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The Spider's Spacewalk Derivation of sin' and cos 
Tim Hesterberg, Franklin and Marshall College, Lancaster, PA 17604-3003 

The usual proofs of the derivatives of sine and cosine in introductory calculus 
involve limits. I shall outline a simple geometric derivation that avoids evaluating 
limits, based on the interpretation of the derivative as the instantaneous rate of 
change. The principle behind this proof is found in a late nineteenth-century 
calculus textbook by J. M. Rice and W. W. Johnson, The Elements of the 
Differential Calculus, Founded on the Method of Rates or Fluxions (Wiley, New 
York, 1874). 

A spider walks with speed 1 in a circular path around the outside of a round 
satellite of radius 1,as shown in Figure 1. At time t the spider will have travelled a 
distance t, which corresponds to a central angle of t radians. The altitude of the 
spider, in the standard coordinate system, is y = sin(t) and the spider is x = cos(t) 
units to the right (or left) of the origin. 

Now look how fast the spider is moving upward. Since the altitude of the spider 
at time t is y = sin(t), its upward velocity is y' = sinr(t). Oops!-The spider loses 
its footing at time t, and since the gravity in outer space is negligible, it continues 
with the same direction and speed. It moves a distance 1 in additional time At = 1, 
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from point S to point B; see Figure 2. The spider's altitude changes by Ay = SC, 
so its upward velocity is y' = Ay/At = SC. But because triangles OAS and SCB 
are congruent (LOSA = 90" - t ,  so LCSB = t = LAOS), SC = OA =x = cos(t). 
Therefore sinl(t) =y' = cos(t). 

Similarly, the spider is x = cos(t) units to the right of the center, and its 
horizontal velocity is x' = cosl(t)= Ax/At = -BC = -SA = -sin(t). The minus 
sign arises because the spider is moving to the left when it is above the x-axis, i.e., 
Ax/At is negative whenever y = sin(t) is positive. 

Figure 2 describes the case 0< t < 7/2,  but it is easily modified to yield the 
same results when the spider is located anywhere on the unit circle. 

Acknowledgment. I thank Bob Gether and George Rosenstein for helpful comments and for the 
reference to Rice and Johnson's book. 

[Editor's note. This proof also appeared in C. S. Ogilvy, Derivatives of sin 0 and cos8, American 
Mathematical Monthly 67 (1960) 673.1 

cos(x + y )  for x +y > ~ / 2  

i a b s i n [ ~ /2 - ( x  +y ) ]  = $b cos x . a cos y - ;a sin y .b sin x 

:.cos(x + y )  = cos x . cos y - sin x .sin y 
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