-
tion of the one-semester program, students are retested on the
CUNY/ACT Basic Skills Tests in reading and writing and the
CUNY Mathematics Skills Assessment Test in arithmetic and in
elementary algebra. Because of BMCC articulation agreements
with Hunter College and City College, all credit-bearing courses
are transferred to the senior college.

Proficiency Requirement
In addition to the university’s policy on basic skills, CUNY also
requires students to pass a proficiency examination. This test, the
CUNY Proficiency Examination (CPE), was developed in re-
sponse to a 1997 board of trustee’s resolution and is required of
students who are completing associate degree programs or begin-
ning junior-level work. The CPE tests students’ ability to under-
stand and think critically about ideas and information and to write
clearly, logically, and correctly at a level associated with success in
upper-division courses.

The CPE consists of two tasks: Task I: Analytical Reading and
Writing, and Task II: Analyzing and Integrating Material from
Graphs and Texts. In Task I, students write a focused essay, draw-
ing a relationship between specified elements of two readings and
extending it, as directed, to their own experiences, understanding,
or ideas. In Task II, students are given a set of materials (two charts
and a brief reading passage) on similar topics. In a short written
response, they must state the major claim(s) of the reading selec-
tion and discuss the extent to which the data support and/or
challenge the major claim(s).

All senior college students must pass the CPE by the time they have
completed 60 credits. All community college students must pass the
CPE, which is a requirement for the associate degree, before they
graduate. The examination also affects the ability of community
college students to transfer to the senior colleges. This high-stakes
examination demands that faculty within a college and faculty
across the CUNY colleges throughout the system work together to
find ways to prepare the students for the demands of the CPE.

Like other community colleges, BMCC has the responsibility for
preparing students to enter the workforce and/or to transfer to a
four-year institution. With the advent of high-stakes testing, many
community college students may find it difficult to get jobs or transfer
to a four-year institution. Hence, the community colleges’ role in
preparing students to write well and think quantitatively is imperative.
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Standards Are Not Enough:
Challenges of Urban Education

JUDITH A. RIZZO

Background
The New York City public schools have published mathematics performance standards that clearly
define what students need to know and be able to do in mathematics. These standards were
developed through a careful process of review and alignment and within the context of major
instructional reform in all content areas.

In 1996, the New York City Board of Education adopted a plan to introduce and implement
learning standards in all major content areas. The board recognized that the process of becoming a
standards-driven system would be a multiyear effort, requiring us to reexamine policies and prac-
tices, with special emphasis on aligning assessments, redirecting resources, and improving profes-
sional development. Board members understood that we would need to work closely with the New
York State Education Department (SED) to ensure that our standards and assessments would align
with those at the state level.

Because we believed that performance standards in the New York City public schools should reflect
the best thinking of practitioners and researchers nationally in each of the content areas, we chose to
work with the New Standards project codirected by the National Council on Education and the
Economy and the Institute for Learning at the University of Pittsburgh. In the area of mathematics,
the New Standards reflect the recommendations of the National Council of Teachers of Mathemat-
ics (NCTM).

Although our belief in the need to align our city standards with state and national ones was
paramount, we also understood that for our schools and communities to accept the standards and
feel a sense of ownership, they needed to be directly involved in the process. To accomplish this, we
began the work of customizing the standards. The customization process brought together teachers,
principals, and other pedagogical staff to review the New Standards, the NCTM standards, and the
New York State learning standards to ensure alignment. The customizers also were engaged in a very
important effort that would directly connect the standards with the New York City teachers and
students. The customizers returned to their districts, schools, and classrooms to find evidence of
student work that reflected the standards. The discussions about which work samples met the
standards were very rich and provided an excellent model of professional development. This expe-
rience resulted in a standards document that included student work as a critical component and that
influenced the process of professional development in our districts and schools.

Progress to Date
The New York City public school system published the first set of standards in 1997: for English
language arts, Spanish language arts, and English as a second language. In 1998, we produced the
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first edition of the New York City Performance Standards in
Mathematics for grades 4, 8, and 10. During the customization
process, we worked with the SED to revamp its testing program
and to realign our own assessment program and protocols. We
wanted to move from using only multiple-choice tests to a more
performance-based assessment system.

Our joint work produced a comprehensive assessment program
for grades 3 to 8. It resulted in a change in the targeted grades
tested by the SED and by the New York City school system. The
state currently tests students in grades 4 and 8. The state also
raised high school graduation requirements to include five Regent
examinations for all students. The New York City school system
tests students in grades 3, 5, 6, and 7. Both city and state assess-
ments are published by CTB McGraw-Hill. Because of the align-
ment of both these assessment systems, we now have multiyear
longitudinal data that allow us to track student progress from
grade 3 through high school.

To supplement the New York City performance standards cali-
brated at grades 4 and 8, we subsequently developed and dissem-
inated content standards for kindergarten through grade 8. The
content standards are available on The New York City public
schools’ Web siteı and are also published in a variety of sources: in
our parent guides, What Every Student Should Know . . . And Be
Able To Do, in our curriculum scope and sequence documents,
and in the instructional guides that provide teachers with sequen-
tial teaching units. New York City recently designed a new stu-
dent report card that reflects the specificity of the content stan-
dards at every grade level.

Quantitative Literacy in the
Mathematics Standards
We have organized our mathematics standards into five major
groups:

● Arithmetic and Numeration Concepts

● Geometry and Measurement Concepts

● Function and Algebra Concepts

● Statistics and Probability Concepts

● Mathematical Process

Our groupings reflect the NCTM standards:

● Number and Operations

● Geometry; Measurement

● Algebra

● Data Analysis and Probability

● Problem Solving; Reasoning and Proof; Communication;
Connections

● Representation

A close examination of our performance standards reveals our
commitment to quantitative literacy. For instance, our middle-
grade mathematics standards include sample activities whereby
students demonstrate their understanding of statistics and proba-
bility through real-life applications. Here is an example:

From a sample news headline, and article, and a table of data,
select and construct appropriate graphs or other visual repre-
sentations of the data. Decide whether or not the headline
seems appropriate. Write a letter to the editor.

Each of the five major groups includes opportunities for real-
world application of the mathematics standards. In addition, to
further emphasize the importance of a student’s ability to apply
mathematics to other disciplines, we have designed specific sec-
tions of the standards document to provide students with cross-
content area applications. These sections are “Mathematical
Communication” and “Putting Mathematics to Work.” Sug-
gested activities include a data study based on civic, economic, or
social issues, in which students:

● Select an issue to investigate;

● Make a hypothesis on an expected finding, if appropriate;

● Gather data;

● Analyze the data using concepts such as mean and median,
frequency and distribution;

● Show how the study’s results compare with the hypothesis;

● Use pertinent statistics to summarize; and

● Prepare a presentation or report that includes the question
investigated, a detailed description of how the project was
carried out, and an explanation of the findings.

Other suggested activities include asking students to design math-
ematical models of physical phenomena such as those used in
science studies; design and plan a physical structure, including a
presentation or report on how the project was carried out; or
manage and plan an event with cost estimates, supplies, and
scheduling.

Each section of the performance standards is followed by student
work samples demonstrating the activities and including teacher
commentary assessing the degree to which the student work meets
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the standards. The commentary section includes an assessment of
the student’s writing by judging the degree to which it:

● Engages the reader by establishing a context;

● Creates expectations through predictable structures, e.g.,
headings;

● Makes use of appropriate writing strategies such as creating a
visual hierarchy and using white space and graphics as appro-
priate; and

● Includes relevant information.

This section also includes suggested extension activities that pro-
vide students with real-world, practical applications of mathemat-
ics.

Policy and Strategies for
Instructional Reform
The New York City public school mathematics standards empha-
size that students need mathematical or quantitative literacy in
their daily lives and that mathematics should be taught in a mul-
tidisciplinary manner. This does not mean that our approach
shortcuts basic numeracy and computational skills. We have
worked to strike a balance between the “constructivist” mathe-
matics that has been labeled “fuzzy math” by some and the de-
mand by others for a back-to-basics approach that focuses on
memorizing tables and formulas.

A similar division existed in language arts between proponents of
phonics and those who believed in a whole language approach.
We believe that division has been largely eliminated in language
arts thanks to our performance standards and we hope for similar
success in mathematics.

Our language arts standards emphasize a balanced approach to
literacy instruction. They include phonics as well as literature and
writing, speaking and listening. Our primary literacy standards
make it clear that neither the phonics nor the whole language
approach alone prepares all children to be truly literate; used to-
gether they provide students with a more complete learning expe-
rience.

We have introduced the concept of a balanced approach to math-
ematics instruction as well. It may prove more difficult to institu-
tionalize this approach among mathematics teachers, however. To
succeed on the mathematics assessments students now have to
apply mathematical solutions to everyday problems and explain
their thinking about those solutions.

The Dilemma of What Versus How
Our efforts in New York City so far necessarily have been focused
on clearly identifying performance and content standards for all
grades and on aligning assessments, scope and sequence, and in-
structional guides. These are the “what” that students need to
know and be able to do and the “what” teachers need to teach.
“How” teachers teach this content depends on two other critical
ingredients: curricula and instructional programs at the district
and school levels and professional development for all instruc-
tional and supervisory staff.

No single instructional program can possibly meet the needs of all
teachers and learners in New York City. Indeed, there is no na-
tional consensus on the superiority of one curriculum or program
for teaching mathematics. Experience dictates and research cor-
roborates that the most effective instructional programs are those
developed or selected by staff whose direct responsibility it is to
teach our students and lead our schools. The role of a central office
is to set standards and provide guidelines and technical assistance
to support district and school-based decisions about how to reach
the standards.

The performance and content standards are sufficiently clear to
guide those decisions and the assessments evaluate student acqui-
sition of the skills and knowledge contained in the standards. The
standards provide the basis for selecting appropriate programs,
texts, and materials. A survey conducted by the National Science
Foundation (NSF) two years ago found that all New York City
school districts were using either NSF-validated curricula or in-
structional programs that were standards-based and aligned with
the NCTM standards. These had all been chosen at the school or
district level.

The schools therefore are not lacking an appropriate curriculum. So
why are our students not consistently achieving at high levels? Why
have the clearly defined student performance and content standards,
aligned assessments, scope and sequence documents, and instruc-
tional guides not resulted in improved student performance.

Why have not the clearly defined student performance and con-
tent standards, aligned assessments, scope and sequence docu-
ments and instructional guides not resulted in increasing student
performance?

Challenges Ahead
A nationally validated mathematics curriculum does not teach
students, nor does a standards document. Common sense sup-
ported by research tells us that the single most important factor
affecting student learning is a well-qualified teacher.
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The major challenge we face in New York City, along with many
urban school systems throughout the country, is the dearth of quali-
fied mathematics teachers. We simply do not have enough well-
trained teachers of mathematics to teach to the standards. One partial
response to this problem is quality professional development.

There are two broad categories of teachers with different profes-
sional development needs: those who are certified to teach math-
ematics but lack the skills and knowledge to teach to the new
standards and those, particularly at the elementary and middle
school levels, who do not have a solid base of content knowledge
in mathematics.

A one-size-fits-all approach to professional development will not
meet the needs of these two categories of teachers. Clearly, pro-
fessional development as we generally understand it will not suf-
fice for the second category. These teachers need to have more
in-depth training similar to course work rather than traditional
workshops in mathematics pedagogy. Even the best instructional
strategies are virtually useless in the hands of teachers lacking
content knowledge.

Even within the first category, there is a continuum of professional
development needs. Some of the teachers in this category are
novice teachers. Like other school systems, New York City has
begun to recruit teachers who are changing careers from mathe-
matics-related fields. These novice teachers require very different
professional development opportunities from veteran teachers.

The challenge is to provide professional development opportunities
that are tailored to the needs of individual teachers but that also reflect
what we know about the learning needs of the students in their
particular schools and districts. The concept of differentiated ap-
proaches to teaching students is now commonplace; it should be
applied to adult learning as well. We do have some tools in New York
City to assist us in determining individual teacher needs and they are,
coincidentally, the same tools that we use to diagnose student needs:
the item analyses from our assessment results.

We began to generate item analyses a few years ago to assist teach-
ers in identifying the learning needs of their students. The results
were intended to provide teachers with useful data that would
inform their instructional planning and help them address the
needs of individual and small groups of students. This informa-
tion was intended to be used in completing report cards, progress
reports, and student portfolios and in parent conferences, and as
an integral ingredient in making promotion decisions.

These test item analyses, when disaggregated by district, school,
grade, or classroom, also can be used to plan focused professional
development. When used appropriately, they can help to reveal areas
within the mathematics curriculum that are weak or not addressed.

We now generate reports that go beyond the item analyses; these
provide suggested teaching activities to address those weaknesses. The
instructional guides in mathematics provide another source for de-
signing professional development opportunities.

We also have developed guidelines and standards for designing
professional development programs. These describe the essential
elements of effective professional development and share success-
ful models currently in place in our system. In addition, we have
developed opportunities for teachers to participate in rigorous,
credit-bearing course work in mathematics.

All these efforts combined, however, will not completely solve the
problem. We need a sufficient pool of qualified mathematics staff
developers and coaches who can work with teachers in their class-
rooms. We need deeper collaboration with our universities both to
train mathematics teachers differently and to provide several levels of
mathematics professional development to current teachers and super-
visory staff. We need incentives to attract future graduates into teach-
ing. And we need increased opportunities to recruit mathematically
trained career changers into the teaching profession.

Conclusion
The New York City public schools have clearly defined content and
performance standards and a variety of instruments to support im-
plementation at the district and school levels. We believe that our
standards and supporting materials begin to address the issue of quan-
titative literacy, but we need to continue to work on increasing and
deepening quantitative literacy experiences for students.

We have come a long way toward improving the alignment of our
assessments with our standards and collecting good data from
those assessments. We are putting into operation the recommen-
dations of a mathematics commission formed last year to improve
our programs and support systems. We have begun to co-design
and co-teach mathematics courses for staff in collaboration with
some of our universities.

We must expand the number and variety of training opportunities
for current teachers of mathematics at every level. Ultimately, we
must ensure that all students are provided with solid mathematics
instruction that will prepare them to use mathematics comfort-
ably and expertly beyond their school careers or to continue their
study of mathematics at the highest levels.

Notes
1. http://www.wnycenet.edu/dis/standards/Math/index.html.
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Creating Networks as a
Vehicle for Change

SUSAN L. GANTER

A critical feature of the national movement for quantitative literacy (QL) is the development of a
strong networking component supported by common vision and direction. To this end, much can
be learned from the role of networking in the national movement during the past two decades to
change the undergraduate curriculum in mathematics. In particular, aspects of calculus reform and
subsequent efforts to improve other areas of undergraduate mathematics can be helpful in assessing
possible strategies for improving quantitative literacy.

Learning from Calculus Reform
The calculus reform efforts that the National Science Foundation (NSF) encouraged through
awards from 1988 to 1994 set the direction for much of the undergraduate reform that has followed.
Reflection on these efforts can aid institutions that now are working to make QL a part of every
college graduate’s repertoire of knowledge and skills. As part of an NSF-funded study (Ganter 2001),
18 national objectives of calculus reform were formulated based on several publications that dis-
cussed the development of the reform movement (Roberts 1996; Schoenfeld 1996; Steen 1987;
Tucker 1990; Tucker and Leitzel 1995). In reviewing data collected between 1988 and 1998, several
objectives clearly stand out as major thrusts of the reform efforts. The most prominent themes were:

● The development of original curricular materials;

● The use of alternative learning environments, such as computer laboratory experiences, discov-
ery learning, and technical writing; and

● An emphasis on a variety of student skills, such as computer use, the use of applications, and a
focus on conceptual understanding (Ganter 2001).

When reviewing data by institution type, the results are fairly consistent with those from the total
population. A few exceptions are worth noting, however:

● Research and comprehensive universities were more likely to involve high schools in their efforts
than liberal arts and two-year colleges. In fact, only 36.3 percent of the two-year colleges with
NSF-funded calculus projects reported the involvement of high schools, while 57.8 percent of
the comprehensive universities and 49.3 percent of the research institutions reported such
involvement.

● Minority student involvement was significantly more prevalent at two-year colleges than at any
other type of institution. This was perhaps because of the different composition of the student
population at two-year colleges, but is certainly a noteworthy observation.

Susan L. Ganter is Associate Professor of Mathematical Sciences at Clemson University. Earlier, Ganter served as Director
of the Program for Institutional Change at the American Association for Higher Education and as Senior Research Fellow
of the American Educational Research Association at the National Science Foundation. Ganter is Chair of the Committee
on Curriculum Renewal and the First Two Years of the Mathematical Association of America and editor of two recently
published books analyzing the impact of undergraduate mathematics reform.
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● Concerted efforts to involve women in the reform movement
were infrequent. This result was primarily because of the ab-
sence of such a focus at research institutions. As might be
expected, the primary efforts in calculus reform that focused
on women occurred at women’s colleges. Two-year colleges
also made a significant effort to target women (Ganter 2001).

Creating Undergraduate Standards
The Mathematical Association of America (MAA) is currently
engaged in a once-a-decade study of the undergraduate program
in the mathematical sciences. This effort, unlike those of previous
decades, is occurring in an environment informed by lessons from
the calculus reform movement. In addition, also for the first time,
discussions have been informed by workshops with partner disci-
plines in addition to focus groups of mathematicians. The goal is
a set of recommendations that will have a broad impact on math-
ematics departments as they plan their future undergraduate cur-
ricula.

The new MAA recommendations build on an unprecedented
amount of first-hand information on the mathematics needs of
other disciplines, information that is being obtained through a
series of disciplinary-based workshops known as the Curriculum
Foundations (CF) Project. To ensure that the recommendations
and subsequent reports accurately represent the views of other
disciplines, the predominant participants in these workshops were
faculty from disciplines other than mathematics. A curriculum
conference held in November 2001 brought together pairs of
disciplinary representatives from each workshop to consider sim-
ilarities and differences among the reports and to compile the
most important recommendations for the mathematics commu-
nity (Ganter and Barker 2002). This kind of networking—both
within the mathematics community and with colleagues in part-
ner disciplines—is critical to the success of any curricular move-
ment in the mathematical sciences. QL therefore can learn much
from the Curriculum Foundations model.

Networking with other disciplines enabled the Curriculum Foun-
dations Project to influence the MAA recommendations by en-
couraging an approach to mathematics that is directly supportive
of QL programs in undergraduate institutions, including:

● A flexible mathematics degree program designed to fit the
students, mission, and resources of individual departments;

● Ongoing cooperation and collaboration with other disci-
plines to work on curriculum development;

● Emphasis on developing analytical thinking and careful rea-
soning in all courses and for all students; and

● Emphasis on reading, writing, and speaking for the purpose
of communicating and learning mathematics as well as for
assessing student learning.

An important aspect of the new recommendations is strong en-
couragement to mathematics departments to work with students
of a broad range of abilities. Increasing the number of students
with quantitative experiences holds promise for increasing the
overall quality of our scientific workforce and creating a general
appreciation for the importance of QL.

Influencing Student Achievement
and Attitudes
One of the most important, yet least-often investigated, outcomes
of education innovation is the impact on student learning and
achievement. Unfortunately, student achievement is not a clearly
defined concept. Arguments about what a student should know
and understand after one or two years of college mathematics are
heated and have yet to be resolved. Also widely debated are the
basic mathematical skills that provide the foundation for concep-
tual understanding.

Data suggest that calculus reform has had a positive impact on
student achievement. Less clear are the magnitude of this impact
and the appropriate mixture of reform ideas to achieve the greatest
positive impact. Even less studied is the influence of reform meth-
odologies on student skills that are difficult to quantify, such as the
ability to communicate mathematics, understanding when and
how to apply mathematics to real problems, and effectiveness
when working in teams. Because these skills are so critical to QL,
the question of their relative importance compared with other
possible learning outcomes as goals for mathematics courses could
affect the introduction of QL in these courses.

Student attitudes about mathematics directly affect their ability
and motivation to complete the mathematics courses in which
they enroll. Attitudes also can affect the number of mathematics
courses students elect to take—especially courses that are not
required in their major area of study. Students who do not under-
stand the relevance of mathematics to their future will not believe
it is important to learn or continue to study the subject. Introduc-
tory college mathematics courses—including those focusing on
QL—are an ideal setting in which to excite students about study-
ing quantitative ideas.

One of the most profound impacts of reform calculus is the sig-
nificant positive improvement in students’ attitudes about their
capacity to think mathematically and to contribute valuable in-
sights to problem-solving endeavors (Bookman and Friedman
1998; Ganter and Jiroutek 2000). This shows that, given adequate
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support, students can develop quantitative thinking skills in ways
not often achieved in traditional classrooms. This personalization
of mathematics also enables students to exhibit greater confidence
and satisfaction in their quantitative abilities. Such attitudes can
lead to a greater likelihood that they will enroll in more quantita-
tive courses (Ganter 2001). Clearly, student success and enroll-
ment in further courses will have an enormous impact on the
success of quantitative courses—and on the faculty who develop
and teach them.

