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The Convergence of Difference Boxes 
Antonio Behn, Christopher Kribs-Zaleta, 

and Vadim Ponomarenko 

1. INTRODUCTION. "Difference boxes," also known as "diffy boxes," are the basis 
for a simple mathematical puzzle that provides elementary-school students with sub- 
traction practice. The idea appears to have originated in the late nineteenth century 
with E. Ducci of Italy, who applied it to integers [2]. In this setting it has been well 
studied (see [1] for current open problems in this context). Another source cites a 
World War II prisoner of war as a popularizer of the idea [7]. More recently, Ullman [6] 
gave a more probabilistic treatment for difference boxes involving real numbers. Its 
use among teachers can be traced back to Professor Juanita Copley of the University 
of Houston, who introduced it about twenty years ago as a mechanism for teachers 
in elementary schools to provide problem-solving and arithmetic practice without the 
tedium of drill (and who, in turn, credits her grandmother). 

One creates a difference box as follows: 

1. Draw a (large) square, and label each vertex with a (real) number. 

2. On the midpoint of each side write the (unsigned) difference between the two 
numbers at its endpoints. 

3. Inscribe a new square in the old one, using these new numbers to label the ver- 
tices. 

4. Repeat this process, and continue inscribing new boxes until reaching a square 
that has all four vertices labeled 0. 

It is perhaps surprising that diffy boxes always tend to "converge" rather quickly, that 
is, it usually takes no more than a handful of iterations to get a box with all zeroes. 
Figure 1 shows a simple example, which converges to all zeroes after four iterations 
(on the fifth box). 

7 5 12 

7 12 1 5 

9 1 1 10 

-2 2 5 1 6 

-2 4 2 

Figure 1. A simple diffy box (left) and its "descendants" (right). 

The question we want to investigate is whether all diffy boxes really do converge to 
the zero box, and, if so, how quickly? It turns out that the answer is no if we require a 
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finite number of iterations; however, the essentially unique counterexample also con- 
verges to zero after a fashion. We approach the problem by considering the diffy box 
process as a map from the set of all possible four-tuples of real numbers (i.e., R4) into 
itself. 

2. DEFINITIONS. We begin our analysis by establishing some notation. We denote 
by [a b c d] the diffy box that contains the numbers a, b, c, and d on its upper left, 
upper right, lower right, and lower left corners, respectively (which makes the first box 
in Figure 1 [7 12 2 -2]). 

Next we introduce notation to describe the diffy box iteration process, as well as 
some terms related to convergence: 

Definition 1. The child of a given box B = [a b c d] is C(B) = [Ib - al Ic - bl Id - 
cl la - dl]; B is a parent of C(B). (We shall see that any given box has many parents.) 
The parent-child relation is signified by B <![CDATA[>]]> C(B). We denote C(C(B)) by C2(B), 
etc. The box C(B) is more commonly called the iterate of B. 

Definition 2. A given box B converges to zero in n generations if C"(B) = [0 0 0 0] 
but C"n- (B) 7' [0 0 0 0]; we also say in this case that B has longevity n. 

Definition 3. The range of B, denoted IB|, is the largest difference between two (not 
necessarily adjacent) vertices of B. 

Definition 4. A box B is monotone if its vertices are distinct and occur around the 
square in numerical order from least to greatest. 

Note that we consider boxes such as [2 1 4 3] monotone, since the definition allows us 
to start with any vertex and proceed clockwise or counterclockwise from it. A couple 
of relatively quick results may help the reader begin to develop some intuition as to 
how and why diffy boxes tend to converge to zero. 

Proposition 1. The estimate IC (B) I IBI always holds, and the inequality is strict if 
the four numbers in B are distinct. 

Proof Let w <![CDATA[>]]> x <![CDATA[>]]> y <![CDATA[>]]> z be the numbers in B (not necessarily in order of appear- 
ance). We have IB| = w - z. The numbers in C(B) all fall between 0 and w - z; 
hence IC(B)I <<]]<![CDATA[> (w - z) - 0 = IB|I. Furthermore, if w, x, y, and z are distinct, then 
C(B) does not contain zero, whence I C(B)I <<]]<![CDATA[> IBI. U 

Proposition 2. Any nonmonotone diffy box converges to zero in six or fewer genera- 
tions. 

Proof Table 1 details the longevity of all diffy boxes whose vertices are nonmonotone. 
The proof is an exhaustive case analysis (a simpler proof follows from Figure 3 in 
section 3). To put a given diffy box into a form listed in the table, reorder the vertices 
(using reflection and/or rotation, isometry properties that we shall discuss in section 4) 
so that the smallest vertex is listed first, followed by the smaller of the two vertices 
adjacent to it. (If two copies of the smallest number occupy adjacent vertices, put them 
first and second, followed by the smaller of the two vertices adjacent to them.) This 
reordering does not affect longevity. n 
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Table 1. Longevities for all nonmonotone diffy boxes 
(here a <<]]<![CDATA[> b <<]]<![CDATA[> c <<]]<![CDATA[> d). 

