1970-2012 TOPIC INDEX
for
The College Mathematics Journal
(including the Two Year College Mathematics Journal)
prepared by

Donald E. Hooley
Mathematics Department
Bluffton University, Bluffton, Ohio

Each item in this index is listed under the topics for which it might be used in the classroom or for enrichment after the topic has been presented. Within each topic entries are listed in chronological order of publication. Each entry is given in the form:

Title, author, volume:issue, year, page range, [C or F], [other topic cross-listings]

where C indicates a classroom capsule or short note and F indicates a Fallacies, Flaws and Flimflam note. If there is nothing in this position the entry refers to an article unless it is a book review.

The topic headings in this index are numbered and grouped as follows:

0 Precalculus Mathematics (also see 9)
 0.1 Arithmetic (also see 9.3)
 0.2 Algebra
 0.3 Synthetic geometry
 0.4 Analytic geometry
 0.5 Conic sections
 0.6 Trigonometry (also see 5.3)
 0.7 Elementary theory of equations
 0.8 Business mathematics
 0.9 Techniques of proof (including mathematical induction
 0.10 Software for precalculus mathematics

1 Mathematics Education
 1.1 Teaching techniques and research reports
 1.2 Courses and programs

2 History of Mathematics
 2.1 History of mathematics before 1400
 2.2 History of mathematics after 1400
 2.3 Interviews

3 Discrete Mathematics
 3.1 Graph theory
3.2 Combinatorics
3.3 Other topics in discrete mathematics (also see 6.3)
3.4 Software for discrete mathematics

4 Linear Algebra
4.1 Matrices, systems of linear equations, and matrix algebra
4.2 Determinants (also see 5.5)
4.3 Vector spaces and inner product spaces (also see 5.5)
4.4 Linear transformations
4.5 Eigenvalues and eigenvectors
4.6 Numerical methods of linear algebra
4.7 Other topics in linear algebra
4.8 Software for linear algebra

5 Calculus
5.1 Limits and differentiation
 5.1.1 Limits (including l'Hopital's rule)
 5.1.2 The derivative and mean value theorems
 5.1.3 Tangents, differentials, and differentiation
 5.1.4 Maxima and minima
 5.1.5 Graphs of functions
5.2 Integration
 5.2.1 Definition of integrals and the fundamental theorem
 5.2.2 Numerical integration
 5.2.3 Change of variable (substitution)
 5.2.4 Partial fraction decomposition
 5.2.5 Integration by parts
 5.2.6 Area
 5.2.7 Volume
 5.2.8 Arc length
 5.2.9 Other theory and applications of integration
 5.2.10 Improper integrals
5.3 Elementary and special functions
 5.3.1 Inverse trigonometric functions
 5.3.2 Exponential and logarithmic functions
 5.3.3 Hyperbolic functions and their inverses
 5.3.4 Special functions
5.4 Sequences and series
 5.4.1 Sequences
 5.4.2 Numerical series (convergence tests and summation)
 5.4.3 Taylor polynomials and power series
5.5 Vector algebra and geometry (and 3x3 determinants)
5.6 Curves and surfaces
 5.6.1 Parametric and polar curves
 5.6.2 Surfaces and coordinate systems in space

5.7 Multivariable calculus
 5.7.1 Multivariable differential calculus
 5.7.2 Multiple integrals
 5.7.3 Line and surface integrals and vector analysis

5.8 Software for calculus

6 Differential Equations and Dynamical Systems
 6.1 First order equations
 6.2 Higher order linear equations and linear systems
 6.3 Difference equations, dynamical systems, and fractals
 6.4 Nonlinear differential equations
 6.5 Numerical methods for differential equations
 6.6 Other topics in differential equations
 6.7 Software for differential equations and dynamical systems

7 Probability and Statistics
 7.1 Games of chance (also see 9.2)
 7.2 Probability
 7.3 Statistics (also see 9.10)
 7.4 Software for probability and statistics

