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Undoubtedly the most basic result in finite group theory is the Theorem of 
Lagrange that says the order of a subgroup divides the order of the group. Herstein 
[S, p. 751 likens this theorem to the ABC's for finite groups. G. A. Miller [9, p. 231 calls 
it "the most important theorem of group theory" (see also [2, p. 1301). 

Although it has been known since 1799 that the group A, consisting of the 12 even 
permutations on {1,2,3,4) has no subgroup of order 6, it is surprising that a number 
of abstract algebra textbooks fail to mention that this most natural converse of the 
most important theorem of finite group theory is false (e.g. [l l] ,  [I]). Many authors 
mention the fact without proof (e.g. [8, p. 721) or use phrases such as "A, can be 
shown to have no subgroup of order 6" (e.g. [4, p. 1021, [7, p. 4011, perhaps giving 
students the impression that such a proof is omitted because it is too difficult. Some 
books (e.g. [3, p. 2451) give complicated proofs that A, has no subgroup of order 6. 
Most books that do provide a proof, do so long after introducing Lagrange's Theo- 
rem and invoke relatively sophisticated notions such as normality (e.g. [2, p. 142]), 
factor groups ([5, p. 1511, [12, p. 104]), the classification of groups of order 6 
([lo, p. 200]), conjugacy arguments ([6, p. 451) or, in some cases, even Sylow's 
Theorem ([3, p. 2451). 

It seems to have been overlooked that there is a simple argument requiring nothing 
more complicated than the basic properties of cosets to prove that A, has no 
subgroup of order 6. Before giving our argument we observe that A, = 

{(I), (12)(34), (13)(24), (14)(23), (123), (1321, (1241, (1421, (134), (1431, (2341, (243)) con-
tains eight elements of order 3. 

Now suppose H is a subgroup of A, of order 6 and let a be any element of order 3. 
Then, since H has index 2, at most two of the cosets H ,  aH and a% are distinct. But 
the equality of any pair of these implies that a E H. Thus, H contains all eight 
elements of order 3. 

Acknowledgment. Thanks to a remark by David Witte I was able to shorten my original argument a bit. 
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