Enhancing Learning Environments
The existence of common elements shared by the majority of the
projects in the calculus reform movement suggests that the degree
of success or failure depends less on what is implemented than on
how, by whom, and in what setting implementation occurs. The
consistent reactions of students from a wide variety of institutions
point to several key components in the success of a reform envi-
ronment (Ganter 2001). For example, instructors must commu-
nicate to students (and other faculty) the purpose of the changes
being made. This perhaps is not as easy as it seems because the
reasons for change must be understood as relevant and important
to students’ future success. For QL, connections with real prob-
lems and issues are a core component; thus faculty can more
readily dispel the widespread belief among students that mathe-
matics is simply a barrier to be overcome. Perhaps the most im-
portant role of courses focusing on QL is to enable students to see
the many uses of mathematics.

The level of personal attention available to students also greatly
affects their attitude and level of commitment. This is especially
true when the elements that define a course are ones that students
have never experienced, requiring additional support as students
adjust their learning styles (Ganter 2001). A primary goal of QL is
the creation of quantitative courses that make mathematics real
and interesting for all students, both those for whom it has always
been interesting and those for whom it has not. By fostering a
collaborative spirit that encourages new ways of teaching and
learning, networks of faculty both within mathematics depart-
ments and across campuses can create the supportive environment
necessary for change—both for students and faculty.

Encouraging Faculty Networks
The nature and extent of faculty networks is a critical component
of the QL movement and will ultimately determine its long-term
sustainability. As previously suggested, an examination of the is-
sues faced by faculty when pioneering change (such as those faced
in the campaign to reform calculus) can offer insight about the
potential for similar network development for QL.

Interestingly, one of the most important statements that can be
made about any reform effort is that there has in fact been change.
Although this may seem an obvious outcome, in reality it can be a
major breakthrough in a college environment. Change was clearly
observable as a result of calculus reform efforts in many depart-
ments at a wide variety of institutions (Ganter 2001). Some spe-
cific changes were directly related to faculty networking, includ-
ing:

● Increased conversations within departments about under-
graduate education;

● Increased recognition of the need for (and often actual) con-
versations with faculty in other disciplines;

● Increased understanding of the domino effect that changes in
one course have on the teaching of other courses; and

● Increased interest and participation in educational issues by
faculty (Ganter 2001).

In the case of calculus, reform has encouraged networking and
collaborations among mathematics faculty and with faculty in
other departments. These networks often result from the changes
implied by the different problem types that are the focus of the
newly developed curricular materials (Keynes et al. 2000; Mum-
ford 1997). For example, the increase in applications has made
necessary a closer tie between calculus and related topics in other
disciplines.

The changes in calculus also have made it difficult to ignore the
structure of other mathematics courses, especially those that are
often taken just before and after calculus. This means that faculty
who have traditionally taught these courses now are discussing
topics and issues that reach across course boundaries, resulting in
further networking. Consequently, the structure of the entire un-
dergraduate mathematics curriculum, including requirements for
the mathematics major, are being reviewed in numerous depart-
ments (Buccino 2000; Dossey 1998; Keynes et al. 2000).

The activities of many mathematics faculty, both within their
departments and in the larger professional community, thus have
changed dramatically over the past decade. Within departments,
faculty now struggle with traditional structures that often do not
encourage professional activities in mathematics education. Many
involved in reform, especially untenured faculty, are anxious to
learn how the mathematics community will respond to the chang-
ing professional roles that are implied within departments com-
mitted to curricular innovation.

Specifically, faculty who enjoy financial and collegial support—
both within their institution and through external networking—
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report that reform methodologies have had a positive impact on
their teaching and professional development (Eiseman et al. 1996;
Keynes et al. 2000). On the other hand, a lack of support from
administration and minimal opportunities to network with fellow
faculty members often lead to the demise of new curricula. Teach-
ing in a more collaborative environment (both with students and
other faculty) and opportunities to network through professional
development offerings often are cited as the aspects of change that
faculty find most valuable, rewarding, and essential to ultimate
success (Eiseman et al. 1996; Keynes et al. 2000; Mathews 1995).

Workshops that allow faculty to collaborate directly with col-
leagues who have experience with the proposed changes—while
also interacting with others who are just beginning to make
changes—help them avoid the mistakes made by others and to
build a network of colleagues with whom they can continue to
work and talk after returning to their home campuses. Faculty
involved in curricular change say that they need even more pro-
fessional development opportunities, suggesting that small work-
shops and conferences—especially those that encourage contin-
ued networking—are perhaps the most effective means of
disseminating ideas and encouraging change across campuses.

Supporting QL Through Networking
Experiences from curricular reforms in calculus and other disci-
plines reveal that a supportive network can be used to promote
buy-in by all affected individuals and groups. Therefore, an im-
portant part of the QL movement is the design and formation of
the National Numeracy Network (NNN) to assist locales in
which efforts are underway to translate QL from aspiration into
educational practice, to disseminate promising practices, and to
exchange information among existing and potential network sites.
(Details of NNN, which change regularly, can be found on-line at
www.woodrow.org/nced/national_numeracy_network.html.)

Planned activities of the network include professional develop-
ment experiences and opportunities to learn about QL for educa-
tors and others and a Web site through which resources, informa-
tion, and exchange of ideas regarding QL will be made accessible
to the broadest possible audience. Critical to NNN are local
projects and meetings that bring together schools, colleges, civic
groups, the media, business, and industry. Additional outreach
efforts include research, reports, and publications that increase
understanding of QL and its significance in education, work, and
private and civic life.

One part of NNN is a QL Resource Library that provides the
opportunity for faculty to share ideas by developing an extensive
collection of QL materials across a variety of disciplines. The
resource library includes program descriptions, course syllabi, ex-

aminations, activities, laboratories, projects, readings, publica-
tions, and examples of student work. Such a collection of materials
is very important to the work of NNN, serving as a resource for
outreach efforts and as a means of teaching interested individuals
and organizations about QL. In addition, the QL Resource Li-
brary soon will include a database of individuals, projects, and
institutions involved in the development of QL curricula.

By focusing on different aspects of policy, practice, professional
development, dissemination, and assessment, the National Nu-
meracy Network will provide a catalyst for quantitative literacy,
especially in grades 10 to 14. Quantitative Literacy programs par-
ticipating in the network already are working with organizations
that can directly influence a wider audience to create public pres-
sure for QL. NNN institutions and organizations are developing
QL course materials and programs to share through professional
development opportunities, the QL Resource Library, and the QL
Web site (www.woodrow.org/nced/quantitative-literacy.html).
Through networking, QL education is becoming a reality at many
institutions.
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Numeracy in an International Context
LYNN ARTHUR STEEN

As the recent intrusion of computer-generated data has transformed the way Americans live, work,
and learn, so has it influenced countries around the world. The inevitable questions about appro-
priate new goals for mathematics education that are suggested by the transforming impact of
computers are not confined to the United States. These issues arise in every country, although the
responses vary greatly because of the different historical and cultural roles played by mathematics in
different nations.

Several papers in this volume cite the two-decade-old report Mathematics Counts (Cockcroft 1982)
as the source for the term “numeracy,” described there as an educational goal with two attributes.
First is an “at homeness” with numbers, by which is meant “an ability to make use of mathematical
skills to cope with the practical demands of everyday life.” Second is an ability “to understand
information that is presented in mathematical terms.” Although the term numeracy predates this
reference, the Cockcroft report is widely regarded as the first major document to urge that nu-
meracy—what we call quantitative literacy—be a priority for mathematics education.

More recently, the Organization for Economic Cooperation and Development (OECD) has un-
dertaken through its Program for International Student Assessment (PISA) to define and assess
student knowledge and skills in reading, mathematical, and scientific literacy (see www.pisa.
oecd.org). PISA defines mathematical literacy as “the capacity to identify and understand the role
that mathematics plays in the world, to make well-founded mathematical judgments, and to engage
in mathematics in ways that meet the needs of an individual’s current and future life as a construc-
tive, concerned, and reflective citizen” (OECD 1999, 41). The PISA literacy tests were administered
for the first time in 2000 (NCES 2002).

Some years earlier, the International Adult Literacy Survey (IALS) began using a three-part defini-
tion of literacy encompassing prose, document, and quantitative elements (OECD 1995). A fol-
low-up study known as ALL (Adult Literacy and Lifeskills survey; see nces.ed.gov./surveys/all) is
being administered internationally during 2002 and 2003. ALL focuses on numeracy not as a
portfolio of passive skills but as an active pattern of behavior, such as managing situations, solving
problems, and responding to quantitative information, which could be said to characterize numerate
adults (Gal et al. 1999).

Those in the United States who pay attention to mathematics education have heard much in recent
years about TIMSS, the Third International Mathematics and Science Study, which has recently
been repeated under the name TIMSS-R (see nces.ed.gov/timss). These aforementioned studies—
PISA and ALL—illustrate that international concern about mathematics is not limited to the
traditional mathematics curriculum that is assessed, more or less, through the TIMSS studies.
Concern about numeracy and literacy also are very much present in other countries.

Indeed, there is quite active international interest in defining and assessing students’ quantitative and
mathematical skills, especially at the school-leaving level, because quantitative competence influ-

Lynn Arthur Steen is Professor of Mathematics at St. Olaf College, and an advisor to the Mathematics Achievement
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ences to a great extent the effective preparation of each nation’s
workforce and university students. For most of the past century,
mathematics educators around the world have worked together
through the International Commission on Mathematical Instruc-
tion (ICMI) to learn from each other both about effective ap-
proaches to mathematics education and about the different roles
that mathematics plays in different societies (see elib.zib.de/IMU/
ICMI/). Both mathematics and mathematics education are truly
international subjects, although in the latter, cultural influences
necessarily play a much larger role.

It should come as no surprise, therefore, that just as the rise of a
data-driven culture has forced the United States to rethink de-
cades-old traditions of school mathematics, so similarly motivated
changes are underway in other countries. It is enlightening and
sometimes empowering to see how differently mathematics can be
viewed from the perspective of other traditions. We realize, after
such study, that certain things we take for granted are largely
arbitrary, whereas approaches we can hardly imagine are, in some
nations, routine.

It is for these reasons that we invited contributions to this Forum
from several mathematics educators in other nations, especially
those closely associated with the international work of ICMI,
PISA, and ALL. The papers in this section offer a wide variety of
international perspectives that, although failing to fairly represent
everything of significance in mathematics education around the
world, at least illustrate forcefully the wide variety of issues, ap-
proaches, and concerns.

Mogens Niss of Denmark, secretary of ICMI during the 1990s,
addresses the issues directly in a paper entitled “Quantitative Lit-
eracy and Mathematical Competencies.” Niss argues for a broad
PISA-like definition of “mathematical” literacy that would en-
compass most of what other authors in this volume refer to as
“quantitative” literacy. In particular, Niss argues, if the objectives
of mathematics education were organized around competencies
such as reasoning, modeling, and communicating mathemati-
cally—rather than, for example, around content such as algebra,
geometry, and calculus—school graduates would be far better able
to navigate thoughtfully the turbulent waters of democratic de-
bate and decision making. (See pp. 217–222.)

Michel Merle, in “Defining Mathematical Literacy in France,”
writes about the current work of a national commission on the
teaching of mathematics in France that is chaired by former ICMI
President Jean-Pierre Kahane. The charge to the commission,
motivated by the same forces that led to this Forum on quantita-
tive literacy, is how to restructure school mathematics in ways that
take into account the impact of computers. The Kahane commis-
sion (Kahane 2002), as Merle describes, argues for a mathematics

syllabus dominated by four content areas: geometry (“the educa-
tion of vision”); computation (both approximate and exact, in-
cluding its relation to reason); statistics (“stochastic literacy”), and
computers (especially data structures and algorithms). (See pp.
223–225.)

A. Geoffrey Howson, also a former secretary of ICMI, in “What
Mathematics for All?,” takes on what he and many others see as a
disastrous decline in the mathematical competence of British
school-leavers. He attributes this undisputed decline to many
causes, among which is the “piece of tape” curricular philosophy
in which all students study (“snip off ”) a certain length of a subject
(a piece of tape) whose courses and examinations are designed for
a university goal they never reach. Howson suggests that for most,
a (QL-like) curriculum deliberately designed to focus on “the
mathematics of citizenship, culture, personal finance, health, . . .”
would yield greater success. (See pp. 227–230.)

Mieke van Groenestijn of the Netherlands writes about the ALL
literacy assessment project, focusing in particular on the ALL
characterization of numerate behavior in adults. Using ALL’s
rather detailed description as a foundation, van Groenestijn ex-
amines the problem of educating adults for numerate behavior,
which is far different from passive (or worse, inert) knowledge.
She notes that because adults learn principally through action, a
predisposition to numerate behavior can best be learned in real-
life situations. (See pp. 231–236.)

Ubiratan D’Ambrosio of Brazil, a former vice president of ICMI,
takes note of the political and cultural roles played by mathematics
in all countries and at all ages, especially the recent role of “data
control and management” as a tool for excluding “cultures of the
periphery.” D’Ambrosio, who years ago introduced “ethnomath-
ematics” as a way to “restore cultural dignity” in societies whose
mathematics was invisible in school, here advocates a three-part
endeavor he calls “literacy, numeracy, and technocracy” as a
means of providing access to full citizenship. (See pp. 237–240.)

These glimpses of how mathematics educators in other nations are
coming to terms with the new demands of numeracy, mathemat-
ics, and citizenship open a window on approaches that move well
beyond those normally considered in U.S. curriculum discus-
sions. In addition, by revealing great differences in fundamental
assumptions and objectives concerning mathematics education,
they suggest important limitations on the inferences that can
safely be drawn from comparative international assessments. To
the degree that numeracy and mathematics are important features
of our culture, differences in national traditions will necessarily
create significant differences in both the objectives and outcomes
of mathematics education.

212 Quantitative Literacy: Why Numeracy Matters for Schools and Colleges



References
Cockcroft, Wilfred H. 1982. Mathematics Counts. London: Her Majes-

ty’s Stationery Office.

Gal, Iddo, Mieke van Groenestijn, Myrna Manly, Mary Jane Schmitt,
and Dave Tout. 1999. Numeracy Framework for the International
Adult Literacy and Lifeskills Survey (ALL). Ottawa, Canada: Statistics
Canada.

Kahane, Jean-Pierre, et al. 2002. Commission de réflexion sur
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Quantitative Literacy and
Mathematical Competencies

MOGENS NISS

Quantitative Literacy and Its Relatives
When reading the material made available to Forum participants, in particular Mathematics and
Democracy: The Case for Quantitative Literacy (Steen 2001) and the background essays prepared for
the Forum, three observations came to my mind.

First, the authors all seem to be speaking of roughly the same “animal,” but they give it a variety of
different names such as quantitative literacy, numeracy, mathematical literacy, and mathematical
competencies. We also could add the term “mathemacy” coined by Ole Skovsmose (1994). Irre-
spective of the labels used, what people have in mind is something other than proficiency in pure,
theoretical mathematics, something that goes beyond such knowledge and skills.

Second, the same term, “quantitative literacy,” is given a variety of different interpretations by
different authors. The variation is mainly a matter of how narrowly the word “quantitative” is to be
understood, vis à vis the involvement of numbers and numerical data. Some use the word in a much
broader sense than numbers and data only.

Third, finally, and most significantly, there seems to be general consensus about the importance of
making a case for the “animal,” whatever it is going to be called. That consensus certainly includes
me.

The first two observations suggest that we are short of a one-to-one correspondence between the
terms used and the ideas these terms refer to. At best this may cause some terminological confusion
in the discourse, at worst it may compromise the case itself. In other words, although terminological
clarification is often tedious, dry swimming, I think some effort ought to be invested in clarifying the
notions.

From my standpoint, and for a number of reasons, I prefer the term “mathematical literacy,” roughly
as it is defined in the Organization for Economic Cooperation and Development (OECD) Pro-
gramme for International Student Assessment (PISA) project, in which I happen to be involved. In
this enterprise, mathematical literacy is:

The capacity to identify, to understand, and to engage in mathematics and to make well-
founded judgments about the role that mathematics plays, as needed for an individual’s current
and future life, occupational life, social life with peers and relatives, and life as a constructive,
concerned and reflective citizen. (OECD 2000)

Mogens Niss is Professor of Mathematics and Mathematics Education at the innovative Roskilde University in Denmark at
which studies are based on project work. From 1987 to 1999, Niss served as a member of the Executive Committee of the
International Commission on Mathematical Instruction (ICMI), the last eight years as Secretary. He is currently Chair of
the International Program Committee for ICME-10, a member of the Mathematics Expert Group for OECD’s PISA
project, and director of a Danish national project on mathematics curriculum.
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The main reason I prefer mathematical literacy is that the broad-
ness of the term “mathematical” captures better than the some-
what narrower term “quantitative” what we actually seem to be
after, for instance, when providing examples. Of course, we could
argue on the basis of the history and epistemology of mathematics
that many aspects of those mathematical topics that are of partic-
ular importance to real life, such as geometry, functions, proba-
bility, and mathematical statistics, among others, were in fact
“arithmetised” in the nineteenth and twentieth centuries, so that
we are not restricting the animal greatly by referring to it as quan-
titative literacy rather than as mathematical literacy. To see that,
however, a person has to possess a fairly solid knowledge of mod-
ern mathematics and its genesis, and that is most certainly a pre-
requisite that we cannot and should not expect of all those with
whom we want to be in dialogue.

Now, how is mathematical literacy related to mathematical
knowledge and skills? Evidently, that depends on what we mean
by mathematics. If we define mathematics in a restrictive way, as a
pure, theoretical scientific discipline—whether perceived as a uni-
fied, structurally defined discipline or as a compound consisting of
a number of subdisciplines such as algebra, geometry, analysis,
topology, probability, etc.—it is quite clear that mathematical
literacy cannot be reduced to mathematical knowledge and skills.
Such knowledge and skills are necessary prerequisites to mathe-
matical literacy but they are not sufficient.

This is not the only way to define mathematics, however. We may
adopt a broader—partly sociological, partly epistemological—
perspective and perceive mathematics as a field possessing a five-
fold nature: as a pure, fundamental science; as an applied science;
as a system of tools for societal and technological practice (“cul-
tural techniques”); as an educational subject; and as a field of
aesthetics (Niss 1994). Here, being a pure, fundamental science is
just one of five “natures” of mathematics. If this is how we see
mathematics, the mastery of mathematics goes far beyond the
ability to operate within the theoretical edifice of purely mathe-
matical topics. And then, I submit, mathematical literacy is more
or less the same as the mastery of mathematics. By no means,
however, does this imply that mathematical literacy can or should
be cultivated only in classrooms with the label “mathematics” on
their doors. There are hosts of other important sources and plat-
forms for the fostering of mathematical literacy, including other
subjects in schools and universities.

All this leaves us with a choice between two different strategies.
Either we accept a restrictive definition of mathematics as being a
pure, fundamental science and then establish mathematical liter-
acy as something else, either a cross-curricular ether or a new
subject. Or we insist (as I do) on perceiving mathematics as a
multi-natured field of endeavor and activity. If we agree to use
such a perception to define the subject to be taught and learned,

that subject would have the fostering of mathematical literacy,
including its narrower quantitative sense, as a major responsibility
from kindergarten through to the Ph.D.

Once again, this being said, the fostering of mathematical literacy
also should be the responsibility of other subjects, whenever this is
appropriate, which it is much more often than agents in other
subjects bother to realize or accept. Mathematical literacy is far too
important to be left to mathematics educators and mathemati-
cians (in a wide sense), but it also is far too important to be left to
the users of mathematics. Mathematics educators and mathema-
ticians have to assume a fair part of the responsibility for providing
our youths and citizens with mathematical literacy.

Mathematical Literacy
and Democracy
Traditionally, we tend to see the role of mathematical literacy in
the shaping and maintenance of democracy as being to equip
citizens with the prerequisites needed to involve themselves in
issues of immediate societal significance. Such issues could be
political, economic, or environmental, or they could deal with
infra-structure, transportation, population forecasts, choosing lo-
cations for schools or sports facilities, and so forth. They also
could deal with matters closer to the individual, such as wages and
salaries, rents and mortgages, child care, insurance and pension
schemes, housing and building regulations, bank rates and
charges, etc.

Although all this is indeed essential to life in a democratic society,
I believe that we should not confine the notion of democracy, or
the role of mathematical literacy in democracy, to matters such as
the ones just outlined. For democracy to prosper and flourish, we
need citizens who not only are able to seek and judge information,
to take a stance, to make a decision, and to act in such contexts.
Democracy also needs citizens who can come to grips with how
mankind perceives and understands the carrying constructions of
the world, i.e., nature, society, culture, and technology, and who
have insight into the foundation and justification of those percep-
tions and that understanding. It is a problem for democracy if
large groups of people are unable to distinguish between astron-
omy and astrology, between scientific medicine and crystal heal-
ing, between psychology and spiritism, between descriptive and
normative statements, between facts and hypotheses, between ex-
actness and approximation, or do not know the beginnings and
the ends of rationality, and so forth and so on. The ability to
navigate in such waters in a thoughtful, knowledgeable, and re-
flective way has sometimes been termed “liberating literacy” or
“popular enlightenment.” As mathematical literacy often is at the
center of the ways in which mankind perceives and understands
the world, mathematical literacy is also an essential component in
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liberating literacy and popular enlightenment. We should keep
that in mind when shaping education for the pursuit of mathe-
matical literacy in service of democracy.