8 Computer Science
 8.1 Programming and algorithms
 8.2 Data structures
 8.3 Computer graphics
 8.4 Other topics in computer science

9 Other Topics
 9.1 Set theory and logic (also see 0.9)
 9.2 Recreational mathematics (also see 7.1)
 9.3 Number theory (also see 0.1)
 9.4 Abstract algebra
 9.5 Analysis
 9.6 Numerical analysis
 9.7 Modern and non-Euclidean geometry
 9.8 Topology and differential geometry
 9.9 Operations research, including linear programming
 9.10 Mathematical modelling and simulation
 9.11 Software for advanced topics

10 Book Reviews
1970 – 2012 Topic Index
for the College Mathematics Journal

0 Precalculus Mathematics (also see 9)

0.1 Arithmetic (also see 9.3)

Remedial or Developmental? Confusion over Terms, Don Ross, 1:2, 1970, 27-31, 1.2
Two-Pan Weighings, Chris Burditt, 3:2, 1972, 80-81, C
Computation of Repeating Decimals, James E. McKenna, 7:2, 1976, 55-58
Smith Numbers, A. Wilansky, 13:1, 1982, 21, 9.3
Cryptography: From Caesar Ciphers to Public-Key Cryptosystems, Dennis Luciano and Gordon Prichett, 18:1, 1987, 2-17, 7.2, 9.3
What's Significant about a Digit?, David A. Smith, 20:2, 1989, 136-139, C, 9.6
FFF #85. Unto Everyone That Hath Shall Be Given, John W. Kenelly, 26:1, 1995, 36, F
Number Words in English, Steven Schwartzman, 26:3, 1995, 191-195
The Mathematical Judge: A Fable, William G. Frederick and James R. Hersberger, 26:5, 1995, 377-381, 1.1
The Square of Any Odd Number is the Difference Between Two Triangular Numbers (Proof Without Words), Roger B. Nelsen, 27:2, 1996, 118, C, 9.3
Fractions with Cycling Digit Patterns, Dan Kalman, 27:2, 1996, 109-115, 9.3
FFF #112. United in Purpose, Bruce Yoshiwara, 28:2, 1997, 119, F
FFF #138. Fifty per cent more for fifty per cent less, Norton Starr, 30:1, 1999, 39-40, F
Interval Arithmetic and Analysis, James Case, 30:2, 1999, 106-111, 9.5
FFF #140. Whose Real World?, Elizabeth Berman Appelbaum, 30:2, 1999, 130, F
FFF #144. Spoiled for Choice, Norton Starr, 30:3, 1999, 210, F, 3.2
Saving Digits, Mark McKinzie, 31:2, 2000, 146, C
FFF #167. Double from nothing, Richard Askey, 32:1, 2001, 48, F
FFF #173. Loss of face, R. Askey, 32:1, 2001, 50-51, F
Word Problems, Lawrence Braden, 32:1, 2001, 70-71, C
Miscellanea: The Doctor and the Mathematician, Edwin Rosenberg, 32:4, 2001, 318, C
FFF #192. Addition by juxtaposition, Brendan Kelly, 33:3, 2002, 226, F
FFF #193. Slide into poverty, by student, 33:3, 2002, 226-227, F
FFF #194. Hitting the sales, the editor, 33:3, 2002, 227, F
Musharraf Exposed, Margaux Marie Siegel, 33:3, 2002, 229, C
Adding Fractions, Dan Kalman, 34:1, 2003, 41, C, 5.1.2
A large square consisting only of digits 7, 8 and 9, Hisanori Mishima, 34:4, 2003, 303, C, 9.3
How Many Checks?, Ted Ridgway, 36:2, 2005, 113, C

