Let \mathbf{P}_n denote the set of all complex algebraic polynomials $p(z) = \sum_{\nu=0}^{n} b_{\nu} z^\nu$ of degree at most n, and let $\mathbb{T} := \{z : |z| = 1\}$, the unit circle in the complex plane \mathbb{C}. For f defined on \mathbb{T}, we set $\|f\| = \sup_{z \in \mathbb{T}} |f(z)|$.

Let $\mathbb{D}_- = \{z : |z| < 1\}$, the region inside \mathbb{T}, and let $\mathbb{D}_+ = \{z : |z| > 1\}$, the region outside \mathbb{T}. For $a_{\nu} \in \mathbb{C}$, $\nu = 1, 2, \ldots, n$, let $w(z) = \prod_{\nu=1}^{n} (z - a_{\nu})$.

Let $\mathbf{R}_n = \mathbf{R}_n(a_1, a_2, \ldots, a_n) := \{ \frac{p(z)}{w(z)} : p \in \mathbf{P}_n \}$. Then \mathbf{R}_n is the set of rational functions with possible poles at a_1, a_2, \ldots, a_n and having a finite limit at ∞.

In this talk we would present some Bernstein type inequalities for Rational Functions that sharpen some of the results known in this direction. (Received September 16, 2014)