We study the range

\[S(A) := \{ x^T Ay : x, y \text{ are orthonormal in } \mathbb{R}^n \}, \]

where \(A \) is an \(n \times n \) complex skew symmetric matrix. It is a compact convex set. Power inequality \(s(A^{2k+1}) \leq s^{2k+1}(A) \), \(k \in \mathbb{N} \), for the radius \(s(A) := \max_{\xi \in S(A)} |\xi| \) is proved. When \(n = 3, 4, 5, 6 \), relations between \(S(A) \) and the classical numerical range and the \(k \)-numerical range are given. (Received September 22, 2010)