Federal Money, Joseph Crukshank, 36:3, 2005, 208, C

Lighter than air, Marie S. Wilcox, 36:4, 2005, 316-317, F

Where are the missing “8-terms”? Johann Hoehn and Larry Hoehn, 37:1, 2006, 68, C

Watch Your Units!, Stan Wagon, 37:2, 2006, C

Teaching Tip: How large is n!?, Leonard J. Lipkin, 37:2, 2006, 109, C

Alligation, Joseph Crukshank, 37:2, 2006, 113, C

Hot stuff in Canada, Neal Madras, 27:2, 2006, 123, F

Computing the cost of a fence, Johnny Lott and Georgia Cobbs, 37:4, 2006, 291, F

Bad Ad Arithmetic, Stan Lipovetsky, 37:5, 2006, 363, C

Attributed to Vladimir Putin, Andre Toom, 38:1, 2007, 44, F

Freaky fractions, Rick Kreminsky, 38:1, 2007, 46, C, 9.3

Mising “percent”, Ted Ridgway, 38:2, 2007, 95, C

Kong size percent, Art Friedel, 38:2, 2007, 123, C

Was He Serious?, Julian Fleron, 38:2, 2007, 130, C

Literature maybe, but numerate?, Alfimio Flores, 38:4, 2007, 277, C

Compound Addition, Joseph Crukshank, 38:5, 2007, 377 and 387, C

It Was Only a Sign Error, David Cox, 39:2, 2007, 135, C

Three Poems, Caleb Emmons, 40:3, 2009, 188, 9.2

Family Occasion, Ian Stewart, 40:3, 2009, 203, C

Teaching Tip: Accepting that .999… = 1, David W. Cohen and James M. Henle, 40:4, 2009, 258, C

Brown Sharpie: .999… = 1 (Cartoon), Courtney Gibbars, 40:4, 2009, 262, C

341 is a Brilliant Number, P. D. James, 40:5, 2009, 368, C, 9.3

Visualizing Elections using Saari Triangles, Mariah Birgen, 41:4, 2010, 325-328, 0.3, 3.3

The Rascal Triangle, Alif Anggoro, Eddy Liu, and Angus Tulloch, 41:5, 2010, 393-395, 3.2

Sum-Difference Numbers, Yixun Shi, 41:5, 2010, 404-405, C, 9.3

Minuend & Subtrahend, Merriam-Webster Dictionary, 42:4, 2011, 316, C

Just Take the Limit!, Jody Picoult, 42:5, 2011, 431, C, 0.8, 9.10

A Numerical Challenge, Robert Wainwright, 43:1, 2012, 19, 63, C

Carryless Arithmetic Mod 10, David Applegate, Marc LeBrun, and N. J. A. Sloane, 43:1, 2012, 43-50, 5.4.1, 9.2, 9.4

Squaring, Cubing, and Cube Rooting, Arthur T. Benjamin, 43:1, 2012, 58-63, 0.2, 9.2
0.2 Algebra

Mathematics, A Solitary Game, Olof Hanner, 1:2, 1970, 5-16, 4.1
Gog and Gug, Howard W. Eves, 1:1, 1970, 8, C
The Irrationality of Certain Numbers, Peter A. Lindstrom, 1:1, 1970, 30-31, 9.3
A Computer-Oriented Multiplication Algorithm, John Peterson, 1:2, 1970, 106, C
A Geometric Approach to the Orders of Infinity, Harold L. Schoen, 3:2, 1972, 74-76, C, 9.5
Pascal's k-Simplex, Dale Woods and Mary Jane Kohlenberg, 4:3, 1973, 38-43
Teaching Inequalities Involving Absolute Values, Frances W. Lewis, 4:2, 1973, 87-90, C
Maximize x(a-x), L. H. Lange, 5:1, 1974, 22-24, 0.7, 5.1.4
A Further Note on the Orders of Infinity, Harold L. Schoen, 5:1, 1974, 80-81, C, 9.5
Investigations of Linear and Reciprocal Functions by the Line-to-Line Technique, David R. Duncan and Bonnie H. Litwiller, 6:2, 1975, 37-40, 9.10
Finding Super Accurate Integers, Pasquale Scopelliti and Herbert Peebles, 7:3, 1976, 14-15, 1.2
Mathematical Induction: If Student k Understands It, Will Student K + 1?, Judith L. Gersting, 6:2, 1975, 18-20, 0.9
Easter Revisited, Daniel T. Bleck, 6:3, 1975, 38-40
An Elementary Construction of the Common Log Tables, James H. Jordan, 8:5, 1977, 274-278
Applicable Mathematics in Two Year Colleges, Ralph Mansfield, 9:3, 1978, 148-153
Computer Solution of Alphametics, Sarah Brooks, 11:2, 1980, 111-114
Why Not Teach Synthetic Multiplication?, Kenneth R. Kundert, 11:2, 1980, 121-122, C
A Precalculus Approximation of n!, Norman Schaumberger, 11:3, 1980, 202-204, C, 5.4.2
Inventor's Paradox, Man-Keung Siu, 12:4, 1981, 267, C
Misguided Mathematical Maxim-Makers, Betsy Darken Smith, 12:5, 1981, 309-316, 1.2
Selection of a Fair Currency Exchange Rate, Allen J. Schwenk, 13:2, 1982, 154-155, C, 0.8