Longevity Isometric form of diffy box 

1 [aaaa], a 0 
2 [a b a b] 

[abcb], b = (a + c)/2 
3 [aabb] 

[abb c], b = (a + c)/2 
[abdc], a-b=c-d 
[a c b d], a - b = c - d 

4 [aa ab] 
[a a b c], b at least as close to c as to a 
[a b a c] 
[abbb] 
[ab be], b (a + c)/2 
[a b c b], b = (a + c)/2 
[a b c c], b at least as close to a as to c 
[a b d c], a - b # c - d, (a + d)/2 between b and c 
[a c b c] 
[acbd], a-b c-d 

6 [a a b c], b closer to a than to c 
[a b c c], b closer to c than to a 
[a b d c], b and c on the same side of (a + d)/2 

We remark that Proposition 2 includes any box whose vertex numbers are not all 
distinct. We will observe in section 4 that diffy boxes [a b c d] whose vertices are 
monotone (with a <<]]<![CDATA[> b <<]]<![CDATA[> c <<]]<![CDATA[> d or a <![CDATA[>]]> b <![CDATA[>]]> c <![CDATA[>]]> d) have longevity five or greater. 

Since, in view of Proposition 1, IC(B)I = IBI only when the vertices of B are 
not all distinct, we can bound the longevity of any box that has integer vertices by 
observing that the range I BI of any such box must decrease by at least 1 per iteration, 
until we reach a box C with at least one pair of identical vertices. At this point we 
compare in Table 1 the possible longevities of C (2, 3, 4, or 6) with the corresponding 
minimum possible range (1, 1, 1, or 3, respectively) and record the greatest difference. 
We therefore have the following result: 

Corollary. If B consists of integers, then the longevity of B is less than or equal to 
IBI +3. 

We leave improvements on this specialized estimate as an exercise for the reader. For 
example, it can be sharpened from linear to logarithmic; namely, to 4(1 + [log2 I B 1). 

3. CANONICAL FORM. A little experimentation with different sets of numbers 
quickly leads one to the observation that there are different boxes that behave the same 
way with respect to the iteration process. For example, adding the same number k 
to each of the vertices of a box B (written B + k) or changing the signs of all the 
vertices (-B) will produce other parents of C(B), since each iteration records only 
differences between successive vertices; thus the map B h C(B) is many-to-one. 
Furthermore, since our real interest is the history of families rather than of individuals, 
we observe three other types of changes that generate family histories parallel to the 
original. Multiplying each vertex of a box B by a positive constant k will produce 
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a box (kB) whose child is that same multiple of C(B) (i.e., kB t> kC(B)); B and 
kB therefore take the same number of iterations to reach the all-zero box. We may 
think of B and kB as "cousins" with the same family histories. Finally, rotating or 
reflecting the numbers on the vertices of a box B (call these rot(B) and ref(B)) will 
create further cousins, boxes whose respective children are the rotated and reflected 
versions of C(B) (i.e., rot(B) <![CDATA[>]]> rot(C(B)), ref(B) <![CDATA[>]]> ref(C(B)), and so on through 
successive iterations). These changes are merely cosmetic, since the numbers retain 
their positions relative to each other. 

To simplify the analysis that follows, we define a set of equivalence classes that 
reduces the number of distinct boxes we must consider (and thereby reduces the di- 
mension of the problem considerably, as we shall see). 

Definition 5. The equivalence class of a box B = [a b c d] consists of all boxes that 
can be obtained from B via a finite sequence of the following five elementary opera- 
tions: 

(1) translation: [ab c d] a [(a + a) (b + a) (c + a) (d + a)] (a E R); 

(2) negation: [a b c d] - [-a - b - c - d]; 

(3) positive scaling: [a b c d] - [(aa) (ab) (ac) (ad)] (a e R+); 
(4) rotation: [a b c d] a [b c d a]; 
(5) reflection: [a b c d] - [d c b a]. 

We can consider the first three operations as field operations, and the last two as isome- 
tries. It is simple to verify that the relation ~ thus defined is indeed an equivalence re- 
lation on the set B of all diffy boxes (i.e., it is reflexive, symmetric, and transitive). We 
also observe, following the same arguments given informally earlier, that if B1 ~ B2, 
then C(BI) ~ C(B2), and B1 and B2 have the same longevity unless one of them is 
the zero box and the other is [a a a a] (a = 0). 

We would like to find a way to select a unique member from each equivalence class 
in B so that we can concentrate our remaining analysis on a reduced domain. To this 
end, we define the canonical form for an equivalence class. 