The Danish KOM Project
If we decide to adopt a broad, multi-natured notion of mathemat-
ics, and set out to foster mathematical literacy within mathematics
education, it becomes a crucial task to find and employ new ways
to define and describe mathematics curricula that focus on math-
ematical competence rather than on facts and techniques. I give
here a brief account of current attempts in that direction being
made in the Danish so-called “KOM” project. The thinking be-
hind and underpinning of that project also has exerted some in-
fluence on the OECD PISA project, as can be seen in Jan de
Lange’s background essay for the Forum (de Lange, see pp. 75–
89).

Traditionally, in Denmark and in many other countries, a math-
ematics curriculum is specified by means of three types of compo-
nents:

1. Statements of the purposes and goals that are to be pursued in
teaching and learning.

2. Determination of mathematics content, given in the form of a
syllabus, i.e., lists of the mathematical topics, concepts, theo-
ries, methods, and results to be covered.

3. Forms and instruments of assessment and testing to judge to
what extent students have achieved the goals set for the sylla-
bus as established under (2).

Serious objections can be raised against this way of specifying a
curriculum. First, on such a basis, it is very difficult to describe and
explain in overarching, nontautological terms what mathematics
education at a given level is all about, without relying on circular
descriptions such as “the teaching and learning of mathematics at
this level consist in studying the topics listed in the syllabus,”
which is just another way of saying that the teaching and learning
of mathematics are about teaching and learning (a particular seg-
ment) of mathematics.

Second, a syllabus-based curriculum specification easily leads to
identifying mathematical competence with the mastery of a sylla-
bus, i.e., knowing the facts and being able to perform the skills tied
to the topics of the syllabus. Although such mastery is certainly
important, this identification tends to trivialize mathematics, re-
duce the notion of mathematical competence, and lead to too low
a level of ambition for teaching and learning. In Denmark we
often refer to this reduction as the “syllabusitis trap.”

Third, if we have only syllabus-based curriculum specifications at
our disposal in mathematics education, we can only make ines-
sential, trivial comparisons between different mathematics curric-
ula, i.e., we can only identify the differences between curricula X
and Y by listing the syllabus components in X�Y, X�Y, and Y�X,
respectively; however, the differences between two kinds of math-
ematics teaching and learning are typically both much more fun-
damental and more subtle than the differences reflected in the
syllabi.

This leaves us with the following challenges and a resulting task.
We wish to create a general means to specify mathematics curric-
ula that allows us to adequately:

● Identify and characterize, in a noncircular manner, what it
means to master (i.e., know, understand, do, use) mathemat-
ics, in and of itself and in contexts, irrespective of what specific
mathematical content (including a syllabus) is involved;

● Validly describe development and progression within and be-
tween mathematics curricula;

● Characterise different levels of mastery to allow for describing
development and progression in the individual student’s
mathematical competence; and

● Validly compare different mathematics curricula and different
kinds of mathematics education at different levels or in dif-
ferent places.

The general idea is to deal with this task by identifying and mak-
ing use of a number of overarching mathematical competencies.

This gave the stimulus (and the most important part of the brief)
for the Danish KOM project, directed by the author of this paper.
KOM stands for “Kompetencer Og Matematiklæring,” Danish
for “Competencies and Mathematical Learning.” (More informa-
tion is available at http://imfufa.ruc.dk/kom. By the end of Au-
gust 2002 an English version of the full report of the project can be
found at this site.) The project was established jointly by the
Ministry of Education and the National Council for Science Ed-
ucation. It is not a research project but a development project to
pave the way for fundamental curriculum reform in Denmark,
from kindergarten to university. In fact it is a spearhead project in
that similar projects are now being undertaken in Danish, physics
and chemistry, and foreign languages; the natural sciences are
soon to be addressed.

More specifically, the project is intended to provide inspiration by
discussing and analyzing the possibility of dealing with the task
just presented by means of the notion of mathematical competen-
cies, and accordingly to propose measures and guidelines for cur-
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riculum reform. It is not the intention that the project itself shall
propose detailed new curricula at all the different educational
levels it addresses. Specific curriculum implementation is up to
the curriculum authorities responsible for each of these levels;
however, it is more than likely that the collaborators in the project
will be asked to take part in that implementation in the sectors in
which they work.

Mathematical Competencies
and Insights
Let us begin by suggesting working definitions for two of the key
words, competence and competency. It goes without saying that it
is human beings that may possess competence and competencies.

To possess competence (to be competent) in some domain of
personal, professional, or social life is to master (to a fair degree,
appropriate to the conditions and circumstances) essential aspects
of life in that domain. In some languages (such as Danish), there
are two facets of the notion of competence. The first is formal
competence, which is roughly the same as authorization or license,
i.e., the right to do something. The second is real competence,
roughly equivalent to expertise, i.e. the actual ability to do some-
thing. Here, the focus is on the latter facet. This leads us to define
“mathematical competence” as the ability to understand, judge,
do, and use mathematics in a variety of intra- and extra-mathe-
matical contexts. Necessary, but certainly not sufficient, prereq-
uisites for mathematical competence are extensive factual knowl-
edge and technical skills.

A “mathematical competency” is a clearly recognizable and dis-
tinct, major constituent in mathematical competence. Competen-
cies need be neither independent nor disjointed. Thus, the ques-
tion we have to address is, What are the competencies in
mathematical competence? To answer this question, let us begin
by noting that mathematical competence includes two overarch-
ing sorts of capabilities. The first is to ask and answer questions
about, within, and by means of mathematics. The second consists
of understanding and using mathematical language and tools. A
closer analysis has given rise to the following eight competencies:

1. Thinking mathematically (mastering mathematical modes of
thought), such as:

● Posing questions that are characteristic of mathematics
and knowing the kinds of answers (not necessarily the
answers themselves) that mathematics may offer;

● Extending the scope of a concept by abstracting some of
its properties and generalizing results to larger classes of
objects;

● Distinguishing between different kinds of mathematical
statements (including conditioned assertions (if-then),
quantifier-laden statements, assumptions, definitions,
theorems, conjectures and special cases); and

● Understanding and handling the scope and limitations of
a given concept.

2. Posing and solving mathematical problems, such as:

● Identifying, posing, and specifying different kinds of
mathematical problems (pure or applied, open-ended or
closed); and

● Solving different kinds of mathematical problems (pure
or applied, open-ended or closed), whether posed by oth-
ers or by oneself, and, if appropriate, in different ways.

3. Modelling mathematically (i.e., analyzing and building mod-
els), such as:

● Analysing the foundations and properties of existing
models, including assessing their range and validity;

● Decoding existing models, i.e., translating and interpret-
ing model elements in terms of the reality modelled; and

● Performing active modelling in a given context, i.e.,
structuring the field, mathematizing, working with(in)
the model (including solving the problems the model
gives rise to); validating the model, internally and exter-
nally; analyzing and criticizing the model (in itself and
vis-à-vis possible alternatives); communicating about the
model and its results; monitoring and controlling the
entire modelling process.

4. Reasoning mathematically such as:

● Following and assessing chains of arguments put forward
by others;

● Knowing what a mathematical proof is (is not) and how it
differs from other kinds of mathematical reasoning, e.g.,
heuristics;

● Uncovering the basic ideas in a given line of argument
(especially a proof), including distinguishing main lines
from details, and ideas from technicalities; and

● Devising formal and informal mathematical arguments
and transforming heuristic arguments to valid proofs, i.e.,
proving statements.
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5. Representing mathematical entities, such as:

● Understanding and utilizing (decoding, interpreting, and
distinguishing between) different sorts of representations
of mathematical objects, phenomena, and situations;

● Understanding and utilizing the relations between differ-
ent representations of the same entity, including knowing
about their relative strengths and limitations; and

● Choosing and switching between representations.

6. Handling mathematical symbols and formalisms, such as:

● Decoding and interpreting symbolic and formal mathe-
matical language and understanding its relations to nat-
ural language;

● Understanding the nature and rules of formal mathemat-
ical systems (both syntax and semantics);

● Translating from natural language to formal/symbolic
language; and

● Handling and manipulating statements and expressions
containing symbols and formulas.

7. Communicating in, with, and about mathematics, such as:

● Understanding others’ written, visual, or oral “texts” (in a
variety of linguistic registers) about matters having a
mathematical content; and

● Expressing oneself, at different levels of theoretical and
technical precision, in oral, visual, or written form, about
such matters.

8. Making use of aids and tools (including information technol-
ogy), such as:

● Knowing the existence and properties of various tools and
aids for mathematical activity and their scope and limita-
tions; and

● Being able to reflectively use such aids and tools.

The first four competencies are the ones involved in asking and
answering questions about, within, and by means of mathematics,
whereas the last four are the ones that pertain to understanding
and using mathematical language and tools. It should be kept in
mind, however, that these eight competencies are meant neither
to establish a partitioning of mathematical competence into dis-

jointed segments nor to constitute independent dimensions of it.
The competencies just listed are very close but not completely
identical to the ones that appear in the OECD PISA framework
for mathematical literacy (OECD 2000). As mentioned above,
this is no accident.

These eight competencies all have to do with mental or physical
processes, activities, and behavior. In other words, the focus is on
what individuals can do. This makes the competencies behavioral
(not to be mistaken for behavioristic).

In addition to competencies, we also have identified three impor-
tant insights concerning mathematics as a discipline. These are
insights into:

● The actual application of mathematics in other subjects and
fields of practice that are of scientific or social significance;

● The historical development of mathematics, internally as well
as externally; and

● The special nature of mathematics as a discipline.

Needless to say, these insights are closely related to the possession
of the eight mathematical competencies, but they cannot be de-
rived from them. The competencies deal with different kinds of
singular mathematical activities whereas the insights deal with
mathematics as a whole.

Both the competencies and the insights are comprehensive, over-
arching, independent of specific content, and independent of ed-
ucational level. In other words, they are general to mathematics.
But they are also specific to mathematics, i.e., even if other sub-
jects come up with similar sets of competencies using similar
words, those words will be interpreted completely differently from
how they are interpreted in mathematics. Even though the com-
petencies and the insights are general, they manifest themselves
and play out differently at different educational levels, in different
contexts, and with different kinds of mathematics subject matter.

The competencies and insights can be employed both for norma-
tive purposes, with respect to specification of a curriculum or of
desired outcomes of student learning, and for descriptive purposes
to describe and characterize actual teaching practice or actual stu-
dent learning, or to compare curricula, and so forth.

In this paper there is room only to describe the core ideas of the
KOM project. It is also a key intention of the project to specify in
some detail how these competencies will actually be developed at
different educational levels in schools and universities, to specify
and characterize the relationships between competencies and
mathematics subject matter at different levels, and to devise ways
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to validly and reliably assess students’ possession of the mathemat-
ical competencies in a manner that allows us to describe and
characterize development and progression in those competencies.

In conclusion, if we are able to meet the challenges stated above,
and to complete the tasks they lead to, we will not only have done
good service for mathematics education and mathematical literacy
but we also may hope to be in a better position than today to
engage in dialogues with quarters outside of mathematics and
mathematics education about mathematical literacy and its im-
portance for democracy.
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Defining Mathematical Literacy in France
MICHEL MERLE

Two major reforms of mathematics curricula were undertaken in France during the twentieth
century. The first, in 1902, viewed mathematics as an experimental science next to physics (two
hours a week were dedicated to dessin graphique). Until 1960, no further reform occurred, for various
reasons. The slogan of the 1960 reform was “mathematics for all.” In that sense, democracy was a
main concern for the reformers, because mathematics was supposed to carry universal values. But its
results were not those expected.

In April 1999, at a time when there were a lot of controversies about mathematics, the French
Minister of Education created a commission to undertake a study of the mathematics curricula from
elementary school to teacher training in university. This Commission de réflexion sur l’enseignement
des mathématiques was chaired by Jean-Pierre Kahane, member of the French Académie des sciences
and former President of the International Commission on Mathematical Instruction (ICMI). I was
one of the members of the commission.

This commission was neither the first nor will it be the last committee in France to think about
mathematics and its teaching, but I believe it was the first time such a committee was asked, among
other requests, to focus on the impact of computers on the mathematics syllabus; however, com-
puters were not the only topic that the commission had in hand. We addressed four issues, namely:
geometry, computation (or numeracy), statistics, and computers. After considerable consultation,
we produced a report (Kahane 2002), available on the Internet, that is directed to teachers and to
decision makers involved in all aspects of education.

Geometry
Teaching geometry from elementary to high school levels is still necessary today. We first showed the
importance of geometry in order to “grasp space,” to develop the vision of space, a vision that plays
an essential role in our image-oriented society. Second, the report emphasized the fact that geometry
is a fundamental subject for the learning of reasoning. Finally, the report recalled how important
geometry is in the training of all scientists (technicians, engineers, researchers, and teachers).

We proposed to develop space geometry as an education in vision. For plane geometry, we suggested
reinforcing the use of elementary invariants (such as angle and area) and reintroducing criteria for
congruence and similarity of triangles. To avoid too dogmatic a teaching approach, the report also
proposed to favor open problems (research on geometric loci and construction problems) and to
make room for some “rich” geometries. For instance, at the end of high school, circular geometry
could be taught together with complex numbers.

As regards methods, the commission focused on two main goals: teaching pupils and students to see
and to think geometrically and teaching them to reason. Among the other important suggestions
included in the report was to establish strong links with other disciplines, in particular with the
sciences.

Michel Merle is Professor of Mathematics at the University of Nice in France. His mathematical research is mainly focused
on algebraic geometry, including applications of this theory to computer vision. Merle is currently a member of the national
“Commission de réflexion sur l’enseignement des Mathématiques” and of the “Conseil national des programmes”, a
committee involved in the elaboration of the curriculum for French primary and secondary schools.
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Computation
The commission tried to intertwine epistemological and didacti-
cal issues by questioning the nature and role of computation in the
mathematical sciences and their evolution, the cultural and edu-
cational representations of the theme, and the current curriculum
from elementary to university levels. In the epistemological di-
mension of the report, we were especially sensitive to:

● The increasing diversity of the objects and practices that com-
putations involve;

● The dependence of computation on computational tools;

● The relationships between exact and approximate computa-
tion, and between computation and reasoning; and

● The fundamental role that computations play in the building
of mathematical concepts and theories.

We then pointed out that these epistemological characteristics of
computation are deeply misunderstood in the cultural and educa-
tional representations of the theme, at least as regards three main
points: the relationships between computation and reasoning, be-
tween approximate and exact computation, and between compu-
tation and computational tools.

Taking this discrepancy into account, we then developed a didac-
tic analysis structured in three main parts: meeting with the world
of computation: numbers, magnitudes, measures, and dimen-
sions; from arithmetic computations to algebraic computations;
and from algebraic computations to calculus and analysis. In each
of these parts, we focused on reconstructions and breaches in-
volved in mathematical learning processes, because these are often
underestimated in teaching practices. We emphasized mental
arithmetic, estimation of magnitudes, and better links between
computation and reasoning and between approximate and exact
computations. Finding an appropriate place for current technol-
ogy is seen as a crucial transversal aim of teaching. We addressed
how the curriculum can contribute to achieve these aims, from the
beginning of elementary school to university. Outcomes from
innovative work and educational research were used to support
the analysis.

Statistics
Developing stochastic literacy for professional or individual pur-
poses is widely understood to be part of obligatory education;
nonetheless, it is surrounded by controversies and many questions
set out in the commission’s report are under investigation in many
European countries.

We first give a brief account of the close connections between
statistics (designed for analyzing, visualizing, and modeling data
in contexts), probability theory, and other aspects of mathematics
(such as geometry and multivariate analysis). Many statistical rules
rely on common sense and specific skills (such as designing exper-
iments). Although statistical understanding does not systemati-
cally involve probability theory or mathematical reasoning, prob-
ability and other mathematical background is required to move
beyond purely descriptive statistics. We then dealt with the im-
pact on statistical practice of the widespread use of computers and
the availability of powerful statistical packages. For teaching pur-
poses, computer random simulation yields a rapid understanding
of many basic points (such as properties of sampling distribu-
tions).

Statistics are involved in other parts of the high school curricula,
such as biology, social sciences, economics, and physics. All teach-
ers in those subjects (and also in mathematics) need training be-
cause stochastic reasoning is new to them. Such training is a main
theme in developing statistical literacy in any country. Teachers of
different subjects start learning together in order to speak a com-
mon language and use common notations. Because statistics and
probability concepts cannot be restricted to dice games or over-
simplified questions, interdisciplinary working sessions have to be
organized.

Teaching statistics and probability theory will also provide stu-
dents with a true experience in modeling, which now is used in
many professions.

Computers
In 1992, UNESCO published a report on The Influence of
Computers and Informatics on Mathematics and Its Teaching
(Cornu and Ralston 1992). (Some of the contributors to this report
were participants in the Forum.) Reflecting ideas from this report,
our commission examined three issues created by computers:

● Changes in life, in society, and in sciences and mathematics;

● Choices to be made for the mathematics syllabus; and

● Consequences for teacher training and for schools.

With respect to the mathematics syllabus, we wanted to focus on
elementary and fundamental aspects: data structures, programs
and algorithms, loops and iterations, conditional structures, and
cost and complexity. These aim to define another kind of literacy.
For example, data structures are crucial to understand fully algo-
rithms and their complexity and to organize statistical data. We
can expect that these topics will give meaning and reality to certain
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fundamental abstract notions such as variable, number, iteration,
evaluation, and approximation. As a consequence, the commis-
sion report revisited some notions of classical mathematics.

We proposed that, in every lycée, there should be created a “math
lab” or, better said, a “mathematical sciences lab” where pupils
and teachers could meet, discuss, experiment, practice, and
receive visitors.

Teacher-training issues are addressed throughout the report. We
were highly concerned by the following questions: What can our
teachers do? and What will they be able to do? We were convinced
that the content of their training and the content of mathematics
curricula for schools and high schools must evolve at the same
time.
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What Mathematics for All?
A. GEOFFREY HOWSON

Does “Mathematics for all” mean “No mathematics for all”?
—Title of a lecture given by Jan de Lange in 1983

A calculator, . . . a friend, or an independent financial advisor can substitute
for an education in mathematics for instrumental purposes.

—S. Bramall in S. Bramall and J. White (2000)

Q: I would like to know the rate of inflation for the years since 1987 to the present
time to work out the true value of my savings. Can you help?

A: Certainly. Since 1987 the cost of living has gone up by 70 percent. So £1 today
is worth the equivalent of only 30p then.

—Reader’s question and financial expert’s answer
in “Your money,” Saga Magazine, April 2001

The teaching of mathematics in English secondary schools is far from satisfactory. Concerns arise
regarding how the needs of different types of students are being met, the standards attained, the
manner in which students’ attainments are assessed, and the provision of adequately qualified
teachers. In the longer paper from which this extract is adapted (Howson 2002), we look at each of
these aspects and propose possible ways ahead. Here we focus on one issue—the curricular impli-
cations of “mathematics for all.”

The coming of comprehensive education in many western countries raised important issues con-
cerning curriculum design. Just what did “mathematics for all” mean? Nowadays the phrase often is
taken to mean that “mathematics” was not to be found in the old English secondary modern
schools—that only arithmetic was taught in them. Although this view is perhaps a caricature, there
were clear distinctions between the aims of mathematics teaching in the grammar schools and in the
bulk of technical and secondary modern schools. Put baldly, in the former, students were prepared
for further academic study, in other schools, for taking their place within society. This was perhaps
most clearly typified in the teaching of geometry. For the academic students there was Euclid-style
“theorem and proof,” for the others “practical geometry,” the classification of shapes and solids,
mensuration and, to varying extents (depending on the nature of the school), elementary scale and
technical drawing.

The introduction in 1965 of a Certificate of Secondary Education (CSE) intended for those within
the fortieth to eightieth percentiles of the ability range was not intended to threaten this dichotomy
of aims. The comprehensive schools introduced just after that time, however, contained all types of
students and their early differentiation would have defeated the aims of comprehensive schooling
and produced only multilateral schools—those in which students are separated into different cur-
ricular streams within the same school. Yet postponing differentiation meant postponing streaming
for CSE or the traditional GCE O-level (intended for the top 25 percent of students) and this, in
turn, resulted in the former becoming a “watered-down” version of the latter.