FFF #49. Two Transcendental Equations, Ed Barbeau, 23:1, 1992, 36, F, 5.3.2

FFF #52. An Application of the Cauchy-Schwartz Inequality, Ed Barbeau, 23:2, 1992, 142, F, 9.5

Infinitely Many Different Quartic Polynomial Curves, Nitsa Movshovitz-Hader and Alla Shmukler, 23:3, 1992, 186-195, 0.7

Commutativity of Polynomials, Shmuel Avital and Edward Barbeau, 23:5, 1992, 386-395, 6.3, 0.7

FFF. Matrices and the TI-81 Graphics Calculator, Constance J. Gardner, 24:1, 1993, 64, F, 4.1

FFF #58. A Rational Combination of Two Transcendentals, Ed Barbeau, 24:3, 1993, 229, F, 5.3.2

FFF #59. A Formula that Works Only for n=1, Ed Barbeau, 24:3, 1993, 229-230, F, 0.9

FFF #60. A Two-Valued Function, Ed Barbeau, 24:3, 1993, 230, F, 5.3.2

FFF #65. Solving a Cubic, Ed Barbeau, 24:4, 1993, 344, F, 0.7 (also 25:4, 1994, 311)

Approaches to the Formula for the nth Fibonacci Number, Russell Jay Hendel, 25:2, 1994, 139-142, C, 4.5, 5.4.2, 9.3, 9.5

Extending Bernoulli’s Inequality, Ronald L. Persky, 25:3, 1994, 230, C, 9.5

FFF #84. A Method for Solving a Cubic Equation, Ed Barbeau, 26:1, 1995, 35-36, F, 0.7

A Geometric Approach to Linear Functions, Jack E. Graver, 26:5, 1995, 389-394, C, 0.4, 6.3

FFF #120. A Quick (?) Proof of Irrationality, Richard Askey, 28:4, 1997, 286, F

Visualizing the Complex Roots of Quadratics (Proof Without Words), Shaun Pieper, 28:5, 1997, 359, C, 0.7

FFF #124. The Number of Tickets Sold, Robert W. Vallin, 29:1, 1998, 34-35, F

FFF. Distributing Addition over Multiplication, S. R. S. Sastry, 29:3, 1998, 221, F

FFF #137. Drenching a sphere, David Cantrell, 30:1, 1999, 39, F

Multiplying and Dividing Polynomials Using Geloxia, Jeff Suzuki, 30:1, 1999, 50-53, C

The Trinomial Triangle, James Chappell and Thomas Osler, 30:2, 1999, 141-142, C, 3.2