Definition 6. The canonical form for an equivalence class in B is one of the following: 
(i) [0 0 0 0] for the class containing this (zero) box; (ii) [0 0 11] for the class containing 
this box; or (iii) the unique class member of the form [0 1 x y] for which (x, y) belongs 
to S = {(x, y) : x <![CDATA[>]]> 0, y> 1, x - 1 <<]]<![CDATA[> y x + l}otherwise. 

Equivalence class (i) consists of all boxes [a a a a] (a e R), each of which con- 
verges to zero in one iteration (if a # 0). Equivalence class (ii) consists of all boxes 
[a a b b] and [a b b a] (a, b e R), which are seen to converge to zero in three iter- 
ations ([0 0 1 1] <![CDATA[>]]> [0 1 0 1] <![CDATA[>]]> [1 1 1 1] <![CDATA[>]]> [0 0 0 0]). Identifying the canonical form 
for all other classes requires the notion of an extreme element, that is, an element a of a 
box that is either maximal (at least as big as each of the other elements) or minimal (at 
least as small as each of the other elements). Note that at least two of the four elements 
of each box must be extreme. The following result gives a procedure for determining 
a type (iii) canonical form, as well as a justification of its uniqueness. 

Theorem 1. Any equivalence class in B of type (iii) (i.e., not including a box of 
the form [a a a a] or [a a b b]) has a unique representative [0 1 x y] with (x, y) in 
S = {(x, y) : x <![CDATA[>]]> 0, y> 1, x - 1 <<]]<![CDATA[> y <<]]<![CDATA[> x + 1}. 
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Proof We first provide an algorithm for finding the representative, using our elemen- 
tary operations. We begin with an arbitrary diffy box [a b c d] and operate on it as 
follows (relabeling the results [a b c d]). 

1. Rotate (operation (4)) until a box is obtained for which Id - a\ is maximal 
among Ia - bI, lb - cl, Ic - dl, Id - al. 

2. (a) Observe that either a or d must be extreme. If necessary, reflect [a b c d] 
(operation (5)) to ensure that a is extreme. 

(b) If a and d are both extreme, it's possible that Ia - bi Ic - dl. If necessary, 
reflect (operation (5)) to make la - b <>_ Ic - dl. 

3. If a is maximal, use negation (operation (2)) to make a minimal. 

4. Use translation (operation (1)) to make a - 0. 

5. Use positive scaling (operation (3)) to make b = 1. 

Observe that properties created at any step are preserved in subsequent steps. The last 
step is always possible since steps 2(b) and 4 together imply that c = d when b = 0, 
and the only two such cases correspond to equivalence classes of type (i), c = d = 0, 
or (ii), c = d # 0. Otherwise b 0 (from steps 3 and 4), so positive scaling can be 
used to normalize b. 

We now have a class representative of the form [0 1 c d] (from steps 4 and 5). Since 
a = 0 is minimal, c and d are nonnegative. From steps 1, 4, and 5, we infer that d> 1. 
On the basis of 2(b) we have that |c - dl 1, so c - 1 d c + 1. Thus (c, d) lies 
in S. 

It remains to show that the canonical form (iii) is unique: if [0 1 a b] ~ [0 1 c d], 
where (a, b) and (c, d) belong to S, then (a, b) = (c, d). This can be seen first by 
observing that 0 is a unique minimal number (i.e., a, b, c, d 0 except for [0 1 0 1], 
which has no other [0 1 c d] representation), and second on a case-by-case basis by 
taking a or b to be maximal and showing that each of the seven transformations that 
would transform 0, 1, a, or b to 0 and normalize either of the numbers adjacent to it 
results in a box with (c, d) not in S. As the details are simple but technical, we leave 
them as an exercise for the reader (we likewise leave as an exercise the proof that the 
equivalence classes containing [0 0 0 0] and [0 0 1 1] have no type (iii) canonical form 
representation). m 

4. A TWO-DIMENSIONAL MAP. We can now focus our remaining analysis on 
what happens to equivalence classes in B3 of the form [0 1 x y] with (x, y) in S. We 
first observe that in the special case y = 1 the children are of type (i) or (ii) (since 
[0 1 x 1] [1 Ix - 11 Ix - 11 1]), hence convergence to zero occurs in two (x = 0, 2) 
or four generations. 

We now consider the diffy box process as a continuous map from S\{(x, y) : y = 1} 
into S that calculations show to be given by 

(u, v) = f(x, y) 

1( + - if0x 1, 1 <y x+l ((x, y) Si); 

= 2-x ifx> 1, x <y<x+l ((x, y) S2 ; 

(1 2+ 2 ifx, y> 1,x-1 <y<x ((x, y) e S3). y-l1 y-1 ... 
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Figure 2 illustrates the three sets S1, S2, and S3 into which this definition decom- 
poses S. 