A. Geoffrey Howson is Professor Emeritus of Mathematical Curriculum Studies at the University of Southhampton in
England. A former Dean of Mathematical Studies at the university, Howson served from 1982 through 1990 as secretary
of the International Commission on Mathematical Instruction (ICMI). He is author of several books on mathematics and
mathematics education, most recently the TIMSS monograph Mathematics Textbooks: A Comparative Study of Grade 8
Texts.
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The Cockcroft report (Cockcroft 1982), the outcome of a gov-
ernment committee established to counter criticisms of current
school mathematics standards, proposed to rectify this by a “bot-
tom-up” approach to curriculum design that concentrated first on
the needs of the lower attainers. Accordingly, it drew up a “foun-
dation list”: what the report saw as a basic mathematical kit for all
school leavers. That, in its turn, was supplanted in the late 1980s
by the National Curriculum, which appeared to be designed not
so much to meet the needs of students but rather those of an
untried and ambitious assessment scheme. All students now were
to follow the same curriculum, but at their own rates. A hierarchy
of levels was defined that was to be followed by students at varying
speeds, but the question of depth of treatment within a level was
ignored. No one, apart from the highest attainers, had any fixed
curriculum goal: students had simply to swallow as much of the
curriculum as they could before the age of 16. No heed was taken
of the wise words of the 1947 Hamilton Fyfe report:

Whatever be the values of the “subject” carried to its full term
in university study, they cannot be achieved for the child of
16 by simply snipping off a certain length of the “subject” like
a piece of tape. . . . Every course must have its own unity and
completeness and a proper realism requires that content and
methods alike be so regulated as to reach their objective
within the time available (Fyfe 1947).

The “piece of tape” mentality still persists and, for example, forces
weaker students to learn algebraic techniques that they will never
develop into usable knowledge. Of course, such students are no
longer being “denied” the opportunity to learn algebra, but in-
stead are simply forced to learn techniques that might conceivably
(but with a fairly low probability) lead to something more useful
and valuable. It is difficult to see exactly what the aims of the
present curriculum are. There is an attempt to please everyone and
do everything, at the expense of a focus on clear aims and the
provision of sound and secure learning. That after 11 years of
compulsory mathematics it should be felt necessary to institute
post-16 courses and tests in “key skills” for sixth-formers (16- to
18-year-olds) illustrates the problems.

Such curricular considerations led recently to the publication of a
collection of essays entitled “Why Learn Maths?, edited by two
philosophers of education, S. Bramall and J. White, which ques-
tioned the arguments put forward in the defense of teaching
mathematics and its status as a compulsory subject within the
national pre-16 curriculum (Bramall and White 2000). Although
reported in newspapers as a polemic, the monograph contained
contributions that genuinely merit consideration. The present
mathematics curriculum cannot be justified solely by the repeti-
tion of pious clichés or such foolishness as the National Curricu-
lum’s claims of mathematics’ promoting “spiritual development
through . . . helping pupils obtain an insight into the infinite,” or

“moral development through . . . helping them learn the value of
mathematical truth.”

Essentially, all the contributors to Bramall and White accepted
that every student should learn the mathematics that is “com-
monly useful”—basic arithmetic and mensuration—but “be-
yond that the case for inclusion is not so clear-cut.” Some contrib-
utors still argued for the teaching of mathematics for nonutilitar-
ian reasons, e.g., training of the mind or the intrinsic delights of
the subject and its place in human culture, but the editors them-
selves saw no justification for compulsory mathematics post-14.
Indeed, White argued, “by the year 2002, 75% of British children
will have reached Level 4 . . . by the age of 11 . . . that will provide
them with the basic arithmetic they need to get by.”

This is hardly believable, because it is not until Level 5 that stu-
dents are expected to “multiply and divide whole numbers and
decimals by 10, 100, and 1000, . . . solve simple problems involv-
ing ratio and proportion, . . . or calculate fractional or percentage
parts of quantities.” Clearly Level 4 plus a few odds and ends of
“civic arithmetic” will not suffice for an educated citizen.

On the other hand, are the needs of the future mathematician
being met? Certainly the percentage of the age cohort opting to
study mathematics post-16 remains disappointingly small, as does
that which goes on to read mathematics at university. And what of
the standards attained? Here we need only quote from a recent
report, Measuring the Mathematics Problem (Institute of Mathe-
matics and its Applications 2000), which presented evidence of a
marked decline in university entrants’ mathematical skills: “This
decline is well established and affects students at all levels.”

What Mathematics for All?
Clearly, a prime aim of school mathematics must be to provide all
students with that mathematics required by today’s thinking cit-
izen. What exactly, though, is that? Two recent attempts to define
this merit a mention. One was in a section of the Third Interna-
tional Mathematics and Science Study (TIMSS) in which En-
gland did not participate. It was a test on mathematical and sci-
entific literacy set to students in their last year of secondary school
whether or not they were still studying mathematics. The items
were all posed in “real-life” contexts and covered topics on arith-
metic (including estimation), data handling (including graphic
representation), geometry (including mensuration), and (infor-
mal) probability. The resulting data were of considerable interest
in indicating the extent to which countries had prepared their
students to deal with the kind of mathematics they would meet in
the street or the press. (More recently the Organization for Eco-
nomic Cooperation and Development (OECD) carried out a
somewhat similar study on 15-year-olds. This was very much in
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the nature of a pilot study, however, and did not test all aspects of
mathematical literacy.)

Another, significant offering is a report, Mathematics and Democ-
racy: The Case for Quantitative Literacy, published by the National
Council on Education and the Disciplines (NCED) (Steen 2001),
that seeks a complete reorientation of the traditional U.S. school
mathematics syllabus. This report distinguishes between what it
terms quantitative literacy, which stresses the use of those mathe-
matical and logical tools needed to solve common problems (e.g.,
percentages and mensuration), and mathematical literacy, which
emphasizes the traditional tools and vocabulary of mathematics
(e.g., formal algebra and, later, calculus).

Change Also Is Underway
in Other Countries
In the 1990s, Japan’s upper secondary school (USS) offered two
mathematics courses stressing, respectively, mathematical literacy
and mathematical thought. (“Mathematical literacy” had the
meaning ascribed to it in the NCED report.) All students had to
take mathematical literacy in their first year in USS; students
hoping to study mathematics, engineering, or physics at university
were encouraged to take both. In the latest revision of the Japanese
curriculum, all students still must continue to study mathematics
in the first year of USS, but now they may take a one-year “Fun-
damentals of Mathematics” option, which is very much like quan-
titative literacy, that is, mathematics for citizenship. Alternatively,
they may begin a three-year “Science Mathematics” course (i.e.,
mathematical literacy leading to calculus) or a three-year “Math-
ematics” course (including, for example, formal Euclidean geom-
etry).

The distinction between a traditional mathematical focus and
some form of quantitative literacy seen in Japan is the subject of
much debate in the NCED report. As we might expect, there is
some variation in what the contributors to Mathematics and De-
mocracy believe “quantitative literacy” to mean. At one extreme we
find “mathematics and quantitative literacy are not the same thing
. . . mathematics is more formal, more abstract, more symbolic
than quantitative literacy, which is contextual, intuitive and inte-
grated.” Another view, however, is that there is no essential di-
chotomy between formal mathematics and context-rich quantita-
tive literacy. This latter view is one I share—provided that the
need for an increased emphasis on reasoning and the ability to deal
with complex problems is recognized.

I have no doubt, for example, that the correspondent and adviser
in the Saga Magazine exchange quoted earlier happily would have
tackled the questions on percentages to be found in the national
16-plus examination papers. It was the extra complexity of having

to determine which figure had risen by 70 percent that threw
them. Teaching and examinations must prepare students to an-
swer complex as well as one-step, so-called, real-life problems.
That ability to reason, which can be built up on percentages just as
well as on circles, chords, and tangents, is what both users of
mathematics and budding mathematicians require.

I believe that it would be possible to develop a GCSE course (the
national certificate intended for students from the whole of the
ability range, which replaced the “divisive” O-levels and CSE) for
all students that would prove more valuable and would motivate
more students than the present one if it were focused more spe-
cifically on the mathematics of citizenship, culture, personal fi-
nance, health, and other curricular subjects. This still would leave
us with a fund of worthwhile mathematics to teach in arithmetic,
geometry, data handling, simple probability, and the use of alge-
braic formulas. Of course, when appropriate (not merely when
there is an opportunity), computer software and calculators would
be used. Moreover, providing that emphasis were given to ex-
tended reasoning, coping with complexity, and arousing students’
involvement and interest, such a course could prove to be a firm
foundation for the further study of mathematics.

Nonetheless, the high-attaining young mathematician would
benefit from a course that offered more than this and concentrated
less on mathematics’ role as a “servant.” I see, then, the need for
both a compulsory “literacy-oriented” mathematics GCSE course
that need not necessarily be examined in different tiers and also an
optional two-year course (for 14- to 16-year-olds) that introduces
students more explicitly to proof and rigorous mathematical
thought. The two would have a relationship similar to that be-
tween “English” and “English Literature.” The great aim of the
new course would be to introduce students to a wider view of
mathematics and provide the intellectual challenges that are so
frequently missing in today’s GCSEs.

Although this paper has concentrated on the situation in England,
it would be wrong to leave the impression that ours is the only
country with problems. Other countries, too, frequently experi-
ence difficulties relating to teacher quality and recruitment. Also,
a study of the TIMSS data on specialist final-year secondary
school students of mathematics from various western countries
(see Howson, forthcoming) has revealed problems similar to those
experienced in England. In particular, much mathematics teach-
ing appears to be centered on getting students to jump through
technical hoops. Sometimes this is done with considerable success;
however, when students are tested on an understanding of funda-
mental concepts or on their ability to deal with multistep prob-
lems and problems in which the mathematics to be employed is
not obvious, there is often an alarming dropping off in the success
rate.
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Paradoxically, students are being trained to perform those opera-
tions that can now be dealt with using suitably chosen software,
but all too often students share the computer’s inability to analyze
a problem and to reason. I wonder to what extent students have
been empowered to use the mathematics they have been taught in
new contexts, rather than merely to answer stock examination
questions on it. There would, then, appear to be a requirement in
many countries for a clearer definition of goals for school mathe-
matics linked more closely to the differing needs and aspirations of
students.
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Numeracy: A Challenge for
Adult Education

MIEKE VAN GROENESTIJN

In adult education, we are often confronted with adults who once learned mathematics in school but
who have developed insufficient skills to use mathematics efficiently in real-life situations. This
problem is seen very clearly in surveys such as YALS, NALS, and IALS,1 and PISA.2 Although
awareness of the importance of mathematics is increasing because of technological developments in
western societies, numeracy has not yet received the priority it requires in educational settings. One
reason for this may be that it is not yet clear what kinds of knowledge and skills are necessary to
become numerate and what should be taught in school to help learners develop numerate behavior.

The first part of this paper addresses the concept of numeracy in general and the way in which it was
operationalized in the Adult Literacy and Lifeskills (ALL) survey to develop items for numeracy
assessment.3 In the second part I make a few suggestions for implementation of numeracy in
educational settings based on my own study of numeracy in adult basic education (van Groenestijn
2002).

What’s in the Name?
The initial problem we encounter is confusion about the definitions of quantitative literacy, nu-
meracy, and mathematical literacy. The three terms originally came from different perspectives but
today have the same intention and cover almost the same areas.

The YALS, NALS, and IALS are based on three components of literacy: prose, document, and
quantitative literacy. In these surveys, familiarity with numbers and quantities has been defined as
part of literacy because it is often embedded in spoken words and written texts in real-life situations.
In this context, the original definition of quantitative literacy was:

The knowledge and skills required to apply arithmetic operations, either alone or sequentially,
to numbers embedded in printed materials, such as balancing a checkbook, figuring out a tip,
completing an order form, or determining the amount of interest on a loan from an advertise-
ment. (OECD 1997; Dossey 1997; Houtkoop 1999)

In this original definition, quantitative literacy covered only a small part of mathematics. In docu-
ment literacy, however, we also find some mathematical aspects that we now consider to be part of
numeracy, such as reading and understanding tables, graphs, and charts and understanding and
interpreting data.

As a follow-up to the IALS, the ALL project is planned for the years 2002 and 2003.4 In the ALL
study, the term “quantitative literacy” has been replaced by numeracy. An international numeracy
team5 was established to develop numeracy assessment items. The ALL numeracy team has ex-
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panded the original quantitative literacy (QL) definition to a
broader concept of numeracy: “The knowledge and skills required
to effectively manage the mathematical demands of diverse situa-
tions.”

The word “manage” indicates that being numerate encompasses
more than just knowing mathematics. It implies that to organize
their lives as individuals, as workers, and as citizens, adults need to
feel confident of their own mathematical capacities and be able to
make effective decisions in mathematical situations in real life.
The word numeracy was chosen for the ALL study because this
concept was originally introduced as a parallel for literacy (Cock-
croft 1982), whereas quantitative literacy is seen as part of literacy.
Further, numeracy is more commonly used in adult education in
English-speaking countries. It signals a difference from school
mathematics, which often reminds adult learners of negative
school experiences. Numeracy courses focus on the use of math-
ematics in real-life situations.

In the PISA study, a closer link was created between school math-
ematics and the application of mathematics in real life by intro-
ducing the concept of mathematical literacy:

Mathematical literacy is an individual’s capacity to identify
and understand the role that mathematics plays in the world,
to make well-founded judgments, and to engage in mathe-
matics in ways that meet the needs of that individual’s current
and future life as a constructive, concerned, and reflective
citizen” (OECD 1999, 41; de Lange, see p. 76).

According to de Lange, “ML is less formal and more intuitive, less
abstract and more contextual, less symbolic and more concrete.
ML also focuses more attention and emphasis on reasoning,
thinking, and interpreting as well as on other very mathematical
competencies or skills” (see p. 77).

Although there are differences in wording, these definitions have a
common intention. All three focus on the competencies of indi-
viduals to make sensible use in real-life situations of the mathe-
matics they learned in school. Attention to this need is based on
the alarming results of, in particular, the YALS, NALS, and IALS
surveys (Dossey 1997; OECD 1997). The IALS results, for exam-
ple, showed that on average about 40 percent of the adult popu-
lation of the participating western countries functioned at levels 1
and 2 of the IALS quantitative literacy scale. This means that these
adults have not acquired the “walking around skills we would
expect of almost any citizen” (Dossey 1997). Another 40 percent
of the population functioned on a medium level and only about
20 percent on the higher levels of 4 and 5. These results show
clearly that quantitative literacy is of international concern
(OECD 1997; Dossey 1997; Houtkoop 1999).

With the increasing international awareness of the importance of
numeracy, the concept of quantitative literacy also has expanded.
In particular, Mathematics and Democracy: The Case for Quantita-
tive Literacy (Steen 2001) pioneers an effort to broaden the per-
spective of quantitative literacy by showing its role and influence
in the changing world and its place in education. In addition, the
Forum background essay “Data, Shapes, Symbols: Achieving Bal-
ance in School Mathematics” (Steen, see pp. 53–74) develops a
strong link between mathematical literacy, quantitative literacy,
and numeracy. Hence the three labels—quantitative literacy, nu-
meracy, and mathematical literacy—now can be used more or less
interchangeably, at least in English-speaking countries. My per-
sonal preference, however, is to use the word numeracy as a par-
allel to the concept of literacy.

Numeracy Assessment in the
ALL Study
It is the opinion of the ALL team that numeracy itself cannot be
tested; rather, “numerate behavior” can be observed. With this in
mind and to create items for the numeracy assessment, the team
operationalized the definition in a working form, emphasizing five
facets: “Numerate behavior involves managing a situation or solv-
ing a problem in a real context by responding to mathematical
information that is represented in a range of ways and requires the
activation of a range of enabling processes and behaviors” (Gal et
al. 1999).

These five facets offer the possibility to link recognizable mathe-
matical information in real-life situations with expected required
mathematical actions. This is shown in Figure 1, adapted from
Gal et al. (1999). (See also Manly, Tout, van Groenestijn, and
Clermont 2001; Manly and Tout 2001.)

By choosing one element from each of these five facets, we can
develop a definition for specific situations, for example:

Numerate behavior involves managing a situation or solving
a problem in everyday life by making an estimation with money
(acting upon) using information concerning quantity and
number that is represented by pictures and numbers in an
advertisement in a door-to-door leaflet and requires the activa-
tion of computational and estimation skills.

These facets make the definition applicable to almost all situations
in which people have to manage a mathematical problem.

230 Quantitative Literacy: Why Numeracy Matters for Schools and Colleges



The ALL team also identified five complexity factors:

1. Problem transparency, varying from obvious/explicit to em-
bedded/hidden. How difficult is it to identify the mathemat-
ical problem and decide what action to take? How much
literacy proficiency is required?

2. Plausibility of distractors, from no distractors to several dis-
tractors. How many other pieces of mathematical informa-
tion are present? Is all the necessary information there?

3. Complexity of mathematical information/data, from concrete
simple to abstract complex. How complex is the mathemat-
ical information that needs to be manipulated?

4. Type of operation/skill, from simple to complex. How complex
is the mathematical action that is required?

5. Expected number of operations, from one to many. How many
steps and types of steps are required?
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Based on the five facets and five complexity factors, the ALL team
set up a grid and developed a bank of about 120 items on five levels
for the numeracy domain of the ALL survey. Each item received
an individual identity. The ALL team thought that this way of
working also could serve as a framework for the development of
mathematical content and actions for numeracy programs in ed-
ucational settings (van Groenestijn 2002).

Implementation of Numeracy
in Education
For the implementation of numeracy in educational programs,
however, it is not sufficient only to determine mathematical con-
tent and actions. It also is necessary to look for components that
help develop numerate behavior, for now and in the future. In my
own study of numeracy in adult basic education (van Groenestijn
2002) I started from the ALL definition but added a second part to
include attention to the future:

Numeracy encompasses the knowledge and skills required to
effectively manage mathematical demands in personal, soci-
etal and work situations, in combination with the ability to
accommodate and adjust flexibly to new demands in a con-
tinuously rapidly changing society that is highly dominated
by quantitative information and technology (p.37).

To make this definition operational for the implementation of
numeracy in educational settings, four components were identi-
fied:

● Functional mathematical knowledge and skills, recognizable in
real-life situations;

● Management skills for managing mathematical situations;

● Skills for processing new information in out-of-school situa-
tions; and

● Insight into one’s own learning skills to be able to keep up with
new developments in the future and to acquire new mathe-
matical knowledge and skills independently in real-life situa-
tions.

As for the first component, we can distinguish a general, basic set
of mathematical knowledge and skills that everybody should have
acquired and that can be the basis for further learning, in combi-
nation with an individual set of knowledge and skills required to
function in specific personal, work, and social situations. Content
for this mathematical component can be developed with the help
of the ALL grid for numeracy items.

With respect to the second component, management skills, we
can think of a broad range of skills such as:

● Generative mathematical understanding and insight to give
meaning to and interpret numbers and to plan appropriate
mathematical actions;

● Literacy skills to read and understand problems and to reason
about them;

● Communication skills to be able to share problems with others,
discuss information, learn from others how they would solve
problems, and work cooperatively;

● Problem-solving skills to identify, analyze, and structure prob-
lems, plan steps for action, select appropriate actions, actually
handle problems, and make decisions; and

● Reflection skills to be able to control the situation, check com-
putations, evaluate decisions, and come to contextual judg-
ments.

Such management skills often are assumed to evolve spontane-
ously in the course of life. We argue that it is necessary to pay
explicit attention to teaching these skills in educational settings.
Training enables adults to develop appropriate skills for different
types of mathematical situations.

The same can be said concerning the third component, develop-
ing skills for processing new information in real-life situations.
The way students learn in school differs from the way in which
adults acquire and process new information in out-of-school sit-
uations, independently from teachers. Adults almost always pro-
cess new information in the course of action (Greeno 1999). For
this, people need to learn to:

● Read, watch, or listen to information;

● Identify key points in the information;

● Reflect on what is new (What is new to me?);

● Communicate and discuss with others;

● Reflect on possible implications for their personal life (What
does it mean to me?); and

● Reflect on possible implications for society or work.

Concerning the fourth component, developing insight into one’s
own learning skills, we argue that in a rapidly changing and de-
veloping society, people need to have developed skills and strate-
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gies for lifelong learning to be able to accommodate and adjust
flexibly to new situations in the course of life. To be able to do so,
people need to have acquired insight into their own learning skills:
in what way do they process information best? Where and how
can they find more specific information needed for certain pur-
poses? How can one learn from others? In everyday life situations,
adults play different roles. They can be spontaneous learners, their
own teachers, or teachers of others. Such learning often happens
by means of learning by doing and learning in the course of action.

People need to be aware of situations in which learning takes
place. In such situations, they must reflect on their own actions.
To develop skills for lifelong learning, students need to have op-
portunities in school settings to discover their own best ways of
learning. From this perspective, we identified the following points
for attention:

● A general awareness of the need for lifelong learning;

● More emphasis on self-directed, autonomous, teacher-free,
cooperative learning;

● More emphasis on problem-based learning environments and
learning in contexts;

● Creating opportunities for learning in action;

● Creating facilities for lifelong learning and helping students
learn how to benefit from them; and

● Encouraging creativity and curiosity.

For the development of numerate behavior, we argue that it is not
sufficient to focus only on what mathematical knowledge and
skills are necessary and should be taught in a numeracy program.
We also must pay attention to the way in which they are taught. In
fact, the emphasis should be on the way in which they are learned.
Developing numerate behavior is a matter of acquiring and con-
structing functional knowledge and skills by solving real problems
in the course of action in authentic real-life situations and learning
how to reflect on this learning. The art of teaching is to create and
facilitate learning environments in which such learning is possible
and to guide learners in their learning activities. For life-long
learning, people need to take the responsibility for their own
learning in their own hands.

