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Coordinate systems are methods for describing the location of points in space. The two most
popular systems in two dimensions are Cartesian (or rectangular) coordinates and polar coordinates;
the former describes points using two distances (z and y) and the latter relies on one distance and
one angle (r and #). The natural complement of these systems is one in which location (point P) is
determined using two angles, ¢ and 6. This system is the biangular coordinate system (see Figure 1).

[ ¢
A =(0,0) B=(1,0)

Figure 1: Biangular coordinates.

We consider two points A = (0,0) and B = (1,0) in the zy-plane. We call these points poles and
the z-axis through A and B the polar axis. (0, @) signifies biangular coordinates of a point P formed
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by the intersection of two rays through P, one from A at angle # (measured counterclockwise) from
the polar axis AB and the other from B at angle ¢ (measured clockwise) from the polar axis AB.

Figure 3: Hand waving for the biangular relation ¢ = 5 — 6.

Try this yourself by holding your arms vertically upward in front of you and allowing your elbows
to be the poles (see Figure 2). Keeping your elbows in place, move your forearms in the plane parallel
to the front of your body. Your forearms represent rays from the poles, each making an angle from
oppositely directed horizontal rays, one from point A and one from point B, and the intersection of
these rays is the biangular coordinate or point, P, described by these angles — the left arm forms an
angle, 0, with the horizontal from A, while the right arm forms an angle, ¢, with the horizontal from
B.

Hold your forearms horizontally, i.e. # = 0 and ¢ = 0, (see Figure 2) and then increase the angles at
the same rate. What curve is described by the loci of intersections of your arms (extended if necessary)?
Next, start with the left forearm horizontal, § = 0, and the right forearm vertical, ¢ = 5 (see Figure 3).
Decrease ¢ at the same rate that you increase §. What curve does the loci of intersections describe
this time? Do you “feel” or “see” ¢ = 5 — 07

The study of biangular coordinates has an interesting history, offers students a rich environment
in which to study trigonometry, geometry, and functions, permits students to ask “what if” questions

and discover patterns and relations, and leads to many surprising connections and insights.

We have found that the study of biangular coordinates has an interesting history, is enjoyable to the
senses, offers students a rich environment in “what if” questions and discover patterns and relations on
their own, and leads to many surprising connections and insights. While those who studied biangular
coordinates in earlier times (mostly 19*" century England) were inclined to “live” in a biangular plane,
this survey instead takes a biangular view of rectangular coordinates.
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DEFINITION AND NOTATION

To begin, we need to convert biangular coordinates (6, ¢); to rectangular coordinates. Figure 4 demon-
strates how to find the rectangular coordinates of the point P = (0, ¢)p: « = (0, ¢) is the length of
the line segment AQ, 1 — z(6, ¢) is the length of the line segment QB, and y = y(#, ¢) is the length of
the line segment QP. The point P is at the intersection of the rays from A and B.

P

0 ¢
A=(0,0) Q B = (1,0)

Figure 4: Determining the rectangular coordinates of P,

given biangular coordinates.

If we have a relationship between ¢ and 6, say ¢ = f(0) = 0+2 or F (6, ¢) = cot(#)+cot(¢)—1 =0,
we call such a function or relation a biangular relation, and the resulting plot of all points P determined
by the above procedure, the biangular plot of the biangular relation.

When studying biangular coordinates and biangular relations with students we leave the determi-
nation of the rectangular coordinates of P = (6, ¢); as an introductory activity. Here is the way they
usually attack the problem. They drop a perpendicular from P to a point () on the polar axis AB. In
the right triangle APQ, tan(f) = %, and in right triangle BPQ), tan(¢) = %. Now, solving these
equations for |AQ| and |BQ)|, then simplifying and using the trigonometric identity for sin(f + ¢), the

rectangular representation for the point P = (6, ¢); is:

_ (cos(@) sin(¢) sin(6) sin(¢) )
sin(f + ¢) * sin(6 + ¢)

To plot a specific biangular relation, say ¢ = f(0) or F(6,¢) = 0, we use a parametric plot routine

(1)

for a biangular function, and something like the ContourPlot command in Mathematica, or an implicit
plotting routine for a biangular relation which is not a function. Once there is graphical representation,
there follows a euphoric period of play for the biangular novice in which exploration takes place and a

wide variety of biangular relations are plotted. Patterns begin to emerge.

