In the game of Cops and Robbers on a graph $G = (V, E)$, k cops try to catch a robber. On the cop turn, each cop may move to a neighboring vertex or remain in place. On the robber’s turn, he moves similarly. The cops win if there is some time at which a cop is at the same vertex as the robber. Otherwise, the robber wins. The minimum number of cops required to catch the robber is called the cop number of G, and is denoted $c(G)$. The game of Cops and Robbers has applications in robotics and in search and rescue operations.

A classic result of Aigner and Fromme shows that if G is planar then $c(G) \leq 3$. We characterize the following families of planar graphs as having $c(G) \leq 2$: series parallel graphs, outerplanar graphs, maximal 2-outerplanar graphs, and maximal planar graphs with maximum degree at most 5. We also show that every graph G with $|V| \leq 9$ has $c(G) \leq 2$. This bound is tight, since the Petersen graph (on 10 vertices) requires 3 cops. (Received September 21, 2010)