Y 

2.5 

2 

S2 

1.5 

St S3 

1 

0.5 1 1.5 2 2.5 

Figure 2. Subdivision of S into regions corresponding to the three branches of f. 

x 

By inspection we can see that the first and third branches of this function are infinite- 
to-one mappings: the first branch sends all points to the line v = u - 1 (with u <![CDATA[>]]> 2, 
since y <<]]<![CDATA[> x + 1 implies that x/(y - 1) <![CDATA[>]]> 1), while the third branch sends all points to 
the line v = u + 1 (with u <![CDATA[>]]> 0, since y <![CDATA[>]]> x - 1 implies that (2 - x)/(y - 1) <![CDATA[>]]> -1). 
On the first branch (where x <<]]<![CDATA[> 1), f(xl, yl) = f(x2, Y2) holds when 

y- _ y2 - 1 
xl - 0 X2 - 0' 

that is, when (xl, yl) and (x2, Y2) lie on the same line segment from (0,1). Likewise, 
on the third branch (where y <<]]<![CDATA[> x), f(x1, yi) = f(x2, Y2) occurs when 

Y-1 - 2- 1 
x1 -2 x2 - 2' 

that is, when (xl, yl) and (x2, Y2) lie on the same line segment from (2,1). On these 
branches, f compresses two-dimensional regions into rays on the boundary of S. 

The second branch, however, is one-to-one: for (xl, yi) and (x2, Y2) both in S2, 
f(xl, Yi) = f(x2, Y2) implies that (xl, yl) = (x2, y2). We can see this by noting that 

Y11 Y2 1 -1=(yl7 y2 - 12 

and substituting the latter expression into 

2 - x1 2 - x2 
1+ =1+ 

Yl - 1 Y2- 1 
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We can also see that the first and third branches have no fixed points inside their 
respective domains: the first branch sends all points to the line v = u - 1, which 
isn't in 51, and branch 3 sends all points to the line v = u + 1, which isn't in 53. 
(In fact, there is no possible periodicity in these regions, either, since for (x, y) in 
S or 53, (c, d) = f(f(x, y)) has d = 1.) Therefore any fixed points must lie in 

52. Indeed, straightforward calculations show that 52 contains the unique fixed point 
(q(q - 1), q) x (1.5437, 1.8393), where 

q = 1 + 19+ 3V + 19 - 3V 

is the unique real solution to q3 - q2 - q - 1 = 0. Here C([0 1 q(q - 1) q]) ~ 
[0 1 q(q - 1) q] (i.e., the child is in the same equivalence class as the parent, and 
therefore takes just as long to converge-in other words, it has infinite longevity). The 
only other equivalence class for which this is true is [0 0 0 0] (but properly speaking 
this class has no longevity). 

We should note, however, that the foregoing does not imply that B = C(B) for 
members of the class containing [0 1 q(q - 1) q]. In fact, in an R4-norm sense, as 
well as that of Definition 3, members of this class do approach the zero box under 
iteration-they just take infinitely long to get there. For example, calculation of a few 
iterations of the diffy box process beginning with [0 1 q (q - 1) q] shows that after the 
first step the four entries gradually diminish in size (by a factor of q - 1) as they cycle 
around counterclockwise, in keeping with Proposition 1. 

We now determine whether the fixed point (q(q - 1), q) is stable, in the sense 
of other nearby points' images approaching it under repeated application of f. To 
determine the stability of a fixed point of a complex map f, one looks at its Jacobian 
matrix Jf. This is derived from the linearization of the map and consists of the map's 
partial derivatives, evaluated at a given fixed point. For f = (fi (x, y), f2(x, y)), the 
Jacobian is given by 

- f= ;af - 8x ay 
f f 2 

-x By 

This (second) branch of f has 

1 x-2 - 

- y (y - 1)2 
Jfy x y) = 1 x 

y - (y -)2 1 

[-1.1915 -0.6478 1 
Jf(q(q - 1),q) ~ 1.1915 -2.1915 J 

The matrix on the right has eigenvalues X x -1.6915 + 0.7224i. Because the eigen- 
values have magnitude greater than 1, the fixed point is unstable. Because the imagi- 
nary components are nonzero, we see that points near (q (q - 1), q) spiral away from 
it under (repeated) application of f. (To read more about stability analysis of fixed 
points, see [4] or [5].) Because this is the only fixed point, one might expect that fur- 
ther applications of f will eventually move any other point to the boundary of the 
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domain, and then out of it entirely. Therefore, we might expect that those diffy boxes 
that take longest to converge to zero correspond to those points in S closest to the fixed 
point (q (q - 1), q). As we shall see later, these intuitive notions turn out to be correct. 