HISTORICAL BACKGROUND

Newton, immediately after computing derivatives in rectangular coordinates, turns to no less than
eight different coordinate systems and computes derivatives in each.[9, p. 52] He calls these systems

“manners.”

However it may not be foreign from the purpose, if I also shew how the problem may be
perform’d, when the curves are refer’d to right lines, after any other manner whatever;
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so that having the choice of several methods, the easiest and most simple may always be
used.[9, p. 51]

He does not use a biangular coordinate system. However, we surmise that his eight coordinate systems
are but a sample. He makes it clear that his interest in other coordinate systems is for ease in
computing the tangent to the curve, but he also says other coordinate systems may be appropriate for
their convenience in studying other situations “as occasion shall require.” [9, p. 55]

The first published instance of biangular plots occurs in 1803 in the Géométrie de position by Lazare
Nicholas Marguerite Carnot.[3, p. 466] Carnot devoted considerable attention to biangular plots in
his chapter De la détermination d’un point dans l’espace, et du changement de ses coordinates. He
studied the biangular relations 6 + ¢ = m, for constant m, and verified that these form circles while
showing that the relations 8 — ¢ = m produce hyperbolae. He derived Equation (1).

During the last half of the 19" century in England a number of coordinate systems were introduced
to study conics. In William Walton’s 1868 paper [10] biangular coordinates are presented. The paper

begins with the following introduction:

Of the various classes of curves in Algebraic Geometry, some are best represented by bi-
linear, some by polar coordinates. There exist however numberless curves, many of the
properties of which it would be inconvenient to investigate by the aid of either of these
systems of coordinates.[10, p. 47]

Walton then proceeds to offer a number of results concerning the biangular form of a straight line,
parallel and perpendicular lines, and tangent lines to biangular coordinate curves.
Robert Williams Genese, in 1882, offers an application of biangular coordinates for the following

problem:

Given the base AB of a triangle, and the locus f(«,3) = 0 of the vertex P, to find the
locus of the centres inscribed and escribed of the triangle APB.[6, p. 152]

The most extensive papers on biangular coordinates are by Genese [7] and T. Biggin [2]. Genese’s
paper of 21 pages was simply entitled, “Biangular Coordinates” [7].

In his 1888 paper [7] Genese gives the formal definition of biangular coordinates and then proceeds
to study straight lines and conics in biangular coordinates, with short proofs that take advantage
of biangular coordinates for the propositions that the perpendicular bisectors of a triangle meet in
a point as do the angle bisectors. Biggin [2], in his 1891 paper, discusses how to convert between
rectangular and biangular coordinate systems. Like Genese [6] in his 1882 paper, Biggin uses calculus
and biangular coordinates while he studies such topics as curvature.

In 1910, in the first work in an American journal [12] on this subject, G. B. M. Zerr begins with
the following:

It is the purpose of this discussion to set forth a very elementary exposition of a most inter-
esting subject rather than anything new, with the hope that it may be further developed
in future issues. In what follows the notation of Professor Genese is used.[12, p. 34]
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There is no published paper on the subject after Zerr’s paper in 1910. The most recent available
work on biangular coordinates is the 1950 Master’s thesis of Howard W. Baeumler [1].

THE FAMILY OF FUNCTIONS: ¢ =m0+ k

Consider the family of linear functions ¢ = mé+0b for all values of m and b. In rectangular coordinates
we devote a great deal of time to linear functions as we consider slope, intercept, approximating a curve
with a line, etc. Thus it is quite natural for students to ask what the biangular relations ¢ = mé + b
yield. Students enjoy exploring this family and produce a wonderful variety of curves with much visual

appeal.

Line: ¢ = 6. We depicted the “feel” of this relation in Figure 2. The plot of this biangular relation
is the vertical line through the midpoint of the line connecting the poles A and B. When ¢ = —6, the
rays are parallel and therefore do not intersect in a single point. Every point on the line containing

the polar axis, however, satisfies the relation ¢ = —6.

