We consider the positive solutions to the singular problem

\[
\begin{cases}
-\Delta u = au - f(u) - \frac{c}{u^\alpha} & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega
\end{cases}
\]

(P)

where \(0 < \alpha < 1\), \(a > 0\) and \(c > 0\) are constants, \(\Omega\) is a bounded domain with smooth boundary and \(f : [0, \infty) \to \mathbb{R}\) is a continuous function. We assume that there exist \(M > 0\), \(A > 0\), \(p > 1\) such that \(au - M \leq f(u) \leq Au^p\), for all \(u \in [0, \infty)\). A simple example of \(f\) satisfying these assumptions is \(f(u) = u^p\) for any \(p > 1\). We use the method of sub-supersolutions to prove the existence of a positive solution of (P) when \(a > \frac{2\lambda_1}{1+\alpha}\) and \(c\) is small. Here \(\lambda_1\) is the first eigenvalue of operator \(-\Delta\) with Dirichlet boundary conditions. We also extend our result to classes of infinite semipositone systems. (Received September 13, 2010)