If we begin a case-by-case analysis of the successive applications of f in S, we no- 
tice the domain subdividing into regions beginning along the boundaries and working 
in toward the fixed point. 

Example 1. Any box [0 1 x y] with x 1 converges to zero within four generations 
(three if y = x + 1, two if (x, y) = (0, 1)). We calculate 

[0 1 x y] [1 (1 - x) (y - x) y] [x (y - 1) x (y - 1)] 

<>[ly-x-iI ly-x- II ly-x- i ly-x- ] <>[00 00] 

and observe convergence to zero one or two generations sooner in the aforementioned 
special cases. (This corresponds to region Si in Figure 2.) 

Example 2. Any box [0 1 x y] with x <>]]<![CDATA[> y and x <>_ 2 converges to zero within four 
generations (three if y = x - 1, two if (x, y) = (2, 1)). We compute 

[0 1 x y] <![CDATA[>]]> [1 (x - 1) (x - y) y] <![CDATA[>]]> [(x - 2) (y - 1) (2y - x) (y - 1)] 

<![CDATA[>]]> [(y - x + 1) (y - x + 1) (y - x + 1) (y - x + 1)] <![CDATA[>]]> [0 0 0 0], 

again observing the quicker convergence for the special cases. 

Example 3. Any box [0 1 x y] with 1 <<]]<![CDATA[> y <<]]<![CDATA[> x <<]]<![CDATA[> 2 converges to zero within six 
generations. Here we find that 

[0 1 x y] <![CDATA[>]]> [1 (x - 1) (x - y) 2] t> [(2 - x) (y - 1) (2y - x) (y - 1)] 

<![CDATA[>]]> [Ix + y - 31 (y - x + 1) (y - x + 1) lx + y - 31] <![CDATA[>]]> [p 0 p 0] 

<![CDATA[>]]> [p pp p] <![CDATA[>]]> [0000], 

where p = I\x + y - 31 - y + x - 1|. (Examples 2 and 3 together comprise region S3 
in Figure 2.) 

Note that Examples 1, 2, and 3, together with the case y = 1 discussed earlier and 
the type (i) and (ii) classes, cover all nonmonotone classes of diffy boxes.1 (Mono- 
tone classes have 0 <<]]<![CDATA[> 1 <<]]<![CDATA[> x <<]]<![CDATA[> y.) Further calculations show that monotone classes 
have longevity at least five. Figure 3 demonstrates how S is subdivided into regions 
of different longevities (the lighter the region, the greater the longevity). The only two 
equivalence classes not depicted are (i) and (ii); here (ii) can be considered as the point 
at infinity (by which is meant the point that must be adjoined to R2 in order to com- 
pactify it). The black dot in the center is the fixed point, and the white region around 
it represents all equivalence classes of longevity ten or more generations. Note that 
where two regions of different longevity meet, the boundary between them belongs to 
the region of lower longevity. 

To determine the longevity of monotone classes in full detail, we change our ap- 
proach from the sort of increasingly detailed calculations in the foregoing examples 
to a consideration of preimages under f. We will need to invoke the following result 
regarding the invertibility of the map f. 

1They thus provide an alternate proof of Proposition 2. 
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Figure 3. Subdivision of S into regions colored by longevity. 

Theorem 2. The map fls2 has an inverse g that is defined on the set 

A =intSU{(x, 1): 0x2}, 

maps the interior of S into the interior of S2, and preserves line segments. 

Proof We have already seen that of the three branches in the definition of f, only the 
second is one-to-one. Since the images of the first and third branches lie on the left and 
right boundaries of S, the inverse map g = f l| should be well-defined on the set A. 
We can invert the expression for f on the second branch to find that 

(x, y) ( 2y +y+l) 
x+y-l'x+y-1 

for (x, y) in A. We observe that g maps the interior of S into the interior of 52: for 
g(x, y) = (u, v), x <![CDATA[>]]> 0, y <![CDATA[>]]> 1, and x - 1 <<]]<![CDATA[> y <<]]<![CDATA[> x + 1 together imply that u <![CDATA[>]]> 1 and 
u <v <u + 1. 

Straightforward calculation shows that g preserves line segments in the interior of 
S and that f preserves line segments in 52. < 

We define a sequence of sets Tn (n <![CDATA[>]]> 1) inductively, as follows. Let T2 = S, and 
for n <![CDATA[>]]> 1 let Tn+I = f-1(T,). Because the backward map g is not defined on the left 
and right boundaries of S, we shall consider the first few examples individually, until 
we arrive at a Tn such that Tn C int S. We also need to consider the type (ii) class (the 
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point at infinity), because when 0 <<]]<![CDATA[> x <<]]<![CDATA[> 2, 

[0 1 x 1] <![CDATA[>]]> [1 Ix - I| x - l| 1] ~ [0 0 1 1] <![CDATA[>]]> [0 1 0 1], 

that is, the diffy box process sends points (x, 1) on the boundary (0 <<]]<![CDATA[> x <<]]<![CDATA[> 2) to the 
type (ii) class and then sends the type (ii) class to the point (0, 1) in S. 