Conclusion
Becoming numerate is as essential as becoming literate for all
citizens in all nations. The case for quantitative literacy, or nu-
meracy, or mathematical literacy, by whatever name, therefore

must be an important item on national and international policy
agendas.

Achieving numeracy is a matter of learning how to use mathemat-
ics in real life and how to manage mathematical situations. “Citi-
zens need a predisposition to look at the world through mathe-
matical eyes” (Steen 2001, 2). This predisposition can best be
acquired in real-life situations in which mathematics is function-
ally apparent. Hence, numeracy courses embedded in school pro-
grams must focus on problem-solving activities in which students
can apply their acquired mathematical insights and skills and learn
how to manage such situations. The role of teachers is mainly to
encourage and reflect students’ actions. Learning mathematics
and becoming numerate go hand in hand and must start, in fact,
in kindergarten.

Notes
1. The Young Adult Literacy Skills (YALS) study was conducted in

1986. The National Adult Literacy Survey (NALS) followed that
study in 1992. The International Adult Literacy Study (IALS) in
1996, was a follow-up of the NALS. In the first phase of the IALS
(1994, 1996), adults from 14 countries were tested based on method-
ology that combined household survey research and educational test-
ing. A second cohort of 10 countries conducted surveys in 1998 and
1999 (the Second International Adult Literary Survey, or SIALS). In
1994 and 1996, participating countries were Canada, France, Ger-
many, Ireland, the Netherlands, Sweden, Switzerland, and the United
States; in 1996, Australia, the Flemish community in Belgium, Great
Britain, New Zealand, and Northern Ireland participated. The second
full round of data collection in 1998 and 1999 (SIALS) included
Chile, the Czech Republic, Denmark, Finland, Hungary, Italy, Ma-
laysia, Norway, Slovenia, and Switzerland.

2. The OECD Programme for International Student Assessment (PISA
2000) was an international assessment of 15-year-olds that looked at
how well they were prepared for life beyond school and was fielded in
32 countries. Four types of skills were assessed: skills and knowledge
that prepare students for life and lifelong learning, reading literacy,
mathematical literacy, and science literacy.

3. The international Adult Literacy and Lifeskills (ALL) survey is the
follow-up to the IALS and is planned for the years 2002 and 2003.

4. The ALL study is being organized by the National Center for Educa-
tion Statistics (NCES) and Statistics Canada. Participating countries
in the ALL pilot study are Argentina, Belgium, Bermuda, Bolivia,
Brazil, Canada, Costa Rica, Italy, Luxembourg, Mexico, the Nether-
lands, Norway, Spain, Switzerland, the United States, and Venezuela.

5. The international ALL numeracy team is comprised of Yvan Cler-
mont, Statistics Canada, Montreal, project manager; Iddo Gal, Uni-
versity of Haifa, Israel; Mieke van Groenestijn, Utrecht University of
Professional Education, Utrecht; Myrna Manly, enjoying her retire-
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ment; Mary Jane Schmitt, TERC, Cambridge, Massachusetts; and
Dave Tout, Language Australia, Melbourne, Australia.
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The Role of Mathematics in
Building a Democratic Society

UBIRATAN D’AMBROSIO

Political issues deal with government, economics, relations among nations and social classes, peo-
ple’s welfare, and the preservation of natural and cultural resources. Mathematics is deeply involved
with these issues and mathematicians and mathematics educators cannot ignore them.

The possibility of the final extinction of civilization on earth is real, and not only through nuclear
war, which was a major threat during the Cold War, and which, in 1955, prompted two eminent
mathematicians, Albert Einstein and Bertrand Russell, to invite other Nobel laureates to subscribe to
a moving document, which became known as The Russell-Einstein Manifesto, and which gave origin
to the Pugwash Conferences on Science and World Affairs (Pugwash, retrieved 2002).

We are witnessing an environmental crisis, disruption of the economic system, institutional erosion,
mounting social crises in just about every country and, above all, the recurring threat of war. And
now, after the attacks in New York and Washington on September 11, 2001, the uncertainties are
a real threat to our mental and emotional equilibrium. We are anxious about the next minute and we
look with fear and suspicion at our neighbor. A scenario similar to the disruption of the Roman
Empire is before us, with the aggravation that the means of disruption are, nowadays, practically
impossible to control. Survival of mankind, with dignity for all, is a most urgent and universal
problem.

It is clear that mathematics is well integrated into the technological, industrial, military, economic,
and political systems and that mathematics has been relying on these systems for the material bases
of its continuing progress. It is important to look into the role of mathematicians and mathematics
educators in the evolution of mankind, especially because mathematics is recognized as the most
universal mode of thought.

Thus it is appropriate to ask what the most universal mode of thought—mathematics—has to do
with the most universal problem—survival with dignity (D’Ambrosio 2001). I believe that the need
to find the relation between these two universals is an inescapable result of the claim of the univer-
sality of mathematics. Consequently, as mathematicians and mathematics educators, we have to
reflect about our personal role in reversing the current world situation.

Mathematics, Education, and Curriculum
The nature of mathematical behavior is not yet clearly understood. Although in classical philosophy
we notice a concern with the nature of mathematics, only recently have the advances of the cognitive
sciences probed into the generation of mathematical knowledge: How is mathematics created? How
different is mathematical creativity from other forms of creativity?

Ubiratan D’Ambrosio is Emeritus Professor of Mathematics at the State University of Campinas/UNICAMP in Sao Paulo,
Brazil, where he served as Pro-Rector for University Development from 1982 to 1990. D’Ambrosio has served as President
of the Inter-American Committee of Mathematics Education (IACME), Vice-President of the International Commission
on Mathematics Instruction (ICMI), and as a Member of the Council of the Pugwash Conferences on Science and World
Affairs (the organization that was awarded the Nobel Peace Prize in 1995).
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From the historical viewpoint, there is need of a complete and
structured view of the role of mathematics in building our civili-
zation. For this we have to look into the history and geography of
human behavior and find new paths to advance the search. His-
tory is global in time and space. It is misleading to see history only
as a chronological narrative of events, focused on the narrow geo-
graphic limits of a few civilizations that have been successful in a
short span of time. The course of the history of mankind, which
cannot be separated from the natural history of the planet, reveals
an increasing interdependence, which crosses space and time, of
cultures, civilizations, and generations.

Education is a strategy created by societies to promote creativity
and citizenship. To promote creativity implies helping people to
fulfill their potentials to the maximum of their capability. To
promote citizenship implies showing people their rights and re-
sponsibilities in society. Educational systems throughout history
and in every civilization have been focused on two issues: to trans-
mit values from the past and to promote the future.

In other words, education aims equally at the new (creativity) and
the old (societal values). Not irresponsible creativity (we do not
want our students to become bright scientists creating new weap-
onry) nor docile reproduction (we do not want our students to
accept rules and codes that violate human dignity). This is our
challenge as educators, particularly as mathematics educators.

The strategy of education systems to pursue these goals is the
curriculum. Curriculum is usually organized in three strands: ob-
jectives, contents, and methods. This Cartesian organization im-
plies accepting the social aims of education systems, then identi-
fying contents that may help to reach the goals and developing
methods to transmit those contents.

The Political Dimension
of Mathematics Education
To agree on objectives is regarded as the political dimension of
education, but very rarely has mathematics content and method-
ology been examined with respect to this dimension. Indeed,
some educators and mathematicians claim that content and meth-
ods in mathematics have nothing to do with the political dimen-
sion of education.

Even more disturbing is the possibility of offering our children a
world convulsed by wars. Because mathematics conveys the im-
print of western thought, it is naı̈ve not to look into a possible role
of mathematics in framing a state of mind that tolerates war. Our
responsibility as mathematicians and mathematics educators is to
offer venues of peace (D’Ambrosio 1998).

There is an expectation about our role, as mathematicians and
mathematics educators, in the pursuit of peace. Anthony Judge,
the director of communications and research of the Union of
International Associations, expressed how we, mathematicians,
are seen by others:

Mathematicians, having lent the full support of their disci-
pline to the weapons industry supplying the missile delivery
systems, would claim that their subtlest thinking is way be-
yond the comprehension of those seated around a negotiating
table. They have however failed to tackle the challenge of the
packing and unpacking of complexity to render it compre-
hensible without loss of relationships vital to more complex
patterns. As with the protagonists in any conflict, they would
deny all responsibility for such failures and the manner in
which these have reinforced unsustainably simplistic solu-
tions leading to further massacres. (Judge 2000)

I see my role as an educator and my discipline, mathematics, as
complementary instruments to fulfill commitments to mankind.
To make good use of these instruments, I must master them, but
I also need to have a critical view of their potentialities and of the
risk involved in misusing them. This is my professional commit-
ment.

It is difficult to deny that mathematics provides an important
instrument for social analyses. Western civilization entirely relies
on data control and management. “The world of the twenty-first
century is a world awash in numbers” (Steen 2001, 1). Social
critics will find it difficult to argue without an understanding of
basic quantitative mathematics.

Since the emergence of modern science, enormous emphasis has
been placed on the rational dimension of man. Recently, multiple
intelligences, emotional intelligence, spiritual intelligence, and
numerous approaches to cognition, including new developments
in artificial intelligence, challenge this. In mathematics education,
this challenge is seen in the exclusive emphasis given to skill and
drilling, as defended in some circles of mathematicians and math-
ematics educators.

In this paper I argue that the emphasis on the quantitative cannot
be detrimental to the equally important emphasis on the qualita-
tive. My proposal of literacy, matheracy, and technoracy, discussed
below, is an answer to my criticism of the lack of equilibrium.
Literacy is a communicative instrument and, as such, includes
what has been called quantitative literacy or numeracy. This is
very much in line with the mathematics learned from the Egyp-
tians and Babylonians, but not central in Greco-Roman civiliza-
tion nor in the High Middle Ages. It was incorporated into Eu-
ropean thought in the Lower Middle Ages and it was essential for
mercantilism and for the development of modern science. Indeed,
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it became the imprint of the modern world. In contrast, matheracy
is an analytical instrument, as proposed by classical Greek math-
ematicians (for example, in Plato’s Republic). I will return to this
subsequently.

It is an undeniable right of every human being to share in all the
cultural and natural goods needed for material survival and intel-
lectual enhancement. This is the essence of the United Nations’
Universal Declaration of Human Rights (UN 1948) to which every
nation is committed. The educational strand of this important
profession on the rights of mankind is the World Declaration on
Education for All (UNESCO 1990) to which 155 countries are
committed. Of course, there are many difficulties in implement-
ing United Nations resolutions and mechanisms. But as yet this is
the best instrument available that may lead to a planetary civiliza-
tion, with peace and dignity for all mankind. Regrettably, math-
ematics educators are generally unfamiliar with these documents.

The Ethical Dimension
of Mathematics Education
It is not possible to relinquish our duty to cooperate, with respect
and solidarity, with all human beings who have the same rights for
the preservation of good. The essence of the ethics of diversity is
respect for, solidarity with, and cooperation with the other (the
different). This leads to quality of life and dignity for all.

It is impossible to accept the exclusion of large sectors of the
population of the world, both in developed and undeveloped
nations. An explanation for this perverse concept of civilization
asks for a deep reflection on colonialism. This is not to place blame
on one or another, not an attempt to redo the past. Rather, to
understand the past is a first step to move into the future. To
accept inequity, arrogance, and bigotry is irrational and may lead
to disaster. Mathematics has everything to do with this state of the
world. A new world order is urgently needed. Our hopes for the
future depend on learning—critically—the lessons of the past.

We have to look into history and epistemology with a broader
view. The denial and exclusion of the cultures of the periphery, so
common in the colonial process, still prevails in modern society.
The denial of knowledge that affects populations is of the same
nature as the denial of knowledge to individuals, particularly chil-
dren. To propose directions to counteract ingrained practices is
the major challenge of educators, particularly mathematics edu-
cators. Large sectors of the population do not have access to full
citizenship. Some do not have access to the basic needs for sur-
vival. This is the situation in most of the world and occurs even in
the most developed and richest nations.

To build a civilization that rejects inequity, arrogance, and big-
otry, education must give special attention to the redemption of
peoples that have been for a long time subordinated and must give
priority to the empowerment of the excluded sectors of societies.

The program Ethnomathematics contributes to restoring cultural
dignity and offers the intellectual tools for the exercise of citizen-
ship. It enhances creativity, reinforces cultural self-respect, and
offers a broad view of mankind. In everyday life, it is a system of
knowledge that offers the possibility of a more favorable and har-
monious relation between humans and between humans and na-
ture (D’Ambrosio 1999a).

A consequence of this program for a new curriculum is synthe-
sized in my proposal of three strands in curricular organization:
literacy, matheracy, and technoracy (D’Ambrosio 1999b). The
three provide, in a critical way, the communicative, analytical, and
technological instruments necessary for life in the twenty-first
century. Let me discuss each one.

Literacy is the capability of processing information, such as the use
of written and spoken language, of signs and gestures, of codes and
numbers. Clearly, reading has a new meaning today. We have to
read a movie or a TV program. It is common to listen to a concert
with a new reading of Chopin. Also, socially, the concept of liter-
acy has gone through many changes. Nowadays, reading includes
also the competency of numeracy, the interpretation of graphs
and tables, and other ways of informing the individual. Reading
even includes understanding the condensed language of codes.
These competencies have much more to do with screens and
buttons than with pencil and paper. There is no way to reverse this
trend, just as there has been no successful censorship to prevent
people from having access to books in the past 500 years. Getting
information through the new media supersedes the use of pencil
and paper and numeracy is achieved with calculators. But, if deal-
ing with numbers is part of modern literacy, where has mathemat-
ics gone?

Matheracy is the capability of inferring, proposing hypotheses, and
drawing conclusions from data. It is a first step toward an intel-
lectual posture, which is almost completely absent in our school
systems. Regrettably, even conceding that problem solving, mod-
eling, and projects can be seen in some mathematics classrooms,
the main importance is usually given to numeracy, or the manip-
ulation of numbers and operations. Matheracy is closer to the way
mathematics was present both in classical Greece and in indige-
nous cultures. The concern was not with counting and measuring
but with divination and philosophy. Matheracy, this deeper re-
flection about man and society, should not be restricted to the
elite, as it has been in the past.
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Technoracy is the critical familiarity with technology. Of course,
the operative aspects of it are, in most cases, inaccessible to the lay
individual. But the basic ideas behind technological devices, their
possibilities and dangers, the morality supporting the use of tech-
nology, are essential issues to be raised among children at a very
early age. History show us that ethics and values are intimately
related to technological progress.

The three together constitute what is essential for citizenship in a
world moving swiftly toward a planetary civilization.
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Why Are We Here?
JEANNE L. NARUM

What [President] Wilson meant by the wholly awakened person who should be the ideal
product of American higher education is a person awakened through the power of the imagi-
nation to a consciousness of possibilities. . . . James Bryant Conant assures us that scientific
discovery begins not in the finding of the laboratory but in the glimpses of the imagination . . .
that the true scientist takes off, as the true poet does, not from the notes on his desk, but from
a hunch, a feeling in the bones, an intimation. If that is true, Mr. Wilson’s whole person will
make the better scientist, as he or she will be the better citizen of a free nation.

These words of Harvard scientist and educator James Conant are quoted by Archibald MacLeish in
a festschrift in memory of President Woodrow Wilson, Education in the Nation’s Service (MacLeish
1960). For me, the words are a first step in answering the question I was asked to address: “Why are
we here?” For me, they suggest one purpose of our coming together to think about issues relating to
quantitative literacy—to consider how our educational programs can be shaped to prepare twenty-
first century students to be better citizens of a free nation.

I am here because of my work with Project Kaleidoscope (PKAL), an informal national alliance
working to strengthen undergraduate programs in mathematics, technology, and the various fields
of science and engineering. I have some further answers to that “why . . .” question based on my
PKAL experience, assuming that today is the beginning of bringing attention to quantitative literacy
at the national level.

Some background: In early 1991, PKAL held its inaugural event in these very halls. None of those
early leaders had a vision of the PKAL work that has continued for more than a decade. Yet, even
though we had no explicit plan to continue, those who shaped the report presented at that first
meeting did not want it to become one of the rank of reports brought to life with great enthusiasm
but quickly forgotten. The “Why are we here?” question needs to be asked at this early stage because
we are committed to building a sustainable quantitative literacy (QL) movement.

From the PKAL experience, I am convinced that to mobilize an informed community to action it is
important to:

● Identify and explore the right questions and take time doing this;

● Have the right people at the table, those who bring a diversity of experiences and responsibilities
to the process of identifying, exploring, and implementing;

● Take the kaleidoscopic perspective, recognizing that the work is to change the system, not tinker
at the edges;

● Focus on getting something done, moving in a timely and expeditious fashion from discussing
to doing;

Jeanne L. Narum is Director of the Independent Colleges Office and the founding Director of Project Kaleidoscope
(PKAL), an informal national alliance working to strengthen undergraduate programs in mathematics, engineering, and
science. Educated as a musician, Narum’s prior experience includes administrative positions at Augsburg College (Vice
President for Advancement), Dickinson College (Director of Development), and St. Olaf College (Director of Government
and Foundation Relations).
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● Talk about what works, not about what does not work. There
is not enough time to do both and opportunities will be lost if
attention is not given to solutions;

● Connect to everyone whose work will have an impact on or
relate to yours, whose work can enhance yours;

● Keep your antennae active: the context will change as systems
change, and thus your work must change as you consider
timing and context;

● Be ready for the long haul; and

● Have a brisk and memorable vision by which the community
will be informed, mobilized, and inspired.

If my first answer to the central question comes from the words of
Conant, the second comes from the experiences of PKAL. If we
are serious about our work, we are here to set in motion a plan to
accomplish the above nine steps. Let me speak to a few of these
points, beginning with the need to have a brisk and memorable
vision.

In the early days of PKAL, reports were being issued regularly
about the dismal quality of undergraduate programs in science
and mathematics (there was Science, Technology, Engineering,
and Mathematics—STEM—then), reports in large part accurate.
Here and there, however, in all parts of the education system but
particularly in the liberal arts community that was the initial core
of PKAL, reforms in undergraduate STEM were emerging that
were making a difference, a positive difference, in student learn-
ing. Some of those pioneers in the first PKAL leadership groups
worked with us over 18 months to explore questions and identify
characteristics of strong undergraduate programs. At one three-
day meeting, after much heated discussion involving presidents,
deans, and faculty from all STEM disciplines, we arrived at a
visionary statement about what works. This vision has been the
lynchpin of our efforts since 1989, the vision that an effective
learning environment is one in which:

● Learning is experiential, hands-on, and steeped in investiga-
tion from the very first courses for all students through cap-
stone courses for science and mathematics majors.

● Learning is personally meaningful to students and faculty,
makes connections to other fields of inquiry, is embedded in
the context of its own history and rationale, and suggests
practical applications related to the experience of students.

● Learning takes place in a community in which faculty are
committed equally to undergraduate teaching and to their
own intellectual vitality, faculty see students as partners in

learning, students collaborate with one another and gain con-
fidence that they can succeed, and institutions support such
communities of learners.

Programs organized around these principles motivate students
and give them the skills and confidence to succeed. Thus empow-
ered, students learn science and mathematics (PKAL 1991).

My first suggestion to leaders of the anticipated QL movement is
that we begin by drafting a similar brisk statement. This QL
statement need not present new ideas to the community but it
must be a driving vision that inspires others to join the cause
because they understand precisely what we are about. We need
such a vision as a touchstone for our work in the coming months
and years. If we accomplish nothing else at this Forum, preparing
such a mission statement would be a significant first step.

In doing so, the words of Conant can be a model and a reminder
that our concerns and passions parallel those of past generations
and that in becoming involved with QL we pick up the baton of
others who have sought to ensure that democracy is well served.
Those words also are instructive because of their power and ele-
gance. They make the sense of mission compelling in a way that
more pedestrian language could not.

One recommendation made in the pre-Forum essays is to make
quantitative literacy visible to the public. Up to this time, it seems
we have been addressing our remarks and arguments only to the
academy. We probably do not have to convince the public about
the connections between disciplines that matter to academics, or
about the politics of change, but the public does need to be con-
vinced that the QL movement has an opportunity to make a
distinctive contribution to the greater good. A brisk mission state-
ment will help here. It also will help build critical collaborations
with other efforts that have similar goals.

Back to PKAL history: Once begun, we put conversations about
what works on the table in as many venues as possible. We were
inspired by Robert Hutchins’ idea that a community needs a com-
mon stock of ideas around which to debate; we took it as our charge
to see that our vision of what works became part of that common
stock of ideas. We were aiming for the same level of sharing and
communicating, of building on and adapting ideas within the
community of educational reformers as within the community of
researchers. To make this happen, we needed all the voices to help
shape the vision.