An Identity for n(n+1)(n+2)(n+3)+1, Alfinio Flores, 30:3, 1999, 247, C

FFF. Mathematical oxymorons, Richard Francis, 30:4, 1999, 308, F

Things I Have Learned at the AP Reading, Dan Kennedy, 30:5, 1999, 346-355, 5.1.1, 5.1.2, 5.2.1, 5.2.6, 5.4.2, 6.1

a^2+b^2 ≥ 2ab (Mathematics Without Words), Alfinio Flores, 31:2, 2000, 106, C

FFF #156. An Imaginary Absolute Value?, Peter M. Jarvis and Paul S. Shuette, 31:3, 2000, 207, F

Binomials to Binomials, Thomas Osler, 31:3, 2000, 211-212, C, 6.3

Colin Maclaurin’s Quaint Word Problems, Bruce Hedman, 31:4, 2000, 286-289

Tangents without Calculus, Jorge Aarao, 31:5, 2000, 406-407, C, 0.7, 5.1.3

a^3 + b^3 >= a^2*b + ab^2 (Mathematics Without Words), Norman Schaumberger, 32:1, 2001, 38, C

FFF #169. Strengthening a theorem on linear fractional transformations, Peter M. Jarvis, 32:1, 2001, 49, F
Linear Relations Between Powers of Terms in Arithmetic Progression, Calvin Long and Boyd Henry, 32:2, 2001, 135-137, C, 3.2
Factoring Quadratics, Stephen Kaczkowski, 32:3, 2001, 203-204, C
There Are No New Word Problems, Charles Marion, 32:3, 2001, 238-239, C
FFF #183. Dimensions of a yard, a student, 33:1, 2002, 39, F
FFF #186. The illegal moves method for quadratics, John C. and Holly M. Hoover, 33:1, 2002, 40, F
Solutions to x+y=xy (Mathematics Without Words), Roger Nelsen, 33:2, 2002, 130, C, 0.6
FFF #188. An appeal to symmetry, a student, 33:2, 2002, 137, F
Sums of Roots and Poles of Rational Functions, Paul Deiermann, 33:2, 2002, 148-149, C
What is This? F(g(hung)) = hung in effigy, Marvin Johnson, 33:3, 2002, 225, C
The Roots of a Quadratic, Leonard Gillman, 33:3, 2002, 237-238, C, 0.7
FFF #198. An answer hard to get at, Li Zhou, 33:4, 2002, 310, F
The Exponential Formula, the Editor, 33:4, 2002, 349, C
Quadratic and Exponential Formulas, David Marcus, 34:1, 2003, 49, C
FFF #201. Solution of a rational equation, Carl Libis, 34:1, 2003, 50-51, F
FFF #203. Toothpicks, Elaine Simmt, 34:1, 2003, 52, F
FFF. Factoring quadratics, Ed Barbeau, 34:1, 2003, 53, F
Keyboard Inequalities, Monte Zerger, 34:1, 2003, 67, C, 9.5
How (Not) to Solve Quadratic Equations, Yves Nievergelt, 34:2, 2003, 90-104, 9.6
Clarifying Compositions with Cobwebs, Nial Neger and Michael Frame, 34:3, 2003, 196-204, 6.3
FFF #210. Summing squares by averages, Shailesh Shirali, 34:3, 2003, 224, F
FFF #211. ab^k = (ab)^k, Carl Libis and Parviz Khaliili, 34:3, 2003, 225, F
For What Functions Is f'(x) = 1/f(x)?, Sharon MacKendrick, 34:4, 2003, 304-311, 9.5