Circles: ¢ = —0 + k. The biangular relations ¢ = —6 + k produce circles which all go through
the poles A and B. From these plots and a bit of geometry we can see that the circle has radius

2sirll(k) = CSCQ(k) and center C = (%, _C0t2(k)) = (k—%,k—1%),. These circles all have the line
segment AB as a secant and when k = 5 AB is the diameter of the circle. When 0 < k < 5 the
1 cot(k)

center of the circle, (5, - ), lies below the polar axis and when 5 < k < 7 the center of the circle,

T =

(%, —Cog(k)), lies above the polar axis. The circle is smallest (and symmetric about the z-axis) when

k = % and largest (infinite radius) when k = 0 or k = m. The latter statements are true for k = 5 +nm

and k = £nm for n =0, 1, 2,.. ., respectively. See Figure 5.

Figure 5: Members of the family ¢ = —0 + k for various values of k.

To calculate the center of this circle, let P be the point on the plot for the biangular relation ¢ = k —6
when 6 = 5, ie P = (%,k—%)b. See Figure 6. L
Since Z/BAP is a right angle then all three points A, B, and P, are on a circle where BP is the

diameter. Similarly, let ) be the point on the plot when ¢ = 7, i.e. Q = (k -3 %)b and here AQ is
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P=(n/2,k-12) Q=(k-m2,m2)

C

A =(0,0) M B=(1,0)

Figure 6: Computing the center and radius
of the biangular plot for ¢ =k — 6.

another diameter of the circle. The center of this circle lies at the intersection of these two diameters,

namely at point C' = (k -5, k- %) The length of the diameter, d, of this circle is |[AQ|. We can

b

compute this using the cosine of ZQAB, for cos (k — %) = % = é. Now, sin(k) = cos (k — %) = é
and thus d = smlW = csc(k). Hence, the radius of this circle is r = 3d = &Q(k)

Hyperbola: ¢ = 6 + k. The two rays from the poles A = (0,0) and B = (1,0) will be parallel,
at times producing asymptotic behavior. In Figure 7 we trace the hyperbolic plot of the biangular
relation ¢ = 6+ 7. On the plot § = 7 indicates an asymptote when 6 = 7 for here ¢ = 5+ 75 = ?jf, SO
the rays formed by 6 and ¢ emanating from poles A = (0,0) and B = (1, 0) respectively are parallel.
The plot “breaks” at §# = 7 and continues in the lower left quadrant, moving toward the point where
¢ = 1.2 and so on. As 6 increases from ¢ = 0 to 6 > 7 the plot breaks again at ¢ = ??Tﬂv giving another
asymptote, and then jumps to the lower right quadrant, finally returning again to the starting point

at rectangular pole B = (1,0) when 6 = 7.

Figure 7: The plot of the biangular relation
¢ = 5 + 0 with asymptotes.

There are two ways asymptotes can occur—the respective rays from the poles are either in the
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same direction or in opposite direction. In the case of the same direction, from the definition of the
angles 6 and ¢ in Figure 1, we see that we shall have asymptotes when 6 and ¢ are supplementary,

ie. 0 +¢ = m. When ¢ = 7 + 0, this means we have two constraints from which we see § = 7 and

¢ =i
T
We can compute the equation, Y = mX + b, of the asymptote as the limit of the tangent lines to

the biangular plot as § — 7, namely

Y = fim |y(6) + LECE -~ 2(0) 2)

zigzg = Z—Z is the slope of the tangent to the biangular plot in parametric form. We obtain,

Y =X - % or in our xy-coordinate system y = x — % In a similar manner we compute the equation

of the other asymptote to be y = —z + % We find the intersection of the two asymptotes is (%, 0), not

where

surprising, given our plot in Figure 7.

Now we consider asymptotics for the general biangular relation ¢ = 6§ + k. From a similar analysis
we can see the two values of § which give asymptotes are § = %(—k +7) and 6 = —%. These yield
%) respectively and the intersection
for all k£ values is always (%, 0). Students “see” this intersection through plots of § = k 4 ¢ for various

asymptotes y = cot (%) T — % cot (%) and y = — tan (%) T+ % tan (

k values and conjecture the intersection as having coordinates (%, 0). However, they need to develop
a proof.

When k = 7 the rectangular plot of the biangular relation ¢ = 6 + 7 is the hyperbola:

To prove this, we need show that the rectangular coordinates from (1),

_ (cos(@) sin(¢) sin(f) sin(¢) >
sin(@+¢) ' sin(@+¢) )’

with ¢ = 6 4 7 satisfy (3). We do this in Mathematica. Upon substituting (1) into (3) we obtain:

(cos2 (0) sec(20) — %) — cos?(6) sec?(20) sin?(0) = i . (4)

Applying Mathematica’s TrigExpand command to the left hand side of (4), or working by hand, we
verify that (3) is satisfied.