Our vision statement would not have been as compelling without
Spelman College mathematician Etta Falconer urging us toward
an expectation that all students can learn; without Jim Gentile
from Hope College pressing the case for a research-rich learning
environment; or without presidents and deans keeping the insti-
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tutional implications tightly woven into our discussion. As we
think about the future of the QL movement, there is an even
greater need to have a diversity of expertise, experience, and re-
sponsibility at the table, probably a more representative group
than we are today. Success will require the commitment and abil-
ities of politicians, education officials, parents, teachers at all aca-
demic levels, textbook publishers, and software developers. An-
other answer to the “why . . .” question is that we must start now
to identify those who will be invited to the QL table when next we
meet.

Why is this critical? At the 1991 PKAL National Colloquium,
California Congressman George E. Brown ending our meeting
with the charge: “We must collaborate. The task is too great and
the time too short to do otherwise.”

We can all think of potential collaborators. I have in mind faculty
and institutions that take quantitative literacy seriously. Some of
these participated in a 1998 PKAL workshop on “Building the
Quantitative Skills of Non-majors and Majors in Earth and Plan-
etary Science Courses.” This workshop was oversubscribed, at-
tracting teams from 30 colleges and universities. A trend was clear
even then, four years ago, for colleges and universities to establish
new graduation requirements in quantitative literacy or to con-
sider developing new, lower-level QL courses that would serve all
students.

Some of the questions posed in applications for the PKAL work-
shop might help shape the QL vision:

● How can we help geology majors at liberal arts colleges be-
come more “math literate” without increasing the total num-
ber of mathematics courses we require them to take?

● In a large, heterogeneous class, how do we include appropri-
ate quantitative content that will not intimidate the “math-
phobic” student but will challenge and not patronize the
“math-able” student?

● How can we design an introductory or intermediate earth
science course that also will fulfill our institution’s undergrad-
uate quantitative literacy requirement?

● What quantitative skills are appropriate for an introductory,
non-major audience and what techniques can be used to teach
these skills in a large class?

● How can we motivate our students to think quantitatively
and analytically? How can we show them that their mathe-
matical skills can be usefully applied to interesting and so-
cially significant questions? (Our students are capable of

quantitative thinking but they need to be convinced of its
importance.)

● Are there gender-based differences in the effectiveness of dif-
ferent approaches to teaching quantitative reasoning?

Such questions illustrate the importance of encouraging people to
identify and articulate key issues related to their particular context
and circumstance; the questions also reveal that many people are
deeply involved in wrestling with the QL issue. It is our responsi-
bility to identify and connect those people to our work.

Beyond the right people, there is another critical potential re-
source relevant to our work. We should be giving serious consid-
eration to how QL fits into the emerging National Science Digital
Library (NSDL). This is an effort receiving priority from the
National Science Foundation (NSF) and campuses across the
country. As QL materials are developed, we should pay attention
to if and how they become part of the NSDL and are made
available to (as well as prepared by) schools, colleges, and univer-
sities across the country.

If our vision is clear and we have identified collaborators, how do
we proceed? Our PKAL experience suggests the development of
volunteer networks. No funding agency will support an effort as
large as QL potentially can be; no funding agency will support a
movement that does not have the visible commitment of those
benefiting from it. So we have to think about the kind of networks
needed within the QL community. Based on PKAL’s experience,
I suggest that successful, sustainable networks must have:

● A common goal, one arrived at through consensus, long-term
engagement, and communication within a potential group of
collaborators;

● People with a passion to make a difference who will put this
engagement at the top of their list of priorities for expending
time and energy;

● Regular and persistent avenues for communication, both face
to face and electronic;

● Visible involvement of persons with a stake in the success of
the network, including college presidents, deans, and others
who have leadership responsibilities on a campus or within a
professional society;

● One or two people who take responsibility to be the connec-
tors, people with credibility in the communities of stakehold-
ers and potential collaborators;
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● An understanding that working together is more effective
than working in isolation; and

● An affective component, so that people come to enjoy partic-
ipating and have a sense of belonging.

There is an urgency to this task. In testimony to a congressional
committee in 2000, Federal Reserve Board Chairman Alan
Greenspan said:

Expanding the number of individuals prepared to use a
greater proportion of their intellectual capacity means,
among other things, that our elementary and secondary stu-
dents must broaden their skills in mathematics and related
sciences. In my experience, competency in mathematics—
both in numerical manipulation and in understanding its
conceptual foundations— enhances a person’s ability to han-
dle the more ambiguous and qualitative relationships that
dominate our day-to-day decision-making (Greenspan
2000).

My own story as an Iowa farm girl illustrates the urgency from
another perspective. My grandparents had no indoor plumbing
and used horses for much of the work on the farm, a self-con-
tained, self-sufficient unit of life and work. I suppose they had a
telephone, but certainly not the ease of connections to the larger
world that we take for granted today. My brothers, still in the
family business, today sell tractors that are more technologically
sophisticated than most college computer laboratories—and the
farmers who buy them are equally sophisticated in their ability to
use this equipment.

The world has changed dramatically in a single lifetime. The skills
needed to keep a family fed, housed, and clothed in the early
twentieth century probably were not too different from those

needed in the early nineteenth century but they are certainly very
different from those needed in the twenty-first century.

I recognize that the relation between educational accomplishment
and economic success is only one among several considerations
that educators must address. As we look for allies to build connec-
tions and networks beyond the core of those committed to QL,
however, it is important to consider the complete range of ways in
which QL is a tool for life.

We now come back full circle to the Conant text. I close with an
excerpt from an April 2000 report issued by the White House
Office of Scientific and Technology Policy (2000), Ensuring a
Strong U.S. Scientific, Technical, and Engineering Workforce in the
21st Century. It is a wonderful statistical analysis (lots of charts and
graphs) of present and future workforce needs based on demo-
graphics, school and college enrollments, and workplace oppor-
tunities. The report calls for greater nationwide attention to en-
suring a strong workforce, but the most compelling line also best
describes why we are here, “. . . . it is the fundamental responsibility
of a modern nation to develop the talent of all its citizens.”
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Quantitative Literacy Goals:
Are We Making Progress?

RITA COLWELL

I am very pleased to have the opportunity to address the question of whether we are making progress
toward our goals for quantitative literacy. Let me answer by paraphrasing a comment made by the
late Congressman George Brown of California. He was the best friend and most constructive critic
of science in the U.S. Congress and we all miss his wisdom. He would say that if you don’t know
where you’re headed, any route will be the right one.

What has this to do with making progress toward our quantitative literacy goals? I would answer,
everything. We do not really know if we are making progress. We do not have genuine benchmarks
for what constitutes quantitative literacy.

I do not mean to be coy. Quantitative literacy for college- and graduate school-bound students is
necessarily going to be more important than for those who stop with a high school diploma, followed
by technical certification, in competing for the growing number of highly technical jobs generated
by society today.

As our society is driven increasingly by science and technology, the need to establish levels of
quantitative literacy becomes ever more important. We must remember that levels are not ceilings,
but floors. If no child is to be left behind, he or she should have the best opportunity to reach as high
as possible.

But, we must be pragmatic. Not everyone will be in the top level, nor can be. We live in, and are
enriched by, our highly heterogeneous population—an enviable strength of our nation. Several
studies, such as the National Adult Literacy Survey and the Third International Mathematics and
Science Study, have revealed that we need to be both active and vigilant. A significant number of our
citizens lack basic knowledge in many areas of science and mathematics.

Lack of understanding of basic science has even become the fodder for jokes on “The Tonight
Show.” Jay Leno can generate humor just by asking people on the street simple questions about
science or mathematics. Common knowledge is not always as common as we would hope; the
extremes can be rather surprising. If instead of being about science the questions were about Michael
Jordan’s field goal percentage, or statistics from this year’s World Series, or how many ounces there
are in a Big Gulp, would the results be different? If any of us had been approached on the street by
Jay Leno and asked questions about economics, or civic planning, or even nutrition, how would we
have fared?

Literacy is a complicated issue. Despite indicators showing that a lot of work needs to be done, we
should not be discouraged. Foremost, educators should be recognized for their efforts, not frustrated
with limited resources or branded by public perceptions of their shortcomings.

Rita Colwell is Director of the National Science Foundation. Previously, Colwell was President of the University of
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Our efforts should be positive. Our highest priority should be to
encourage a favorable impression of mathematics, not just
through efforts in the schools but also in the everyday lives of all
Americans. We need to accomplish two goals.

First, we need to bring all Americans to a level of literacy appro-
priate to their daily activities and their future aspirations. Second,
we need to communicate that mathematics is everywhere, that in
addition to practical value it can be exciting and even artistic and
aesthetic.

The need for quantitative literacy can vary from understanding
the rise and fall of the stock market, to balancing a checkbook, to
understanding risk. The latter, risk, is a greater concern in recent
months. In his book Against the Gods: The Remarkable Story of
Risk, economic consultant Peter L. Bernstein relates the following
story, encapsulating how risk perception can change in stressful
situations:

One winter night during one of the many German air raids
on Moscow in World War II, a distinguished Soviet professor
of statistics showed up in his local air raid shelter. He had
never appeared there before. “There are seven million people
in Moscow,” he used to say. “Why should I expect [the Ger-
man bombs] to hit me?” His friends were astonished to see
him and asked what had happened to change his mind.
“Look,” he explained, “there are seven million people in Mos-
cow and one elephant. Last night they got the elephant.”
(Bernstein 1996, 116)

As the statistician knew, the probability was still low that he would
be a target. Yet, low probability was shallow comfort when the
outcome could be death. That particular case brought home the
fact that even low probability events happen. When we have little
direct control over our fate, a firm understanding of probability
can alleviate some of the stress.

As the recent anthrax crisis demonstrated, the public and the
authorities would have benefited from a better understanding of
such concepts as diffusion of aerosols, epidemiology, and germ
theory. The nation would have benefited from knowing the very
small probability of a tainted letter arriving at anyone’s doorstep,
or from understanding how infection differs from exposure. Fun-
damentally, the public would have benefited from a solid mix of
scientific and quantitative literacy.

But what level of quantitative knowledge does each American
need to function effectively under daily conditions? How much
interest in quantitative knowledge should we realistically expect
when no crisis is imminent?

Quantitative literacy, just like English literacy or historical liter-
acy, exists in degrees. If you asked historians what information
they would ideally want each American to know, they probably
would suggest topics critical to our nation’s future but not relevant
to our daily lives: the Whiskey Rebellion,1 Seward’s Folly,2 the
Jethro Tull3 of circa 1701 Britain, as opposed to the Jethro Tull4

of circa 1971. And historians would want us to know more than
the necessary facts; they would say that we should know the his-
torical context and the insight the events shed on the nature of
human experience.

When asked what information all Americans must know, how-
ever, historians would probably bring up subjects such as the
Constitutional Convention, or Standard Oil, or Brown v. Board of
Education—issues that are critical to understanding our present
society.

Ours would be a more effective, and perhaps more rational, soci-
ety if all Americans felt the same fascination for the magic of
numbers and the elegance of graphic representations that we, as
scientists, do. The public, however, is most concerned with issues
affecting them daily, and it is the role of quantitative literacy in
our daily lives that must be understood. People are comfortable
using numbers in daily activities with which they are familiar—
shopping, tracking sports statistics, even day-trading.

In schools, we likely can make daily quantitative activities a bridge
to higher levels of understanding. More may choose to elevate
their literacy, coming to appreciate what that master of quantita-
tive representation, Edward Tufte, called “the clear portrayal of
complexity. Not the complication of the simple; rather . . . the
revelation of the complex” (Tufte 1983, epilogue).

So what are our standards for literacy in the United States? In
1988, Congress passed the Adult Education Amendments, man-
dating the U.S. Department of Education to define literacy and
measure the extent of literacy among Americans. The definition
eventually accepted by Congress characterizes literacy as “an indi-
vidual’s ability to read, write, and speak in English and compute
and solve problems at levels of proficiency necessary to function
on the job and in society, to achieve one’s goals, and to develop
one’s knowledge and potential.”

The Department of Education’s first National Adult Literacy Sur-
vey was conducted in 1992. It questioned 26,000 Americans ages
16 and older and measured not just quantitative literacy but also
prose and document literacy. As we would expect, individuals
with less formal education dominated the lower levels. Of great
concern, minorities tended to have less formal education and were
overrepresented in the lower literacy levels.
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Similar trends were observed in the Third International Mathe-
matics and Science Study—Repeat (TIMSS-R) and the recent
National Assessment of Educational Progress reports on mathe-
matics and science. In the TIMSS-R evaluation of the mathemat-
ics and science skills of eighth graders from around the world, the
United States ranked only about average in both mathematics and
science; however, students from disadvantaged minorities ranked
below average. Students from higher-income school districts
ranked on a par with their highest-ranking international counter-
parts.

Americans who are given access to excellent resources are, for the
most part, receiving an excellent education. In our country, liter-
acy is most frequently linked to socioeconomic factors. Not all of
U.S. education is in crisis, but the unequal distribution of re-
sources is a cause for great concern. For several years, the National
Science Foundation (NSF) has funded systemic reform initiatives
in both urban and rural school districts to improve overall science
and mathematics education. The results have been very encour-
aging.

Comprehensive and constructive assistance always works better
than berating education systems as a whole. Teachers are not the
root cause of all problems. We must recognize that there are great
educators out there for our young people. The problems that exist
are complex and the solutions are complex as well. Unequal dis-
tribution of resources and poor attitudes about mathematics
stretch across all age groups. Innovation in teaching should be
recognized and rewarded. Successful efforts to reach out to and
motivate students must be recognized and supported.

We all know that bringing quantitative literacy to our schools is
only one facet of a complex solution. We also must bring a recog-
nition and, more important, an appreciation, of quantitative
knowledge to our daily lives. This is important particularly for
adults. People will seek out knowledge that directly affects them.
As proof, they are already gravitating to science topics on prime-
time TV. Shows produced by National Geographic, Discovery,
the Learning Channel, and others draw devoted audiences. NSF is
proud to support dynamic children’s shows such as “The Magic
School Bus,” “Bill Nye the Science Guy,” and “Find Out Why,” a
series coproduced with Walt Disney Television Animation for
broadcast between Saturday morning cartoons.

All these efforts recognize that everybody confronting a topic for
the first time has difficulty. As Ralph Waldo Emerson said, “The
secret of education lies in respecting the pupil.” Many audiences
come to the table with misconceptions and preconceptions, some
of which can be shocking—but they need to be respected if we are
ever to reach them.

Our efforts should focus on greatly expanding the number of
Americans motivated to pursue quantitatively vigorous careers
while also abolishing the general mathematics phobia that is per-
vasive in our society. If we present mathematics in a comfortable
way, and even with humor, there is no reason we cannot reverse
the present trend.

We can look at numeracy through the metaphor of an analog
clock. Some people only need to know how to read the face to
accomplish their daily goals. Some need to know that beneath the
front a complex system of gears tracks the progression of time.
Others need to be able to take the existing clock and innovate, to
build the next generation of timekeeping devices. But who needs
which information? And is knowledge of gear ratios necessary to
appreciate the beauty and simplicity of the clock’s face?

I would argue that some of us may be interested in knowing the
deepest intricacies of timekeeping, yet we should not spend ex-
haustive resources teaching every intricate detail to every single
person. The more critical lesson is on the clock’s face, the thought
process, the discovery process. Everyone needs to know how to tell
time.

We must set flexible goals for literacy based on standards that are
appropriate for every audience. We must recognize that most
Americans are unaware of how mathematics permeates their lives.
We must find ways of bringing their daily quantitative activities
into focus. And most important, we must understand that literacy
has levels.

And so we come full circle to the question, are we making
progress? Recognition of the problem was the obvious first step.
NSF’s systemic initiatives mark significant progress. This confer-
ence and your hard work are testament to progress. Industry’s
concern and support is a mark of progress, and so are many other
efforts.

Will we ever be able to say we have reached the finish line? Abso-
lutely not. The finish line is a moving target and we must perpet-
ually pursue it if we are to stay out front as individuals and as a
nation. Who knows what the quantitative literacy needs of society
will be in 2050 or the year 3000?

Notes
1. Angered by a 1791 federal excise tax on whiskey, farmers in the west-

ern counties of Pennsylvania began attacking tax agents. On August 7,
1794, President George Washington issued a proclamation, calling
out the militias to respond. Thirteen thousand troops led by Wash-
ington and General Harry Lee, Robert E. Lee’s father, quelled the
uprising. This was the first use of the Militia Law of 1792, setting a
precedent for the use of the militia to “execute the laws of the union,
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[and] suppress insurrections,” and asserting the right of the national
government to enforce order in one state with troops raised in other
states. Even more important, it was the first test of power of the new
federal government, establishing its primacy in disputes with individ-
ual states. [Adapted from August 11, 1794, Claypoole’s Daily Advertiser.]

2. On March 30, 1867, Secretary of State William H. Seward agreed to
purchase relatively unexplored Alaska from Russia for $7 million. At
the time, critics thought Seward was crazy and called the deal
“Seward’s folly.” Major discoveries of gold were made there in the
1880s and 1890s. These discoveries brought attention and people to
Alaska. Today, petroleum transported across the state through a pipe-
line is Alaska’s richest mineral resource. [AmericasLibrary.gov, Li-
brary of Congress.]

3. Jethro Tull (farmer, 1674–1741) designed a machine (a seed drill) to
plant seed more efficiently, minimizing the number of workers needed
to sow a field. His system was a major influence on the agricultural
revolution. [From BBC history.]

4. Jethro Tull (band, 1968–present), famous for flute-heavy tunes and
such hits as “Aqualung” and “Living in the Past.”
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What Have We Learned,
. . . and Have Yet to Learn?

HYMAN BASS

This remarkable Forum more than achieved its aim of stimulating a continuing national conversa-
tion on quantitative literacy. (Without expressing a preference, I shall for convenience use this term,
abbreviated as QL, for what was variously referred to during this Forum as quantitative literacy,
mathematical literacy, and numeracy.) I shall try to summarize some of the diverse messages that I
heard here, as best I could understand them, and add some personal reflections.

Defining QL
Although we have no precise definition of QL, the case statement in Mathematics and Democracy:
The Case for Quantitative Literacy and the background essays contributed to this Forum give us a
rich, and not always consistent, set of characterizations and expressions of it. A common character-
ization seems to be this: QL is about knowledge and skills in use, so it is a kind of applied knowledge
that is typically illustrated in particular contexts. But these contexts are extremely diverse, and many
of them, if treated in more than a caricature fashion, are quite complex. This presents a challenge to
the design of curricula for QL. What is its focus? What is its disciplinary locus?

Voices at this Forum offered a very broad perspective. In our collective minds, QL appears to be
some sort of constellation of knowledge, skills, habits of mind, and dispositions that provide the
resources and capacity to deal with the quantitative aspects of understanding, making sense of,
participating in, and solving problems in the worlds that we inhabit, for example, the workplace, the
demands of responsible citizenship in a democracy, personal concerns, and cultural enrichment.

Urgency for QL arises primarily from the effects of technology, which exposes us to vastly more
quantitative information and data. Therefore, the tools of data analysis, statistics, and probabilistic
reasoning (in risk assessment, for example) are becoming increasingly important. Yet there is broad
agreement, with some evidence cited, that most adult Americans are substantially deficient in QL,
however it may be defined. This is viewed as a serious societal problem in several respects—
economic (capacity of the workforce), political (functioning of a modern industrial democracy),
cultural (appreciation of the heritage and beauty of mathematics), and personal (capacity for a
responsible and productive life).

I agree with the views expressed that it is neither urgent, nor even necessarily productive, to attempt
to achieve a precise consensus definition of QL. At the same time, this is not an entirely benign
consideration. To illustrate, one speaker proposed that university mathematicians send a collective
letter to the College Board requesting more QL on the SAT and other examinations. Such a
recommendation, if implemented, is not immediately actionable by the College Board without an
operational interpretation of what QL should mean in that context, and that interpretation is open
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to considerable license. What the College Board could end up
offering in response, if it chose to respond, might not please all
signers of such a letter.

Absent a definition, there is little basis for reconciling views. On
the other hand, it might be an important and fruitful step not only
for the College Board but also for the higher education mathe-
matics community to conduct a negotiation of what a credible list
of illustrative test items that could claim to represent a proper and
balanced sampling of QL knowledge might look like, to which the
professional community could subscribe. Putting such a list in a
letter to the College Board would be a very different, knowledge-
based gesture.

Similar cautions apply to any attempt to translate our sentiments
about QL into far-reaching policy positions. Our knowledge base
about QL is not sufficient to rush toward major transformations
of the school curriculum, not to mention the necessary capacity-
building among teachers to support such change.

Educating for QL
Remedies to the problem of QL are generally assumed to be pri-
marily the responsibility of the education system, principally in
grades 10 to 14. In fact, QL must be taught starting in the earliest
grades if we are to make any headway on this problem. Nonethe-
less, most of the discussion at this Forum centered on ideas about
QL in later grades. I note three recurrent themes:

1. The curriculum should include much more statistics and other
alternatives to the calculus trajectory that are focused more on data
analysis, modeling, etc.

