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We present a new proof of the differentiability of exponential functions. It is based
entirely on methods of differential calculus. No current or recent calculus text gives or
cites a proof of the differentiability that depends only on such elementary tools. Our
proof makes it possible to give a comprehensive treatment of the derivative properties
of exponential and logarithmic functions in that order in differential calculus, building
on the standard introduction to these topics in precalculus courses. This is the logical
order and has considerable pedagogical merit.

Most calculus books defer the treatment of exponential and logarithmic functions to
integral calculus in order to prove differentiability. A few texts introduce these topics in
differential calculus under the heading of “early transcendentals” but defer the proof of
differentiability to integral calculus. Both approaches have serious pedagogical faults,
which are discussed later in this paper.

Our proof that exponential functions are differentiable provides the missing link
that legitimizes the “early transcendentals” presentation.

Preliminaries
We assume that ar has been defined for a > 0 and r rational in a precalculus course
and that the familiar rules of exponents are known to hold for rational exponents. It is
natural to define ax for a > 0 and x irrational as the limit of ar as r → x through the
rationals. In this way, ax is defined for all real x .
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Basic properties of ax for real x are inherited by limit passages from corresponding
properties of ar for r rational. These properties include the rules of exponents with
real exponents and

ax is positive and continuous,
ax is increasing if a > 1,

ax is decreasing if a < 1.

It is not especially difficult to justify the definition of ax for x irrational and to
derive the foregoing properties of ax for x real, but there are a lot of small steps. A
program along these lines is carried out by Courant in [2, pp. 69–70]. The general idea
of each step is well within the grasp of students in typical calculus classes. However,
just as properties of ar with r rational are routinely stated without proof, it is better to
give just an overview of the basic properties of ax with x real, illustrated with graphs,
and move on to the question of differentiability, which is more central to differential
calculus.

A more complete development, beginning with the derivation of properties of ar

with r rational, might be given in an honors class. The properties can be extended to
ax with x real with the aid of the density of the rationals in the reals and the squeeze
laws for limits. The conclusion that ax with a > 1 is increasing also relies on the
following proposition which should seem evident from graphical considerations:

If f is a continuous function on a real interval I
and f is increasing on the rational numbers in I,
then f is increasing on I .

The same proposition will provide a key step in the proof that ax is differentiable.
Henceforth, we restrict our attention to properties of ax with a > 1. Corresponding

properties of ax with 0 < a < 1 follow from ax = (1/a)−x .

The differentiability of ax

Consider an exponential function ax with any a > 1. In order to prove that ax is differ-
entiable for all x, the main task is to prove that it is differentiable at x = 0. Our proof
of this depends only on methods of differential calculus. It is motivated by the fact
that the graph of ax (see Figure 1) is concave up, even though this fact is not assumed
a priori.
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Figure 1. Graph of ax with B = (x, ax ) and C = (−x, a−x
)

for x > 0.
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In Figure 1, imagine that x → 0 with x > 0 and x decreasing. Then B and C slide
along the curve toward A. The upward bending of the curve seems to imply that

slope AB decreases, slope AC increases,

and slope AB − slope AC → 0.

It follows that the slopes of AB and AC approach a common limit, which is the slope of
the tangent line T in Figure 1 and the derivative of f (x) = ax at x = 0. This geometric
argument will be made rigorous.

The curve in Figure 1 is actually the graph of f (x) = 2x . The following table gives
values of the slopes of AB and AC rounded off to two decimal places. It appears that
the slopes of AB and AC approach a common limit, which is f ′(0) = slope T ≈ 0.7.

x 1 1/2 1/4 1/8 1/16 1/32

slope AB 1 .83 .76 .72 .71 .70
slope AC .50 .59 .64 .66 .67 .69

With this preparation, we are ready to prove that f (x) = ax is differentiable at
x = 0. The foregoing geometric description of the proof and the numerical evidence
should be informative and persuasive to students, even if they do not follow all the
details of the argument.

Theorem 1. Let f (x) = ax with any a > 1. Then f is differentiable at x = 0 and
f ′(0) > 0.

Proof. To express our geometric observations in analytic terms, let

m(x) = f (x) − f (0)

x − 0
= ax − 1

x
.

In Figure 1, x > 0 and

slope AB = m(x),

slope AC = m(−x).

We shall prove that, as x → 0 with x > 0 and x decreasing, m(x) and m(−x) approach
a common limit, which is f ′(0).

To begin with, m(x) is continuous because ax is continuous. The crux of the proof,
and the only tricky part, is to show that

m(x) is increasing on (0, ∞) and (−∞, 0).

We give the proof only for (0, ∞) since the proof for (−∞, 0) is essentially the same.
We show first that m is increasing on the rationals in (0, ∞). Fix rational numbers r
and s with 0 < r < s and let a vary with a ≥ 1. Define

g(a) = m(s) − m(r) = as − 1

s
− ar − 1

r
.

Then g(a) is continuous for a ≥ 1 and

g′(a) = as−1 − ar−1 > 0 for a > 1.
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Thus, g(a) increases as a increases and g(a) > g(1) = 0 for a > 1, so

m(r) < m(s) for 0 < r < s.

Thus, m(x) is continuous on (0, ∞) and m(x) increases on the rational numbers in
(0, ∞). As noted earlier, this implies that m(x) increases on (0, ∞). The argument for
the interval (−∞, 0) is similar.

