Let G be a finite group, $A \subseteq \text{Aut}(G)$, and let $C_G(A)$ denote the fixed-point subgroup of A in G. The main idea in this talk is to investigate the fact that if $F \subseteq C_G(A)$, then F acts (possibly trivially) on the set of orbits of A in G. The set of stabilizers in F of the orbits of A in G can be effectively computed and used to derive interesting consequences if more is known about either A or F.

One such result is that if $|F|$ and the number of orbits of A in G are coprime, then $F \subseteq [G, A]$ and $\text{core}_G(F) \subseteq Z(G, A)$. (Received September 17, 2007)