This recommendation often has been accompanied by disparage-
ment of the teaching of traditional mathematics topics. This re-
minds me of some of the debates about the teaching of computa-
tional algorithms. At root the objections were not to the skills and
concepts being taught but rather to the pedagogy, to the oppres-
sive or obscure ways in which these topics have often been taught,
which the debaters could not see as distinct from the subject
matter. Although a full exposure to calculus may not be appropri-
ate for a majority of students, algebra and geometry remain fun-
damental to all developed uses of mathematics.

2. Mathematics instruction should be contextualized and avoid the
abstraction associated with the traditional curriculum.

This common refrain of current reforms is more complex than
most of its advocates appreciate. One argument, which goes back
to John Dewey and others, is that learning best starts with expe-
rience, to provide both meaning and motivation for the more

general and structured ideas that will follow. Dewey’s notion dif-
fers in two respects from the above recommendation. First, it does
not eschew abstraction. Second, it speaks of the experience of the
learner, not of the eventual context of the application of the ideas,
which may be highly specialized and occur much later in adult
experience.

Another argument is that mathematics is best learned in the com-
plex contexts in which it is most significantly used. This idea has a
certain appeal, provided that it is kept in balance. Authentic con-
texts are complex and idiosyncratic. Which contexts should we
choose for a curriculum? Their very complexity often buries the
mathematical ideas in other features so that, although the math-
ematical effects might be appreciated, there is limited opportunity
to learn the underlying mathematical principles.

The main danger here, therefore, is the impulse to convert a major
part of the curriculum to this form of instruction. The resulting
failure to learn general (abstract) principles then may, if neglected,
deprive the learner of the foundation necessary for recognizing
how the same mathematics witnessed in one context in fact applies
to many others.

Finally, contextualization is seen as providing early experience
with the very important process of mathematical modeling. This
is a laudable goal but it is often treated naı̈vely, in ways that violate
its own purpose. Serious modeling must treat both the context
and the mathematics with respect and integrity. Yet much con-
textualized curricular mathematics presents artificial caricatures of
contexts that beg credibility. Either many of their particular fea-
tures, their ambiguities, and the need for interpretation are ig-
nored in setting up the intended mathematics, which defeats the
point of the context, or else many of these features are attended to
and they obscure the mathematical objectives of the lesson. Good
contextualizing of mathematics is a high skill well beyond that of
many of its current practitioners.

3. Quantitative knowledge and skills for QL should have a much
more cross-disciplinary agenda, rather than one situated primarily in
mathematics curricula.

I am generally sympathetic to this recommendation. Because
mathematics is a foundational and enabling discipline for so many
others, it is natural that mathematics learning in general, not just
for QL, should evolve from an ongoing conversation and some-
times collaboration with client disciplines. At the same time, the
historical reasons for situating the learning of QL skills in math-
ematics study have not lost their relevance. And I am speaking of
more than the learning of basic arithmetic and measurement.

Take, for example, the learning of deductive reasoning, which
most of us would count as an important component of QL. Al-
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though applicable in all contexts in which mathematical ideas and
methods are used, this is a practice that can most naturally be
cultivated in core mathematical domains, beginning in the earliest
grades. For example, it is both reasonable and educationally pro-
ductive to have third graders explain why some algorithm for
subtraction, or the multiplication of whole numbers, actually
works. Or, for example, they could be asked to prove that they
have all the possible solutions to a problem with finitely many
solutions. The basic mathematics curriculum, including the pri-
mary grades, naturally affords a context for the development of the
skills of disciplined mathematical reasoning, although this seems
rarely to be done today. Other subject areas do not provide similar
opportunities to learn this kind of deductive reasoning.

Lynn Arthur Steen recounted to me some conversations with
Harvard mathematician Andrew Gleason in the early years of the
Mathematical Sciences Education Board, in which Gleason ar-
gued energetically that mathematics is the only subject in which
primary-grade children can gain an internal sense of truth inde-
pendent of adult authority. By the power of their own minds they
can, in principle, know for certain that some things are right (or
wrong) even if they are different from what their teacher may say.
They really cannot do this in any other area. Of course, as Steen
notes, probably relatively few children have the psychological
strength to adhere to their own logic in the face of contrary adult
authority.

Some have argued that rigorous mathematical study develops an-
alytical skills and qualities of mind that are of intellectual and
cultural value well beyond mathematics. Although this is a fond
belief of mathematicians, such broad transfer has not been estab-
lished, and the public discourse of many mathematicians in non-
mathematical domains, involving different evidentiary norms and
warrants, calls it seriously into doubt.

Moving Forward
Where do we go from here? Has this Forum accomplished its
goals? Many speakers have argued that, given the alarmingly low
rates of quantitative literacy among American adults and the al-
ready lengthy discussions of this problem, we should move
quickly to programs of dramatic action to improve the situation,
with a strongly articulated vision of what we want to accomplish.

Although I do not want to rain on your parade, I suggest that our
knowledge base about quantitative literacy is not yet adequate for
designing major interventions in the school curriculum. The com-
prehensive agenda of providing QL to all students is one measured
in decades, not years, but it is work that can productively begin in
incremental ways right now.

This Forum has taken an important step. The case statement in
Mathematics and Democracy and the collection of very interesting
and provocative background essays prepared for this Forum pro-
vide a rich articulation of questions and concerns regarding QL,
many analyses of the problems we face, and many stimulating but
somewhat divergent suggestions for what to do about them. To-
gether, these provide a rich resource for an ongoing, disciplined,
and coordinated national (or even international) conversation
about these issues.
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Reflections

A selection of brief observations by participants at the national Forum, “Quantita-
tive Literacy: Why Numeracy Matters for Schools and Colleges,” offering different
perspectives on issues covered at the Forum.

To advance quantitative literacy, improve college algebra Don Small

Look for QL in major organizing questions, not in techniques Robert Cole

Ensure quality in the way subjects are taught Russell Edgerton

Teach and assess for QL in all curriculum areas Charlotte Frank

The changing role of numbers in everyday life Edward Tenner

Teaching quantitative literacy across the curriculum William G. Steenken

Not content, but pedagogy and assessment Peter Ewell

Confronting external impediments to QL Jo Ann Lutz

Learning mathematics by using mathematics Gene Bottoms

Do not focus on the distinctions
between mathematics and quantitative literacy William Haver

QL is the sophisticated use of elementary mathematics Andrea Leskes

Do not underestimate arithmetic Philip Mahler

Support faculty, develop examples, and fix admissions tests Stephen B. Maurer

Numeracy from cradle to grave Mary Jane Schmitt

251



To advance quantitative literacy,
improve college algebra
For many reasons, the most effective way to advance quantitative
literacy (QL) is to improve the traditional college algebra course to
serve as a foundation course for QL. The improved course should
focus on elementary data analysis, functions, and modeling. It also
should emphasize developing communication skills, the use of
appropriate technology, and small-group projects. The goal of the
course should be to enable students to gain confidence in their
ability to approach quantitative problems in other disciplines, in
society, and in the workplace. This goal underscores the impor-
tance of interdisciplinary cooperation both in the development
and in the ongoing assessment of the course. This cooperation
would establish links to other disciplines that can provide prob-
lem-solving experiences for students based on their college algebra
course. In this manner, college algebra can merge with quantita-
tive literacy to form problem-solving programs that extend
throughout students’ academic careers. The interdisciplinary
component is essential to realize the potential of a symbiotic rela-
tionship between improved college algebra and quantitative liter-
acy.

There are several advantages in improving the traditional college
algebra course over establishing a new course to serve quantitative
literacy. For example, college algebra is well entrenched in the
college curriculum, it serves more students than any other credit-
bearing mathematics course, and it is a college gateway for a large
percentage of students. Moreover, traditional college algebra is
generally recognized as a course that does not work. It is character-
ized by high FDW (fail, drop, withdraw) rates, few students ad-
vancing to calculus, and content not applicable to student inter-
ests. Thus many mathematics departments may be receptive to
changing both the focus and the content of the traditional course.

Improving college algebra to serve as a foundation course for
quantitative literacy allows us to avoid both the political problem
of finding a home for a competing course and the practical prob-
lems of attracting students and developing faculty support. Avoid-
ing these unnecessary challenges allows us to focus on the more
important issues of building interdisciplinary collaboration and
developing appropriate curricula. The growing parallel move-
ments to improve college algebra and to develop quantitative lit-
eracy programs can and should reinforce each other.

—Don Small, Department of Mathematics,
United States Military Academy

Look for QL in major organizing
questions, not in techniques
Despite learning a great deal from the QL Forum, I was repeatedly
reminded of the narrowness of many people’s disciplinary think-
ing, of how difficult it is for some to imagine teaching outside their
own discipline or to make meaningful cross-curricular connec-
tions. I worry about the constricted vision many folks have of
curriculum development. For many, QL was simply another pot-
pourri of (mathematics) techniques to be sandwiched into some
kind of course that had to be fit (somehow) into the existing
sequence of departmental offerings. Although many at the Forum
recognized the need for “applications,” few saw the applications as
anything other than a delivery vehicle for the QL or mathematical
techniques, the latter being the real meat. If QL goes down this
road—a smorgasbord of techniques squeezed into a general edu-
cation course—I think we run the danger of not addressing the
real need outlined in the case statement in Mathematics and De-
mocracy: The Case for Quantitative Literacy, namely, the need of
citizens to find a use for mathematics that connects with their
perception of the real world.

Although several people I spoke with seemed interested in devel-
oping curricula around organizing questions and themes rather
than disciplinary content, they were, initially, uneasy with the
idea. Because their mind was still on a set of content to be covered,
it took a while for them to begin to see how this could be done.
The notion of designing curricula around important questions
was, at first, quite a stretch. One person said that it was a great idea
but that it would never fit into the departments he knew. I took
that to be a measure of how ingrown and isolated higher education
has become from the society that supports it.

One way of exposing how banal curriculum design questions have
become at most universities would be to do a QL analysis of
departmental and curricular structures. By analyzing the curren-
cies we use to justify our academic enterprise (numbers of majors,
time to graduation, course sequencing, needs of majors, graduate
school preparation, hiring priorities, etc.), we might gain some
insight into what really drives curricular design. My hunch is that
such an analysis would not engage the important questions facing
homo sapiens on this planet at this time in history. Little wonder
that students often find our courses disconnected from the real
world.

The twenty-first century will be a “crunch” time for our species.
We currently are engaging in wholesale destruction of the ecosys-
tem and far too many of us are chasing far too few natural re-
sources. To the degree that the academic curriculum does not
organize itself to confront these important questions, it will con-
tinue a decline into irrelevance. Designing QL to address some of
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these crucial questions will go a long way toward connecting with
students’ perception of the real world.

—Robert Cole, Evergreen State College

Ensure quality in the way subjects
are taught
I came to this Forum with a general interest in how the academy
can take more responsibility for ensuring that undergraduates
acquire core abilities (or literacies) that require persistent work
across a variety of courses. I came away with a heightened aware-
ness of the importance of clarifying whether students acquire an
outcome such as quantitative literacy as a result of the subjects
they experience (the curriculum) or of the way these subjects are
taught (the pedagogy).

The answer is obviously both. But the more that the answer lies
with the pedagogical practices students experience (for example,
the nature of the assignments students are given), the wider the
possibilities are that many courses across the curriculum can con-
tribute to the desired objective. In the case of quantitative literacy,
it seems that many elements (such as statistical competence and
data analysis) could be acquired through a wide range of courses.

It is encouraging that so many faculty and so many courses can
contribute to the acquisition of quantitative literacy, as well as to
other literacies such as writing. But it is also discouraging because
our internal mechanisms for quality assurance (for example, cur-
riculum review committees) are overwhelmingly focused on what
subjects are taught, not on whether subjects are taught in ways
that help students acquire core abilities. So I also left with the
conviction that we have to invent mechanisms of quality assurance
that look at how courses are being taught as well as simply at
whether the content of the courses seems right.

—Russell Edgerton, Director, Pew Forum on
Undergraduate Learning

Teach and assess for QL in all
curriculum areas
After spending a weekend discussing quantitative literacy, it be-
came clear that QL competencies include skills that all students
should have before they graduate from high school as well as skills
they should have on an even more sophisticated level as college
graduates. Young students acquire QL skills at a very basic level
when learning about saving money in a bank or writing a check, as
well as when talking together about what to order for a class party

and then preparing a chart listing how many different kinds of
drinks, sandwiches, or pizzas are needed. QL is clearly very im-
portant. It should be infused in all curriculum areas and then
assessed in these areas to provide teachers with guidance in deter-
mining appropriate next steps. The QL skills of interpreting and
discussing data and then presenting information in a coherent
manner are absolutely essential if our young people are going to be
successful as responsible citizens in this new world of technology.

—Charlotte Frank, Vice President, McGraw-Hill
and New York State Regent

The changing role of numbers
in everyday life
My primary impression from the Forum is of an emerging QL
vanguard at a range of institutions that is eager to change the
courses in and goals of the mathematics curriculum in the interest
of practical competence. Some envision a campus wide campaign
potentially extending across every discipline; others favor special
courses or programs; and still others believe that new courses
within mathematics and statistics departments, or reorientation of
existing courses, can work equally well. There also is a substantial
minority of QL skeptics, not opponents of the goal but realists
who emphasize the cost of professional development for college
faculty and (especially in two-year colleges) the burdens of reme-
diation. They seem to favor much longer-term measures, seeing
the movement as a gradual reorientation.

Both groups appear ready to eliminate or place less emphasis on
certain aspects of the mathematics curriculum to highlight QL.
Both also feel helpless to fight against the accountability move-
ment—oddly to me, because the rationale for accountability is
precisely the development of QL skills. Perhaps they are right that
public opinion will accept only one idea at a time, but if so it is sad.
(Of course, if voters lack QL, how can anybody hope to get them
to change their minds by presenting them with the data? Then
again, as a number of participants observed, the meeting itself
revolved more around values than numbers.)

The Forum also reflected a movement against mathematics as
pure gatekeeping for medicine and other professions. One math-
ematician acknowledged the priority he and his colleagues give to
prospective majors: “We want to clone ourselves.” There well may
be a certain conflict between identifying and nurturing of future
mathematician-teachers, especially the “naturals” who might oth-
erwise choose subjects such as computer science and economics,
and developing the practical skills of average students.
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From the papers and discussions, I would conclude that the most
promising approach at the college level might be to acknowledge
that only a minority of the mathematics, science, and social sci-
ence faculty are potentially strong QL teachers. I would favor
identifying and working with this motivated group rather than
trying to bring everybody on board at once. For QL to succeed, it
must be perceived as an intellectual challenge by the faculty, not
just as a remedial activity. I can easily imagine that an economist
or sociologist might feel that teaching QL skills just delays devel-
oping the substance of their own courses.

An inspiring example for QL might be the late Edward Purcell,
whom I got to know when I was in the Society of Fellows at
Harvard. He had a Nobel Prize in physics, but he equally loved
simple and elegant explanations—for example, how to tell if a set
of numbers might have been tampered with, or why quantum
theory is necessary for the world as we know it. For many years he
wrote a wonderful column for the American Journal of Physics that
consisted largely of Fermi problems—back-of-the-envelope cal-
culations mixing common sense with sensible estimates—proving
that QL can be a high art in its own right.

At least one Forum participant mentioned a paradox that also
occurred to me. Some people with very limited formal mathemat-
ics instruction, such as market traders in developing countries, are
proficient in handling numbers, while many westerners growing
up with advanced calculators are not. This suggests that we should
pay more attention not just to the pedagogical side of quantitative
literacy but also to the changing role of numbers in everyday and
professional life.

Two aspects of this changing role have especially interested me.
The first is the rhetorical side of numbers, the fact that people use
tables and graphs to prove points in which they have emotional or
financial stakes. There is surely a message in the failure of organi-
zations such as Long Term Capital and Enron that were packed
with quantitatively sophisticated people yet succumbed to self-
deception. The second, and the main subject of my own investi-
gations, is the tenuous nature of many vital measurements. Cost-
of-living indexes measure shifting breadbaskets of goods,
including changing tastes and spending patterns. Television rat-
ings measure a self-selected sample of the population, and the
presence of monitoring technology also may change viewer behav-
ior. I think of these problems not so much as obstacles but as
opportunities to help students and adults achieve a deeper under-
standing of measurement and its uses.

—Edward Tenner, Department of English,
Princeton University

Teaching quantitative literacy across
the curriculum
Although no clear consensus evolved from the Forum on what it
means to be quantitatively literate, it is clear that a citizen should
have skills, facility, and understanding in some or all of the areas of
arithmetic, data, computers, modeling, statistics, chance, and rea-
soning that are elaborated in Mathematics and Democracy:

● Arithmetic: Having facility with simple mental arithmetic;
estimating arithmetic calculations; reasoning with propor-
tions; counting by indirection (combinatorics).

● Data: Using information conveyed as data, graphs, and
charts; drawing inferences from data; recognizing disaggrega-
tion as a factor in interpreting data.

● Computers: Using spreadsheets, recording data, performing
calculations, creating graphic displays, extrapolating, fitting
lines or curves to data.

● Modeling: Formulating problems, seeking patterns, and draw-
ing conclusions; recognizing interactions in complex systems;
understanding linear, exponential, multivariate, and simula-
tion models; understanding the impact of different rates of
growth.

● Statistics: Understanding the importance of variability; recog-
nizing the differences between correlation and causation, be-
tween randomized experiments and observational studies, be-
tween finding no effect and finding no statistically significant
effect (especially with small samples), and between statistical
significance and practical importance (especially with large
samples).

● Chance: Recognizing that seemingly improbable coincidences
are not uncommon; evaluating risks from available evidence;
understanding the value of random samples.

● Reasoning: Using logical thinking; recognizing levels of rigor
in methods of inference; checking hypotheses; exercising cau-
tion in making generalizations.

Because these skills defining quantitative literacy have their foun-
dations in mathematics, most participants believed that the pri-
mary responsibility for introducing concepts associated with the
tools of quantitative literacy lies with mathematics departments;
however, most also thought that developing special courses in
quantitative literacy would be the wrong approach.
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What is needed, instead, is emphasis on QL in many courses and
many subjects. There should be no special courses in quantitative
literacy. The National Council of Teachers of Mathematics
(NCTM) standards should be used, embellished, and built on to
ensure that the concepts of quantitative literacy flow throughout
the mathematics curriculum in an appropriate manner at all grade
levels, thus ensuring that quantitative literacy is neither something
new nor a “fad du jour.” In addition, the skills of quantitative
literacy must be used throughout all subject areas including the
language arts, history, geography, and social studies—not only in
mathematics and the sciences.

To make this happen, numeracy skills should be taught and mod-
eled in all courses in all content areas that are part of a teacher’s
degree program. Only in this way will students be exposed to
numeracy in both primary and secondary schools in a way that
helps them become quantitatively literate across all subject areas.
This approach also will help alleviate the fear that is often associ-
ated with mathematics-based concepts.

—William G. Steenken, General Electric Aircraft Engines
(Retired)

Not content, but pedagogy
and assessment
Despite the presence of a cross-section of interested and interest-
ing people, the Forum was still, in large part, a mathematics meet-
ing. Granted, the discussion was chiefly on point with regard to
quantitative literacy, but to me the unspoken subtext and the
dominant culture of the gathering was unmistakably mathemati-
cal. The most vivid example I can think of was Daniel Goroff’s
presentation about a phenomenon of misunderstanding that I
used to encounter frequently in political science, a phenomenon
that—as I now recognize—I tried to address in QL rather than
mathematical terms: getting students to read contingency tables
both down and across to make educated guesses about missing
data and to draw different policy and personal conclusions. Gor-
off’s use of conditional probability and Bayesian reasoning was far
more subtle and sophisticated than anything I used to do, but I am
not sure my students ever would have gotten beyond the fearsome
notation of conditional probabilities. This kind of disjuncture
occurred frequently at the Forum as people talked about QL but
did so in the language of mathematics. We may need a new lan-
guage, more than a new set of concepts, that allows everybody to
participate more fully in the conversation.

There was clear consensus on the problem but a lot of trouble
pinning it down in terms of definitions. I fully agree with the
many comments that a further search for definition is not profit-

able. What we need are many concrete examples—of failures to
understand and their consequences and of real and effective pro-
grams that can increase competence. For external audiences, for
instance, we need a strong, short statement that contains concrete
(quantitative) evidence of the failure to master QL and what it
may be costing us as a society. For disciplinary audiences, we need
very concrete identification of the latent (and perhaps even unrec-
ognized) QL content in their subject areas. Everybody can easily
agree on the “it” in terms of examples, but going much farther at
the conceptual level just leaves people confused.

Different audiences need very different messages. The policy com-
munity needs a very short statement concerning what QL is (de-
fined by example), why it is important (demonstrated in terms of
concrete evidence of shortfalls and their consequences in lost pro-
ductivity and quality of life), and what might be done about it (a
concerted policy effort aimed, probably, at points of transition
between high school and college and between education and the
world of work). The K–12 mathematics community needs a dif-
ferent message—already in part delivered by the NCTM stan-
dards—but probably more focused on pedagogy. The postsec-
ondary nonmathematics community needs a message that
identifies common QL threads in what it is doing, together with
an urge to make common cause in working together and working
with mathematics. Finally, the postsecondary mathematics com-
munity needs a message that affirms that QL is not an attack on
mathematics per se but a discussion about the ways mathematics is
taught and applied. (There were, for instance, too many needless
arguments for and against algebra.)