Circle (pole-centered): ¢ = —26. Surprisingly, ¢ = —20 produces a circle, the unit circle
centered on pole B (see Figure 8).

The more general biangular relations ¢ = —26+ kw, where k is an integer, always produce the same
circle, (z — 1)% + 4% = 1. In Figure 8, # = ZPAB and ¢ = Z/PBA. Since AB = BP, ZAPB = 6 also.
Thus ¢ = LPBA =m — 26.
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Figure 8: Figure for the biangular relation ¢ = —26.

Conversely if ¢ = —20 + kn, where k is an integer, then, converting to rectangular coordinates,
the expression (z(f) — 1)? + y(0)? reduces to 1, showing that points satisfying the biangular relations
¢ = —20 + km, where k is an integer, lie on the circle (z(0) — 1) + y(6)? = 1.

Hyperbola (pole as focus): ¢ = 26. The relation ¢ = 26 describes a hyperbola, 9(x— %)2—3y2 =
1 (See Figure 9.) Pole B = (1,0) is a focus while the other focus is (—£,0).

y
A

Figure 9: The biangular relation ¢ = 26.

Angel: ¢ = —20+ k, k # 0. What about ¢ = —20 + k, for k # nnm, where n = 0,1,2,...7 In
particular, we examine k = §. The curve ¢ = —26 + 7 is a right strophoid (see Figure 10). Originally
named for their resemblance to a sword belt, these curves appear as loops with sweeping wings (see
Figure 11). We will call them “angels”, a more colorful name contrasting better with their duals, the

devils described next.

Devil: ¢ = 20 + k. The visual “opposite” of angels, these curves even resemble their namesake.

Devils contain no loops; their “heads” have been turned inside out and look like horns (See Figure 12).

General Linear Function: ¢ = mf + k, m > 2. The greater the coefficient of 6, the more
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Figure 10: The right strophoid ¢ = —26 + 7.

Figure 11: An angel ¢ = —26 + F.

asymptotes in the figure and thus the more “arms” and “spikes” in the plot. It is interesting to see
what happens to the plot of ¢ = —260 + k as k approaches 0. Figure 13 shows six curves of angels,
¢ = —20 + k with k£ = 0,.01,.02,.03, .04, .05, illustrating how an angel degenerates into a circle.

STRAIGHT LINES

A natural question to ask is “What biangular relation gives the biangular plot which is a straight line?”
We give a characterization, essentially due to T. Biggin [2]. We refer to Figure 14 in our discussion.
We seek a biangular relation between 6 and ¢ that will produce the line through P and @ at an
angle a as measured counterclockwise off the polar axis AB.
Using the Law of Sines in AAPQ, we have
4Q PQ

sin(a —6)  sin(0)
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<

Figure 12: The devil ¢ = 260 + 7.

Figure 13: Six angels degenerating into a circle.

Similarly, in ABPQ we obtain L L
BQ _ PQ
sin(mr —a —¢)  sin(g)

Using the trigonometric identity sin(r — x) = sin(z), we can solve Equations (5) and (6) for PQ

(6)

and set the results equal to each other. Upon inverting both sides of the resulting equation, we can
use the identities sin(z + y) = sin(z) cos(y) £ cos(z) sin(y) to determine the following equation:

sin(a) cos(0) — cos(a)sin(f)  sin(a) cos(¢) + cos(a) sin(¢)

AQ sin(0) BQsin(¢)
Upon separation and applying the definition of cotangent, cot(x) = ;fg;;, we obtain

cot(f) — cot(a)  cot(¢) + cot()

ESYVaY 3

4Q BQ

which can be written as
cot(f) —c  cot(p) +c

a b ’
where ¢ = cot(a), a = AQ, and b = BQ. This can then be written as b(cot(f) — ¢) = a(cot(¢) + ¢) or

bcot(f) — acot(¢) = ac + bc = ¢ = cot(a) . (7)

We see in Equation (7) that the familiar rectangular form of the line becomes a linear relationship
between the cotangents of the respective angles 6 and ¢. In the early papers [5, p. 157] on biangular
coordinates these cotangents were the biangular coordinates.

10
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A=(00) Q B=(L0)

Figure 14: Derivation of biangular relation for a line

through P and @ at angle « to the polar axis.