72 T3 T4 

1 1 1 

0 1 x 0 1 x 0 1 x 

T5 T6 T7 

0 1 x 0 1 x 0 1 x 

Figure 4. The sets T, for 2 <<]]<![CDATA[> n <<]]<![CDATA[> 7. 

Four further calculations are necessary before we can make use of g. Excluding 
the point at infinity from S, we find that T = f-1(S) is S without its lower boundary 
{ (x, 1) : 0 <<]]<![CDATA[> x <<]]<![CDATA[> 2} but with the point at infinity (see Figure 4), since the only points 
in S that do not have images in S are on the lower boundary y = 1. (The previous 
paragraph addresses the point at infinity.) Next, T4 = f-1 (T3) is S without its left and 
right boundaries (i.e., T4 = A), as the preimage of the interior of S is the interior of S2, 
the preimage of the left boundary of S is S3 n int S, the preimage of the right boundary 
of S is S1 n int S, and the preimage of the point at infinity is the lower boundary of S 
(endpoints excluded). The left and right boundaries of S (endpoints excluded), which 
we exclude from T4, are the preimage of the lower boundary of S (endpoints included), 
which we excluded from T3. (The comrners are not preimages of anything in S.) Next 
we find that T5 = f-1(T4) = S2; the included boundary is the preimage of the lower 
boundary of S, endpoints excluded. Finally, we find that T6 = f-1 (T5s) is the interior 
of the triangle with vertices (1,1), (2,1), and (2,3), again by excluding the preimages of 
the parts of S excluded from T5 (see Figure 4 for sketches of all these). T6 lies in int S. 

If we continue in this way, we discover that the Tn for n <![CDATA[>]]> 6 are also interiors of 
triangles. When n <![CDATA[>]]> 8 the vertices of these triangles are in the interior of S, which 
allows us to keep track of the Tn via their vertices (Table 2 provides a partial list, and 
Figure 5 shows boundaries of some of the Tn (n <<]]<![CDATA[> 10) superimposed upon each other). 

The utility of the Tn derives from the fact that all equivalence classes of longevity 
n (n <![CDATA[>]]> 1) are represented in Tn. It is simple enough to check this for the first few 
examples; thereafter the result follows by induction. It is also worth noting that, al- 
though Tn does not contain all classes of longevity n + 1, it does contain all classes 
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Table 2. Vertices of Tn for 6 <<]]<![CDATA[> n <<]]<![CDATA[> 10. 

n Vertex 1 Vertex 2 Vertex 3 

6 (1, 1) (2, 1) (2,3) 

7 (2, 3) (1, 2) (|, 5) 

8 (|, ) (2,2) (|, 2) 

9 (2) (4, ) (,) 

10 ( , ) (|,2) ( , ) 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 1 1.5 2 2.5 

Figure 5. Tn (n <<]]<![CDATA[> 10) superimposed upon each other. 

of longevity n + 2 or greater. Furthermore, we observe (again by induction, starting 
with n = 2) that Tn+2 C Tn, so that Tn+3 C Tn+l, and we can classify the set of all 
equivalence classes of longevity n (n <![CDATA[>]]> 1) as precisely Tn\(Tn+I U Tn+2). That is, an 
equivalence class has longevity n if and only if its canonical representative is in Tn but 
not Tn+1 or Tn+2. 

At this point the question arises of how to test where a given point (i.e., equivalence 
class) falls relative to the sequence of triangles Tn (n <![CDATA[>]]> 6). Arguably the simplest is 
just to plot it on a graph containing (enough of) the Tn. There are also several simple 
algebraic approaches, however, to test whether a point falls within a given triangle. One 
is to write the points involved in vector form. First let the interior of each triangle be 
written as the set of points whose coordinates are a weighted average of the coordinates 
of the three vertices V1, V2, and V3: 

S= {(x,y) : (x,y) = rV+sV2 + (1-r-s)V3; r, s <![CDATA[>]]> O, r + s <<]]<![CDATA[> }. 
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Now, to test whether a point P is inside T, calculate the corresponding "coordinates" 
r and s: 

r V3VI V3 -V2 ---- 

and check whether r <![CDATA[>]]> 0, s <![CDATA[>]]> 0, and r + s <<]]<![CDATA[> 1. For example, T6 is the set of 
(x, y) such that (x, y) = r(l, 1) + s(2, 1) + (1 - r - s)(2, 3) for some r and s 
satisfying r <![CDATA[>]]> 0, s <![CDATA[>]]> 0, and r + s <<]]<![CDATA[> 1, and the fixed point P is (q(q - 1), q) x 
(1.5437, 1.8393), making 