The Band Around a (non)Convex Set, Jack Stewart and Annalisa Crannell, 34:5, 2003, 377-379, 0.7, 9.4
A Rational Root Theorem for Imaginary Roots, Sharon Barrs, James Braselton, and Lorraine Braselton, 34:5, 2003, 380-382, 0.7, 9.4
An Inverse, Ted Ridgway, 35:2, 2004, 104, C
Heron’s Area Formula: What About a Tetrahedron?, Reuben Hersh, 35:2, 2004, 112-114, 0.4, 9.7
The root mean square of a and b (Mathematics Without Words), Ruma Falk, 35:3, 2004, 170, C
FFF #224. The square root of -1 is real, Teik-Cheng Lim, 35:3, 2004, 214, F
Algebra in Respiratory Care, David F. Snyder, 35:4, 2004, 300-302, C, 9.10
Introducing the Sums of Powers, Jeff A. Suzuki, 35:4, 2004, 303-304, C
FFF #228. An exponential equation, Ed Barbeau, 35:5, 2004, 382, F, 5.3.2
A Perplexing Polynomial Puzzle, I. B. Keene, 36:2, 2005, 100, C
FFF #235. A lot of values, Ed Barbeau, 36:2, 2005, 141-142, F
Roots of Integers, Revisited, Andrea Rothbart, 36:4, 2005, 317, C (see also 36:1, 56)
Truck Drivers, a Straw, and Two Glasses of Water, Kevin Iga and Kendra Kilpatrick, 37:2, 2006, 82-92, 6.3
FFF. BEDMAS, Jack Weiner, 37:2, 2006, 123-124, F
FFF #258. Right on target!, Larry Braden, 37:5, 2006, 381-383, F
FFF #260. Increasing a square to a square, Chris Fisher, 38:1, 2007, 43, F, 9.3
FFF #263. Reciprocating for success, M. A. Khan, 38:2, 2007, 131-132, F
Quirky Quadratics, Christopher S. Withers and Saralees Nadarajah, 38:3, 2007, 178, C, 0.7
Teaching Tip: A Function is a Bow, Salvatore Anastasio, 38:3, 2007, 184, F
FFF #266. The escaped criminal, Ed Barbeau, 38:3, 2007, 218, F
FFF #268. An algebra problem, anonymous, 38:3, 2007, 220, F
FFF #275. More striking results, Peter Schumer and Michael A. Jones, 39:1, 2008, 50, F, 5.1.1
Missteps in Mathematics Books, Jerome Dancis, 39:5, 2008, 380-382, F, 0.1
FFF #287. Logging the solutions of an equation, Ed Barbeau, 39:5, 2008, 383-384, F, 5.3.2
Sam Loyd’s Courier Problem with Diophantus, Pythagoras, and Martin Gardner, Owen O’Shea, 39:5, 2008, 387-391, C, 0.7, 9.2
Short Division of Polynomials, Li Zhou, 40:1, 2009, 44-46, C
Dogs Don’t Need Calculus, Michael Bolt and Daniel C. Isaksen, 41:1, 2010, 58-63, 0.1, 9.2
Teaching Tip: How to Manipulate Test Scores, Colin Foster, 41:2, 2010, 121-122, C, 1.1
Proof Without Words: The Square of a Balancing Number is a Triangular Number, Michael A. Jones, 43:3, 2012, 212, C, 9.3
Why the Faulhaber Polynomials Are Sums of Even or Odd Powers of (n + ½), Reuben Hersh, 43:4, 2012, 322-324, 9.3