BIANGULAR RELATIONS WHICH PRODUCE
THE PLOT OF A GIVEN RECTANGULAR RELATION

Consider the following question:

For a given rectangular coordinate curve, y = h(x), or relation, F'(z,y) = 0, can we find a
biangular relation, G(6, ¢) = 0, that will produce the given curve as its biangular plot?

Now for example, we can find the biangular relation which will generate the circle defined by the
equation 22 4+ y? = r2. We find necessary and sufficient conditions on f(f) so that the plot of the
associated biangular relation, ¢ = f(0), is this circle. Indeed, the function ¢ = f() will generate the
curve 22 + y? = r? as a biangular relation if and only if

r sin(0)

F0) = frop = tan™ (W) or  f(0) = foottom = tan™! (ﬂ> ,

1+ cos(6)

A similar method works for any curve with polar equation r = r(6).

For a given rectangular relation, F'(x,y) = 0, we may not be able to recover an explicit biangular
relation, but we can use Mathematica’s ContourPlot command to show us the biangular relation.
For example, suppose we wish to find the biangular relation that produces the plot of the circle
(x —1)2 + (y — 2)? = (1.5)%2. We would use the (z(6, ¢),y(0, ¢)) coordinates as defined in (1) in the
rectangular relation (z — 1)? + (y — 2)? = (1.5)? and implicitly plot

(x(60,6) = 1)* + (y(0, 6) — 2)* = (1.5)°, (8)

in the (6, ¢) coordinate plane to see the biangular relation.

When we ContourPlot Equation (8) in Mathematica we see many (periodic) biangular relations
(Figure 15a) each of which gives rise to the prescribed rectangular relation (z —1)% + (y — 2)? = (1.5)%
In Figure 15b we zoom in on one of these whose analytic form we do not know, but whose shape we
can see. This means that if we picked a point (8, ¢) on the plot of the biangular relation in Figure 15b
its corresponding rectangular point would be on the given circle and each point on the given circle
would come from some point on the biangular plot in Figure 15b. Of course, there would be an infinite

number of preimages for the points on the given circle some of which are shown in Figure 15a.

11



Biangular Coordinates Redux Discovering a New Kind of Geometry

3F ] 3.0F
2F 2.5
1t 2.0t
< 0 < 15
—1F 4 10-
-3k . . . . .- 0.0k . . . . . .
-3 -2 -1 o0 1 2 3 00 05 10 15 20 25 30
[4 [4
(a) (b)

Figure 15: (a) An implicit plot of the many (periodic) biangular relation(s)
which give rise to the rectangular relation (z — 1)? + (y — 2)? = (1.5)% and
(b) a zoom in on one of these relations.

APPLICATION IN STUDY OF MAGNETS

Determining the lines of force of a bar magnet (see Figure 16) with equal charge at poles A = (0,0)
and B = (1,0) is a natural object for study and can be expressed nicely in biangular coordinates. We
present a notationally easier development in rectangular coordinates with a final relationship showing
the simplicity in biangular coordinates.

Figure 16: Magnetic lines of force of a bar magnet shown by iron filings on paper.[11]

To produce a compact biangular relation which describes the lines of force we compute (in rectan-
gular coordinates) the sum of the forces acting on a unit charge at a point Q(x,y) from equal charges
placed at poles A = (0,0) and B = (1,0). There is a nice derivation of the relationship between x and
y in [4, pp. 68-69] and it leads to a differential equation whose solution is implicit:

12
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T _ 1—=x .
Vit -2 +y2

for some constant c. Converting to biangular coordinates 6 and ¢ we have:

cos(f) — cos(¢) = c.

Figure 17: Biangular plots of cos() — cos(¢) = ¢ for several values of ¢. Notice
how these model the magnetic lines of force found in Figure 16.

We plot this mathematical model of the magnetic lines of force using this result, cos(f) —cos(¢) = ¢,

for a number of values of ¢ in Figure 17 and see the similarity to Figure 16.

CONCLUSION

Biangular coordinates elegantly describe some curves whose representations are clumsy in other sys-
tems. The value of their study however lies not so much in what this system can accomplish, but more
in what it can teach us about shapes, functions, and coordinate systems in general. The exploration
of biangular coordinates captures the spirit and joy of mathematical discovery and study as it leads
one into terrain that is both familiar and fresh.
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