), <![CDATA[>]]> -------- 

V3 V = (-1, -2), V3V2 = (0, -2), V3P x (-0.4563, -1.1607), 

and 

Fr [-1 01 1[-0.45631 
s -2 -2 -1.1607 = (0.4563 0.124) 

verifying that P lies in T6. 
The only drawback to an algebraic approach is that it is inescapably recursive, and 

the number of calculations required to continue testing whether a given point falls in- 
side each T, is comparable to the number of calculations required simply to take the 
diffy box process toward its eventual end. A graphical approach merely requires plot- 
ting a sufficient number of Tn so that the point falls outside two consecutive triangles. 

We close this section with one more way to look at the domain S. Figure 6 divides 
S into three disjoint invariant regions by shades of gray: that is, each shade (light, 
medium, or dark) represents a sequence of images and preimages under f, jumping 
around and toward the fixed point. The fading of the colors near the fixed point indi- 
cates increasing longevity. 

5. CONCLUSIONS, APPLICATIONS, AND EXTENSIONS. We now return to 
our original question: Does every diffy box converge to the zero box in a finite number 
of generations, and, if so, how many generations will it take? We can now reinterpret 
the results of our analysis on equivalence classes in terms of boxes as four-tuples. 

The answer to our question as phrased is no, for the diffy boxes belonging to the 
class containing the box [0 1 q (q - 1) q] associated with the fixed point of the map 
f require an infinite number of iterations to reach zero: any diffy box in this class 
has entries (vertex numbers) that become smaller and smaller but never actually reach 
zero. However, the counterexample class is unique, and all other diffy boxes converge 
to zero in finitely many generations (the number depends on how close their canonical 
forms are to the fixed point). In fact, for any specified longevity, there are classes 
of diffy boxes that take precisely that long to converge to zero. Nonmonotone boxes 
converge especially quickly (in no more than six generations), while monotone boxes 
have longevity at least five. To determine the longevity of a monotone diffy box, it is 
simplest to put the box in canonical form and compare its coordinates (x, y) with a 
graph of the regions of various longevities identified in the previous section. We might 
also make the observation that (as seen by the regions into which S is subdivided 
in Figure 3) the use of "complicated" numbers such as radicals or transcendentals 
does not really prolong convergence much, since within a couple of generations the 
differences have propagated through the four vertices and get subtracted out. 
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Figure 6. Subdivision of S into 3 invariant regions (by color). 

As mentioned in the introduction, diffy boxes can be used as problem-solving con- 
texts for elementary grades students (see [3]). After working through several diffy 
boxes, children can group them according to longevity and begin to observe some 
patterns in the forms of boxes that converge in one, two, three, and possibly four 
generations. They can also observe the properties we used in Definition 5 to define 
equivalence, as well as the effects (or lack thereof) of using numbers other than whole 
numbers. 

A natural extension of the diffy-box problem that we leave to the reader is the 
generalization from squares to other polygons. For example, a quick investigation of 
"diffy triangles" reveals a peculiar chasing pattern and the surprising(?) result that 
no "diffy triangles" ever converge to the all-zero triangle, except for those with all 
three numbers the same (to convince yourself of this, try to construct the parent of 
such a diffy triangle). From this observation one might try to classify the types of 
possible behavior of diffy triangles, or else move to a larger scale and perhaps consider 
convergence of "diffy polygons" with varying numbers of edges. (If we place "diffy 
polygons" in the context of graph theory, we see that any simple generalization to a 
more general class of graphs is prevented by the fact that only the cycle graphs C, 
(i.e., polygons) have line graphs isomorphic to themselves. Considering polygons as 
cycle graphs, however, does allow us to include the trivial example C2, the two-sided 
polygon, which converges to zero in two steps for any two starting values.) The reader 
interested in the "diffy n-gon" may wish to take a hint from Winkler [7, chap. 2], 
who observes (p. 17) that, for the special case where all vertices are integers, "A little 
analysis via polynomials over the integers modulo 2 shows that the salient issue is 
whether n is a power of 2." Winkler's book also uses integers modulo 2 to establish 
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the logarithmic bound suggested at the end of section 2 for integer-valued diffy boxes 
(using the maximum entry rather than I B I). 