0.3 Synthetic geometry

Kepler's explanation of the Timaeus associations, Howard Eves, 1:2, 1970, 31, C, 2.2
Shapes of the Future, Victor Klee, 2:2, 1971, 14-27, 3.1
Plaited Platonic Puzzles, Jean J. Pedersen, 4:2, 1973, 23-37
Partitions of the Plane, Nathan Hoffman, 5:2, 1974, 71-73, C, 3.1
Some Insight into the Convex Quadrilateral, Benjamin Greenberg, 5:3, 1974, 14-17
A Finite Field—A Finite Geometry and Triangles, Marc Swadener, 5:3, 1974, 22-26, 9.4
Polygons, Both Perfect and Regular, Richard L. Francis, 6:2, 1975, 20-21
Some Consequences of a Property of the Centroid of a Triangle, Norman Schaumberger, 8:3, 1977, 142-144
Guessing and Proving, George Polya, 9:1, 1978, 21-27
The Discovery of a Generalization: An Example in Problem Solving, Hugh Ouellette and Gordon Bennett, 10:2, 1979, 100-106, 0.2
Circles and Spheres, G. D. Chakerian, 11:1, 1980, 26-41
Inscribed Figures of Maximum Area: A Geometric Approach for a Geometric Problem, Peter Renz, 11:2, 1980, 147-149
The Pentagram and the Discovery of an Irrational Number, James R. Choike, 11:5, 1980, 312-316, 2.2
Euclid's 'Elements' - excerpts from a 1660 edition, 12:2, 1981, 117, 5.3.2, 5.3.3
From an Inequality to Inversion, Man-Keung Siu, 12:2, 1981, 149-151, C
A Space-Filling Torus, Dan Wheeler and David Sklar, 12:4, 1981, 246-248
Ellipses from a Circular and Spherical Point of View, Alden R. Partridge, 14:5, 1983, 436-438, 0.5
Behold! The Arithmetic-Geometric Mean Inequality, Roland H. Eddy, 16:3, 1985, 208, C, 0.2
Hippocrates and Archytas Double the Cube: A Heuristic Interpretation, Barnabas B. Hughes, 20:1, 1989, 42-48, 2.1
Behold! The Vertex Angles of a Star Sum to 180 degrees, Fouad Nakhli, 17:4, 1986, 338, C
The International Mathematical Olympiad Training Session, Cecil Rousseau and Gregg Patruno, 16:5, 1985, 362-365, 2.2, 9.3
A Babylonian Geometrical Algebra, James K. Bidwell, 17:1, 1986, 22-31, 0.2
Three Ways to Maximize the Area of an Inscribed Quadrilateral, Leroy F. Meyers, 17:3, 1986, 238-239, 5.5
The Surface Area of a Cone, Herb Holden, 20:5, 1989, 432, C
The Trisection of an Angle in an Infinite Number of Steps, Eric Kincanon, 21:5, 1990, 393, C
Hexaflexagons, Martin Gardner, 43:1, 2012, 2-5, 3.2, 9.2, 9.4, 9.8
The V-flex, Triangle Orientation, and Catalan Numbers in Hexaflexagons, Ionut E. Iacob, Bruce McLean, and Hua Wang, 43:1, 2012, 6-10, 3.1, 3.2, 9.2, 5.4.1, 9.8
From Hexaflexagons to Edge Flexagons to Point Flexagons, Les Pook, 43:1, 2012, 11-14, 3.1, 9.2, 9.4, 9.8
Bracing Regular Polygons As We Race into the Future, Greg N. Frederickson, 43:1, 2012, 51-57, 9.2
A Platonic Sextet for Strings, Karl Schaffer, 3:1, 2012, 64-69, 3.1, 9.2
Polyomino Dissections, Tiina Hohn and Andy Liu, 43:1, 2012, 88-94, 9.2
Proof Without Words: The Pythagorean Theorem with Equilateral Triangles, Claudi Alsina and Roger B. Nelsen, 43:3, 2012, 226, C
On the Steiner Minimizing Point and the Corresponding Algebraic System, Ioannis M. Roussos, 43:4, 2012, 305-308, 0.2
A Different Angle on Perspective, Marc Frantz, 43:5, 2012, 354-360, 9.7
Proof Without Words: Ptolemy’s Theorem, William Derrick and James Hirstein, 43:5, 2012, 386, C