In many ways, the real Forum conversation was more about ped-
agogy and assessment than about content. This is important first
because much QL writing leads with content, which inevitably
leads in turn to unproductive fights about what content is “in” and
what is “out.” I find myself more and more persuaded that one
barrier to achieving quantitative literacy is, as Alan Schoenfeld
noted in Mathematics and Democracy, the way mathematics is
taught in the early school grades, especially how abstractions are
introduced and contextually anchored. Second, as Grant Wiggins
argued in one of the Forum’s background essays, fixing assign-
ments and tests may be far more important than fixing syllabi
(Wiggins, see pp. 121–143).

Finally, I found myself more convinced than ever that the dynam-
ics—and therefore the levers—for change are quite different in
K–12 and higher education. Top-down methods, largely led by
the mathematics community, will work in K–12—employing
organizations such as NCTM and the Mathematical Association
of America (MAA). Other teachers and disciplines can help, but in
K–12 the movement needs to be led by the mathematics commu-
nity. This in part is because, as a number of Forum speakers
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pointed out, many K–12 teachers outside mathematics are not
themselves quantitatively literate.

I am not at all convinced that the same is true for higher educa-
tion. Here, I think the movement has to be led largely from
outside mathematics—relying on practitioners in client disci-
plines who really understand and practice QL to make common
cause. Of course, needs will be different in the sciences and engi-
neering (algebra/calculus-based disciplines) and the social sciences
and business (statistics and applied numeracy-based disciplines). I
never thought I would say this, but one approach in higher edu-
cation might be to empower client disciplines to teach their own
quantitative courses in greater numbers (which, of course, already
happens in statistics), leaving mathematics departments to the busi-
ness of educating the few who want to take the traditional path.

—Peter Ewell, Partner, National Center for Higher
Education Management Systems

Confronting external impediments
to QL
The task of improving the quantitative literacy of all students
seems daunting. The more we talked at the Forum, the more the
task grew. Thinking about the work that needs to be done in the
early grades, in high school, and then in college made it clear that
a coordinated effort is needed. Students at every level, and their
teachers, need to recognize that quantitative literacy is important
and that it is valued. Students learn what they are taught; there-
fore, faculty at every level must teach the QL practices we claim to
value.

Because it is what I know best, I think most about the tasks facing
high school teachers. High school curricula are determined to a
great extent by outside forces. College admissions processes that
place the greatest value on the highest-level mathematics course
(e.g., Advanced Placement) do not always help teachers teach
what would be best for their students. College placement tests and
procedures that value very traditional mathematics hurt students
who have been taught a mathematics curriculum that has a strong
emphasis on quantitative literacy, and therefore discourage teach-
ers from moving toward a quantitative literacy focus in their
teaching. The NCTM standards-based course of study, which
supports quantitative literacy, does not always seem to be valued
by college faculty. Therefore, students prepared in a standards-
based mathematics program may be hurt in the transition to col-
lege courses. Parents’ views of what is important and administra-
tors’ responses both to parents and to colleges also have an effect

on what teachers are allowed to do. Until a quantitative literacy-
based curriculum is valued by these outside forces, high school
teachers will not be able to do what is best for all students.

—Jo Ann Lutz, North Carolina School of Mathematics
and Science, and College Board Trustee

Learning mathematics by using
mathematics
Clearly, our first priority must be to improve the quality of math-
ematics instruction. Evidence from the High Schools That Work
(HSTW) network shows a dramatic change in mathematics
courses taken by career-oriented students over the past 12 years. In
1988, only 25 percent of these students took three mathematics
credits (including two or more of Algebra I, Algebra II, and Ge-
ometry), while in 2000, 85 percent had reached this standard,
with 80 percent completing geometry and nearly 70 percent com-
pleting Algebra II. During this time the average mathematics
scores of these students increased from the low 280s on a NAEP-
based examination to over 300. In 2000, only 4 percent had a
mathematics score below 250.

Interestingly, female students take more, and more advanced,
mathematics courses than male students, while young men still
have slightly higher mathematics test scores. (The achievement
gap is diminishing.) Although male students take fewer and easier
mathematics courses than females, males tend to be enrolled in
vocational programs in which they make greater use of mathemat-
ics to complete authentic assignments and are much more likely to
be given joint assignments from their mathematics and vocational
teachers. Extensive classroom visits show that much of the instruc-
tion in mathematics classrooms is designed to teach students how
to follow procedures. In too many classrooms, teachers simply
skip the reading problems in their texts, some of which are actually
rather decent problems. Students need to take courses in other
areas to see mathematics used, and when they do it is noticeable in
their test scores.

Thus the first priority: to support mathematics teachers in assign-
ing real-world problems that will help students understand math-
ematical concepts and engage in mathematical reasoning. Such
support is crucial politically as well as pedagogically, because if we
do not see the expected improvement in achievement as students
are required to take more mathematics courses, mathematics
teachers will come under increasing criticism. We need a major
initiative to help mathematics teachers teach in ways that engage
students in using mathematics to do real things in various con-
texts.
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A second priority, clearly articulated at the Forum, is to emphasize
quantitative literacy across the curriculum. This may mean devel-
oping individuals in both the middle grades and high schools to
become “QL coaches” to devise learning experiences within non-
mathematical disciplines that are quantitative in nature and that
improve students’ understanding of those disciplines. A QL coach
would help integrate quantitative analysis throughout the curric-
ulum. The focus of coaching has to be on empowering teachers to
use quantitative literacy—not to teach mathematics but to ad-
vance students’ learning and understanding in their own disci-
plines. If teachers interpret QL to mean that they are now to teach
mathematics in addition to their own disciplines, they will simply
turn off.

We have known for a long time at HSTW sites that science,
vocational, and technical arts teachers who devise learning expe-
riences that require students to draw on mathematical knowledge
produce students with consistently higher mathematics achieve-
ment and much better performance on problem-solving items on
a NAEP-based examination. Yet too many high school students
study science or technical courses devoid of mathematics. Only
about one-third are in classes in which they frequently have to use
mathematics to complete authentic tasks. In too many cases, only
the best students do mathematics while the rest simply do what
they are told. Science, vocational, and technical arts teachers need
special help devising learning experiences with a mathematical
base, using instructional strategies through which they hold all
students accountable for doing quantitative analysis, and develop-
ing assessments to determine whether students are able to apply
essential mathematical concepts to typical problems they will en-
counter in diverse careers. Physical education, social studies, and
art teachers also can use quantitative literacy to enhance student
learning in those disciplines. Most of these teachers could benefit
from a QL coach.

Third, if we want to change how mathematics is taught, we must
change the nature of the questions that are asked on various ex-
aminations. Most state and end-of-course examinations and even
the ACT and SAT mathematics examinations have very few ques-
tions that focus on the ability of students to reason and think with
mathematics to solve authentic real-world problems. In too many
instances, mathematics examinations encourage teachers to teach
the wrong way. They encourage teachers to cover the material,
teach students the procedures, and hope that students will remem-
ber them long enough to pass the examination. The emphasis of
the examinations, and thus of teaching, is not on deep under-
standing of mathematical concepts or on advancing students’ rea-
soning skills. Moreover, there are no consequences for failure to
show improvement over time.

Fourth, changes need to be made in mathematics texts to include
more real-world problems that can be used to teach quantitative

literacy. Moreover, textbook publishers should provide more co-
ordination between mathematics and science textbooks to align
mathematics concepts and the quantitative literacy potential of
science. In visiting hundreds of schools and high school class-
rooms over the past 15 years, it has been my observation that more
than any other teachers in high school, mathematics teachers de-
pend on textbooks. Therefore, without quality text materials to
give students opportunities to use mathematics in a variety of
challenging contexts, QL simply will not happen.

Finally, one of the points made by many Forum participants was
that if quantitative literacy is not viewed as something for all
students, it will lead to further tracking in mathematics, which
these participants saw as undesirable. This is certainly a valid
point, but I fear that by stressing this distinction the quantitative
literacy movement runs the risk of being interpreted as saying that
what we are now doing is not working. We cannot simply over-
throw one system and substitute another. We must develop math-
ematics course sequences that are appropriate for all students and
that offer a suitable balance between the more procedural empha-
ses that now are taught to too many students and a QL-like em-
phasis that engages students in using mathematics to do real
things in contexts that have meaning for them.

—Gene Bottoms, Director, High Schools That Work,
Southern Regional Education Board (SREB)

Do not focus on the distinctions
between mathematics and
quantitative literacy
Advocates for the skills, abilities, knowledge, and mind-set em-
bodied in quantitative literacy, particularly those advocates out-
side the mathematics community, can have a strong influence on
improving mathematics instruction and student learning. Many
within the mathematics community are taking big steps toward
revising the mathematics curriculum in the directions called for
under the QL banner. Reports from mathematics professional
organizations—the NCTM at the school level and the MAA and
the American Statistical Association (ASA) at the college level—
call for such changes. The mathematics curriculum projects at the
elementary, middle, and high school levels supported by the Na-
tional Science Foundation infuse quantitative literacy into the
K–12 mathematics curriculum. Changes at the college level are
taking place under banners such as “calculus reform,” “alternatives
to college algebra,” or, in many mathematics departments, “quan-
titative literacy.”
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Those of us committed to this work at our own institutions very
much need the help of advocates outside the mathematics com-
munity:

● We need to know that what we are doing matters in a broader
world; anything that catches the eye of administrators would
be very useful.

● We need assistance and encouragement in urging disciplines
outside mathematics to work together with us in promoting
quantitative literacy.

● Perhaps most critically, we need support to include quantita-
tive literacy on high-stakes tests, particularly on the mathe-
matics portions of the tests many states are requiring for high
school graduation and the new grade-level tests now being
mandated at the national level.

All of this said, I think it is a big mistake to focus on the distinc-
tions between mathematics and quantitative literacy, as was some-
times the case at the Forum and in Mathematics and Democracy.
Such artificial distinctions let mathematicians and the broader
mathematics community off the hook. In my opinion, the abili-
ties and mind-set described as quantitative literacy are central to
mathematics (definitely including research mathematics) as well
as to effective teaching and learning of mathematics. Many in
positions of influence, however, would prefer to keep all students
focused on technical manipulation skills in the elementary alge-
bra, formal geometry, intermediate algebra, college algebra, and
pre-calculus courses that are studied by masses of students today,
students who have no intention of entering fields that require
calculus.

If we make distinctions that can be translated as “quantitative
literacy is not mathematics,” we run the risk of giving ammunition
to those who oppose reforming the mathematics curriculum and
instruction in ways encouraged by quantitative literacy advocates.
The chance that leadership in implementing quantitative literacy
programs will come from anywhere but the mathematics commu-
nity is slight to nonexistent. States require testing of mathematics,
language arts, and often social science and science. The chances of
adding a fifth test on quantitative literacy are nonexistent. The
federal government now requires states to test mathematics at
every grade level between three and eight. There is no possibility
of adding an additional test on quantitative literacy. Mathematics
is taught to all students from kindergarten through at least grade
10. An additional “quantitative literacy” subject will not be added
to the curriculum. Large numbers of colleges and universities
require mathematics course work of all their students. Some may
replace a mathematics requirement by a quantitative literacy re-
quirement, but very few would add a quantitative literacy require-
ment on top of a mathematics requirement. Finally, colleges and

universities provide support to departments of mathematics; they
will not support or fund new departments of quantitative literacy.

In short, leadership for quantitative literacy needs to come from
mathematical sciences departments (mathematics and statistics) at
both the school and college levels and mathematicians must take
the lead if wide-scale change is to occur. Support from outside the
mathematics community would be very useful; however, if quan-
titative literacy is viewed as not a central part of mathematics, it
will be much more difficult to direct the energy and resources of
mathematicians and mathematical sciences departments toward
this important effort.

—William Haver, Mathematics Department,
Virginia Commonwealth University

QL is the sophisticated use
of elementary mathematics
I was struck most at the Forum by the need to continue educating
faculty about the concept of quantitative literacy. Even among the
group of people who were interested enough to spend a weekend
discussing QL, there was no common understanding of the term.
Conversations kept slipping between QL and mathematics as if
they were one and the same, and the mathematicians seemed to be
the ones most often conflating the concepts. In addition to assum-
ing that QL was the same as mathematics (without even a nod in
the direction of context or applicability), very often concepts that
should be learning outcomes or capacities were immediately
turned into mathematics courses.

I found the suggestion that quantitative literacy involves the so-
phisticated use of relatively elementary mathematics to be illumi-
nating and useful. With this interpretation, it becomes clearer
how teaching elementary mathematical concepts could be part of
the high school curriculum (to make sure students have a solid
foundation in the concepts applied in an introductory manner),
while the responsibility for ensuring their sophisticated use would
devolve to the colleges. (A possible parallel in writing—which may
not hold up to greater scrutiny — is to master basic grammar and
organization by the end of secondary school through writing
about relevant, albeit elementary issues, and then employ these
skills to write well about complex issues from many fields in col-
lege.)

Should a commitment to quantitative literacy replace, supple-
ment, or transform the mathematics curriculum? This seemed to
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be one of the basic questions asked at the Forum, one that, I
believe, is best addressed by clarifying the goals for learning. Do
we want students to have “experienced” algebra, geometry, prob-
ability, and statistics (is the experience the goal?), or to be able to
“use” the tools of these fields in a variety of ways, both in formal
college study and in life?

A second basic question concerned the home of QL: in the math-
ematics department (preferably one that commits to teaching the
practical nature of mathematics), in the social sciences (as many
suggested), or in an interdisciplinary unit? If the college contribu-
tion to QL is, indeed, increasingly sophisticated use of elementary
concepts, a “through the disciplines” approach seems entirely ap-
propriate.

A third basic question concerned expected level of ability. At the
elementary end, we heard about people who could not understand
orders of magnitude or appropriate precision; then we moved
through the intermediate level of finding patterns in numerical
data to the higher end of appropriately using quantitative con-
cepts in science and other fields. Clearly the first is a societal
problem, but the solution probably lies in grades 6 to 9. I did not
sense agreement as to whether the higher levels also were cause for
major concern about QL, although the corporate sector seemed to
suggest that they were.

—Andrea Leskes, Association of American Colleges
and Universities

Do not underestimate arithmetic
QL is as much an attitude as a set of skills. We know that one thing
that makes a person who is good at mathematics different from
one who is not is the belief that tackling a problem that involves
mathematics is worth the effort and that eventually, somehow, an
answer will be obtained. QL is about sharing computational and
analytical skills for social purposes.

QL must include a recognition that numeric computation is not a
trivial precursor to algebra but a difficult skill on its own. Even
when supported by technology, computation is not easy. Two-
thirds of our population has never really mastered computational
skills. Arithmetic is hard and data analysis is even harder.

QL needs a different title. Anything with computation, mathe-
matics, or statistics is problematic. QL will not thrive when
viewed as a part of mathematics or statistics. It must be viewed as
a pursuit in its own right. Perhaps we need a larger concept that
might be called Full Literacy, or Whole Literacy, or 3M Literacy
(literacy for the third millennium)—something to suggest, inclu-

sively, reading, writing, document literacy, data analysis, and
computational literacy.

QL needs to recognize that there are different levels of literacy. A
passive literacy is one target. An active literacy is another, more
ambitious one. Many argue that literacy is by nature more passive
than an active use of skills. Active use may be—dare we say it—
what distinguishes mathematics and statistics from quantitative
literacy.

—Philip Mahler, Middlesex Community College;
President, American Mathematical Association
of Two-Year Colleges

Support faculty, develop examples,
and fix admissions tests
A year or two ago, I thought I had a reasonable understanding of
quantitative literacy based on general knowledge and discussions
at my college; however, this Forum made me aware that there is
much more to it than I had at first suspected. First, there is a lot
more mathematics to it than just good number sense. I really like
Lynn Steen’s phrase “sophisticated use of elementary mathemat-
ics.” Second, as an educational and societal problem, it is much
more urgent than I realized.

The Forum added both clarity and passion to our understanding
of QL. Some railed against the usual suspects—many of which we
have all heard before. We listened to impassioned pleading rang-
ing from “let’s stop talking and do something” to “it’s too early to
do anything because we haven’t defined what we are talking
about.” In an important way, I found the Forum discouraging
because it showed that the problem is even harder than I thought
and because we ourselves do not seem to have QL in focus.

At the precollege level, it is not clear how much QL differs from
various aspects of the NCTM Standards, but it is clear that there
is a lot of overlap. Probably the best way to make progress on
getting QL into the schools is to make progress on serious and
broad implementation of those Standards. (Reaching out to other
subjects such as natural and social science will help, but these
courses cannot carry the primary load.) In college, the best way to
learn QL is to have it show up in regular courses in the various
disciplines. Enticing faculty to put more QL into their courses by
offering them course development and revision grants is one good
approach. (It is much less clear what to do at the college level for
the great majority of institutions that must teach a lot of precollege
mathematics.) In any event, it seems clear that QL, like writing, is
something we can never finish learning, so it needs to be empha-
sized at all levels of the curriculum.
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Most important, it does not do colleges and universities much
good to provide QL reinforcement at the higher levels if schools
do not get the message that we are expecting students to have basic
QL at entrance. I am not sure statements by colleges about admis-
sions expectations have much effect, but I am sure that standard-
ized admissions tests do have an influence. These must change.
Those calling for improved education (e.g., business groups) must
be made aware of what these improvements need to be. State
governments and education administrators at all levels have to
understand the issue and get behind it. This is a long haul.

Do we have to agree on a definition of QL? No. But without some
agreement it is too easy to slip into thinking that QL means to
everyone else just what we think it is. We should assume that
everyone we speak to in hopes of alerting them to the QL problem
also has an idea about QL but that their idea is probably different
from ours. Thus we have our work cut out just to ensure that
others really hear us.

In pure mathematics, definitions make more sense with concrete
examples; so much more so with an amorphous topic such as QL.
What I would really like to see are several carefully laid out exam-
ples of QL problem tasks (or classroom activities) at various edu-
cational levels—especially examples that are different from what
already is being done under the banner of the NCTM standards,
or reformed calculus, or introductory statistics, or discrete math-
ematics. I then will have a clearer idea of what I have to change and
what I have to try to sell (if I still want to sell it) to my colleagues
and my community.

Even without full clarity on a definition or ready examples of QL
problems, there is much that I can do on my own campus:

● I can seek internal money for grants to faculty to develop QL
components in their courses.

● I can talk to my department to make sure that people who
teach pre-calculus have some appreciation of the QL issues
and urge them to put more QL aspects into this course.

● I can talk to teachers and the curriculum specialists in our
local school district (where I have sometimes been a mathe-
matics consultant) to see how aware they are of QL issues.

● I can do some more reading and Web exploring to deepen my
personal insights into QL.

—Stephen B. Maurer, Associate Provost for Information
Technology and Professor of Mathematics,
Swarthmore College

Numeracy from cradle to grave
As the quantitative literacy movement grows, it is critical that it be
inclusive of populations as well as of contexts. Who are we think-
ing about when we say people need to be quantitatively literate?
And when and where will folks need to learn and use quantitative
reasoning?

What struck me at the Forum is that both of these dimensions
expanded considerably as the discussions proceeded. We started
out with an explicit focus on adolescents in grades 11 to 14, but by
the end of the Forum there seemed to be tacit agreement that we
were really talking about “pre-K through gray.” Moreover, al-
though the focus primarily remained on topics from statistics and
data analysis, it soon became apparent that quantitative reasoning
matters in almost every discipline and in every adult role: worker,
citizen, and family member.

In other words, in the two days of the Forum we went from:

to

This expansion requires many groups to shoulder the responsibil-
ity for helping to create a more quantitatively literate populace.
The usual suspects—high school and four-year college mathe-
matics educators—are joined by faculty from other disciplines as
well as by elementary educators on one side and, on the other, by
community college and adult basic education teachers as well as a
host of informal education venues for adults such as the media, the
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workplace, and the community. All of which bring my crowd into
the QL loop.

We teach adults returning to study. Each year over four million
adults enroll in adult basic education, literacy, GED, or high
school equivalency programs. (One of every seven high school
diplomas awarded each year is a GED.) It is essential that the
content and pedagogy of courses for adults be critically reviewed
so that they reflect what is most important for adults in their roles
at work, in the community, and at home, as well as for further
learning. At present, these courses generally put more stress on
traditional arithmetic (decontextualized computation and one-
step word problems) than on reasoning and decision making us-
ing real data and focusing on real-life issues. On behalf of adult

educators, I hope the continuing discussions about quantitative
literacy will include us and the populations we teach because it
keeps us focused on what is really important for adults.

As a member of the Adult Literacy and Lifeskills (ALL) survey
numeracy team, my colleagues and I have spent three years think-
ing hard about just what it means when we say we are looking at
the distribution of numeracy skills in the adult population within
and across countries. What is the range of skills to be assessed and
what are the most critical concepts? The issues raised at the QL
Forum resonated with the ALL team discussions and will help us
in our work.

—Mary Jane Schmitt, TERC, Cambridge, MA
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