For x > 0,

m(−x) = m(x)a−x ,

0 < m(−x) < m(x),

0 < m(x) − m(−x) = m(x)
(
1 − a−x

)
.

Let x → 0 with x decreasing. Then

m(x) decreases, m(−x) increases, m(x) − m(−x) → 0.

It follows that m(x) and m(−x) approach a common limit as x → 0, which is f ′(0).
Furthermore, 0 < m(−x) < f ′(0) < m(x) for x > 0, which implies that f ′(0) > 0.

We believe that this proof is new. We have been unable to find any other proof
that depends only on methods of differential calculus. However, the interplay between
convexity and differentiability has a long history, and we recommend Chapter 1 of
Artin [1] to interested readers.

Theorem 1 and familiar reasoning give the principal result on the differentiability
of exponential functions.

Theorem 2. Let f (x) = ax with any a > 1. Then f is differentiable for all x and
f ′(x) = f ′(0)ax .

It follows that f ′′(x) = f ′(0)2ax > 0, and f (x) = ax is concave up, as anticipated.
By routine arguments,

ax → ∞ as x → ∞,

ax → 0 as x → −∞.

The intermediate value theorem implies that the range of ax is (0, ∞).

The natural exponential function ex

The next step in the development of properties of derivatives of exponential functions
is to define e, the base of the natural exponential function ex , within the context of
differential calculus. Different authors define e in various ways. Some of the definitions
involve more advanced concepts. We prefer a definition of e based on an important
property of ex , namely that e is the unique number for which

d

dx
ex

∣
∣
∣∣

x=0

= 1.

VOL. 36, NO. 5, NOVEMBER 2005 THE COLLEGE MATHEMATICS JOURNAL 391



In view of Theorem 2, an equivalent property is

d

dx
ex = ex for all x .

It is not difficult to justify the definition of e and, at the same time, to find an explicit
formula for e. To begin with, consider any base a > 1. Since 2x is increasing and has
range (0, ∞), there is a unique number c > 0 such that a = 2c. By Theorem 1,

d

dx
ax

∣
∣
∣∣

x=0

= lim
x→0

ax − 1

x
= c lim

cx→0

2cx − 1

cx
= cm,

where a = 2c and m = d

dx
2x

∣
∣∣
∣

x=0

= lim
x→0

2x − 1

x
.

Observe that

d

dx
ax

∣
∣∣
∣

x=0

= 1 only for c = 1/m and a = 21/m .

Therefore, e = 21/m. Since m ≈ 0.7 by previous calculations, e ≈ 2.7. Of course, there
are much better approximations for e.

Since e is one particular value of a, the function ex has all the properties mentioned
earlier for general exponential functions ax with a > 1. Thus, ex is increasing and
concave up,

ex → ∞ as x → ∞,

ex → 0 as x → −∞,

and the range of ex is (0, ∞).
With this foundation, all relevant applications of exponential functions become

available in differential calculus.

Logarithmic functions
Once the basic properties of exponential functions have been established, it is easy
to introduce logarithmic functions as corresponding inverse functions and to develop
their relevant properties within differential calculus.

The natural logarithmic function (or natural log) is defined by

y = ln x ⇐⇒ x = ey.

The derivative rule for inverse functions implies that y = ln x is differentiable and

d

dx
ln x = dy

dx
= 1

dx/dy
= 1

ey
= 1

x
.

Thus,

d

dx
ln x = 1

x
.
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The familiar algebraic properties and asymptotic properties of logarithmic func-
tions follow easily from corresponding algebraic rules of exponents and asymptotic
properties of exponential functions. In typical textbooks that defer exponential and
logarithmic functions to integral calculus, proofs of algebraic properties of ln x are
based on the uniqueness of solutions to initial value problems and are less informative
for most first-year calculus students.

Comparisons
It is worthwhile to contrast our approach with current practices. Most mainstream
calculus texts, such as [5] and [8], defer the entire discussion of exponential and loga-
rithmic functions to integral calculus, where exponential functions are expressed as in-
verses of logarithmic functions in order to establish their differentiability. As we wrote
earlier, this is the reverse of the natural order. It has the unfortunate consequence that
exponential functions are often defined in two different ways that ultimately have to
be reconciled. The upshot is a circuitous argument that blurs the distinction between
definitions and conclusions. Moreover, a substantial block of material about deriva-
tives and rates of change is presented in integral calculus, instead of in its natural place
in differential calculus. Exponential and logarithmic functions have many important
applications, such as motion with resistance, that belong in differential calculus.

A few books, often called “early transcendentals” texts, introduce exponential and
logarithmic functions in differential calculus. Although this arrangement is an im-
provement over the standard approach, the differentiability of exponential functions
remains a stumbling block. Some of these books, such as [3] and [4], simply display a
little numerical evidence and/or a plausibility argument in support of differentiability
and then assume differentiability thereafter. Others, such as [6] and [7], start out with
plausibility arguments in differential calculus and then return to the subject in integral
calculus where proofs are given. Neither alternative is really satisfactory. It is much
better, both logically and pedagogically, to settle the question of differentiability when
the issue arises.

Our proof that exponential functions are differentiable makes it possible to give a
mathematically complete “early transcendentals” presentation of exponential and log-
arithmic functions in differential calculus. Later on, when methods of integral calculus
are applied to exponential and logarithmic functions, progress will not be impeded by
unfinished business in differential calculus.
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