A restraint r on a graph G is a function which assigns each vertex v of G a finite set of forbidden colours $r(v)$. A proper colouring of G is said to be permitted by the restraint r if each vertex receives a colour which is not from its assigned forbidden colours. We say that r is a k-restraint if each vertex is assigned exactly k forbidden colours.

Restraint colourings arise in a natural way as a graph is sequentially coloured, since the colours already assigned to vertices induce a set of forbidden colours on their uncoloured neighbours. Moreover, restrained colourings have applications to scheduling and timetabling.

I will discuss our recent research results on the following problem: among all k-restraints r on G such that $r(V(G)) \subseteq [nk]$, which restraint permits the largest or smallest number of colourings? (Received September 13, 2014)