Finally, it is interesting to note that the irrational number q involved in the fixed- 
point diffy box class is also associated with sequences of numbers called tribonacci 
numbers. Similar to the notion of Fibonacci numbers, tribonacci numbers are a se- 
quence of numbers tn that obey the recursive relation t, = tn-1 + tn-2 + tn-3. (The 
sequence typically begins with tl = 1, t2 = 1, and t3 = 2.) Like Fibonacci numbers, 
any sequence of tribonacci numbers tends toward a geometric increase, with the ratio 
of any two successive numbers in the sequence approaching a fixed constant. For tri- 
bonacci numbers that constant is q. In fact, beginning as indicated, tn q' as n - o0o. 
(If we look for geometric solutions t, = a" to the defining recursive relation, we see 
that we must have a" = a"n- + an-2 + an-3 or a3 = a2 + a + 1, the same equation 
we solved to obtain q.) 

It is remarkable how mathematically rich such a simple notion can be. We invite the 
reader to explore further. 

ACKNOWLEDGMENT. The authors thank George Christ for introducing them to diffy boxes. 

REFERENCES 

1. M. Chamberland and D. Thomas, The n-number Ducci game-Open problems, J. Difference Eq. Appl. 10 
(2004) 339-342. 

2. C. Ciamberlini and A. Marengoni, Sa una interessante curiosita numerica, Period. Mat. Ser 4 (1937) 25- 
30. 

3. Charles A. Dana Center, TEXTEAMS Rethinking Elementary School Mathematics, Part I, University of 
Texas, Austin, 2002. 

4. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector 
Fields, Springer-Verlag, New York, 1983. 

5. S. H. Strogatz, Nonlinear Dynamics and Chaos, Addison-Wesley, New York, 1994. 
6. D. Ullman, More on the four-numbers game, Math. Mag. 65 (1992) 170-174. 
7. P. Winkler, Mathematical Puzzles: A Connoisseur's Collection, AK Peters, Natick, MA, 2003. 

ANTONIO BEHN received a Ph.D. in mathematics from the University of Wisconsin. He held a postdoctoral 
position at Texas AM University before returning to Chile to teach mathematics at the Universidad de Chile. 
His research interests include ring theory. 
Universidad de Chile, Santiago, Chile 
abehn@uchile.cl 

CHRISTOPHER KRIBS-ZALETA is a professor of mathematics and curriculum <&> instruction at the Uni- 
versity of Texas at Arlington. He received undergraduate degrees in electrical engineering and mathematics 
from Duke University, a master's degree in electrical engineering from Georgia Tech, and a master's and Ph.D. 
in mathematics from the University of Wisconsin. His research interests include mathematical biology and 
mathematics education. 
University of Texas at Arlington, Arlington, TX 76019-0408 
kribs@uta.edu 

VADIM PONOMARENKO received an undergraduate degree in mathematics and computer science from 
the University of Michigan and a master's degree in computer science and Ph.D. in mathematics from the 
University of Wisconsin. He is a professor of mathematics at Trinity University. His diverse research interests 
lie primarily within combinatorics. 
Trinity University, San Antonio, TX 78212 
vadim @ trinity.edu 

THE CONVERGENCE OF DIFFERENCE BOXES May 2005] 439 


	Article Contents
	p. 426
	p. 427
	p. 428
	p. 429
	p. 430
	p. 431
	p. 432
	p. 433
	p. 434
	p. 435
	p. 436
	p. 437
	p. 438
	p. 439

	Issue Table of Contents
	The American Mathematical Monthly, Vol. 112, No. 5 (May, 2005), pp. 385-480
	Front Matter
	Gauss's Lemma for Number Fields [pp. 385-416]
	The Fundamental Group of the Circle Is Trivial [pp. 417-425]
	The Convergence of Difference Boxes [pp. 426-439]
	Do Normal Subgroups Have Straight Tails? [pp. 440-449]
	Notes
	Avoiding Eigenvalues in Computing Matrix Powers [pp. 450-454]
	Exact Solutions for Minimax Optimization Problems [pp. 454-458]
	A Simple Proof of the Gauss-Winckler Inequality [pp. 459-462]
	Copositive Symmetric Cubic Forms [pp. 462-466]

	Problems & Solutions
	Problems
	11152 [p. 467-467]
	11153 [p. 467-467]
	11154 [p. 467-467]
	11155 [p. 467-467]
	11156 [pp. 467-468]
	11157 [p. 468-468]
	11158 [p. 468-468]

	Solutions
	Gamma Function Bounds: 11016 [p. 468-468]
	One Good Factorization Deserves Another: 11029 [p. 469-469]
	The Stationary Distribution of a Tridiagonal Row-Stochastic Matrix: 11032 [pp. 469-470]
	Expansion by Inclusion-Exclusion: 11033 [pp. 470-472]
	Evaluation of an Integral: 11035 [pp. 472-473]
	Shrinking Fréchet Differentiable Maps: 11037 [pp. 473-474]
	Morley's Triangle and Lemma: 11038 [p. 474-474]


	Reviews
	Review: untitled [pp. 475-478]
	Review: untitled [pp. 479-480]

	Back Matter