0.4 Analytic geometry

Geometry via Physics, Ross Honsberger, 10:4, 1979, 271-276
Distance from a Point to a Line, K. R. S. Sastry, 12:2, 1981, 146-147, C
A Classroom Approach to \(x^2 + y^2 + z^2 = w^2 \), Norman Schaumberger, 12:5, 1981, 331-332, C
An Analytic Approach to the Euler Line, Johathan W. Lewin, 15:1, 1984, 52-53, C
The Fractal Geometry of Mandelbrot, Anthony Barcellos, 15:2, 1984, 98-114, 9.8
A Geometrical Interpretation of the Weighted Mean, Larry Hoehn, 15:2, 1984, 135-139, 0.2, 7.3
On Problems with Solutions Attainable in More Than One Way, Jean Pedersen and George Polya, 15:3, 1984, 218-228, 0.2, 5.4.2
Proving Heron's Formula Tangentially, David E. Dobbs, 15:3, 1984, 252-253, C, 0.6
Pythagorean Systems of Numbers, Joseph Wiener, 15:4, 1984, 324-326, C, 0.2, 9.3
Distance From a Point to a Line, Abdus Sattar Gazdar, 15:4, 1984, 328-329, C
Right Triangles with Perimeter and Area Equal, William Parsons, 15:5, 1984, 429, C, 0.2
A Nonstandard Solution to a Standard Problem, Florence S. Gordon, 17:1, 1986, 74, C
Angling for Pythagorean Triples, Dan Kalman, 17:2, 1986, 167-168, C, 9.3
Geometric Parametrization of Pythagorean Triples, Alvin Tirman, 17:2, 1986, 168, C
Three Ways to Maximize the Area of an Inscribed Quadrilateral, Leroy F. Meyers, 17:3, 1986, 238-239, 5.5
A Pretrigonometry Proof of the Reflection Property of the Ellipse, Zalman P. Usiskin, 17:5, 1986, 418, C
Behold! The Pythagorean Theorem via Mean Proportions, Michael Hardy, 17:5, 1986, 422, C
Drawing the Line Segment Connecting Two Points, Harley Flanders, 18:1, 1987, 53-57, 3.3, 8.1
Heron's Area Formula, Roger C. Alperin, 18:2, 1987, 137-138, C
Equiangular Lattice Polygons and Semiregular Lattice Polyhedra, Paul R. Scott, 18:4, 1987, 300-306
Some Properties of Polygons Inside a Circle, Larry Hoehn, 18:5, 1987, 397-401
Newton's nth Root Method Without Derivatives, David A. Smith, 18:5, 1987, 403-406, C, 0.7
An Unexpected Appearance of the Golden Ratio, George Manuel and Amalia Santiago, 19:2, 1988, 168-170, C, 5.1.1
Ruma Falk, 33:2, 2002, 168-169, C
Mathematics Without Words: A Property of Centroids, Norman Schaumberger, 33:4, 2002, 324, C
Euler’s Theorem for Generalized Quadrilaterals, Geoffrey A. Kandall, 33:5, 2002, 403-404, C
Predicting Sunrise and Sunset Times, Donald A. Teets, 34:4, 2003, 317-321, C, 0.6
Heron’s Area Formula: What About a Tetrahedron?, Reuben Hersh, 35:2, 2004, 112-114, 0.2, 9.7
The Pythagorean Theorem and Beyond: a Classification of Shapes and Triangles, Guansh Ren, 35:4, 2004, 305-307, C
The Theorem of Cosines for Pyramids, Alexander Kheyfits, 35:5, 2004, 385-388, C, 0.6
FFF #237. The area of a cross section, Ed Barbeau, 36:2, 2005, 142-143, F
Making a Bed, Anthony Wexler and Sherman Stein, 36:3, 2005, 213-221, 5.1.4
FFF #240. Clipping the corners off, Ed Barbeau, 36:4, 2005, 315, F
Straw in a Box, Richard Jerrard, Joel Schneider, Ralph Smallberg, and John Wetzel, 37:2, 2006, 93-102, 9.10
How To View A Flatland Painting, Mark Schlatter, 37:2, 2006, 114-120, 9.7
As the Crow Flies?, Linda Greenhouse, 38:4, 2007, 271, C (see also 37:5, 343)
The Normals to a Parabola and the Real Roots of a Cubic, Manjinder S. Bains and J. B. Thoo, 38:4, 2007, 272-277, 0.5, 9.7
FFF #270. Maximizing an area, Ed Barbeau, 38:5, 2007, 375, F, 5.1.4
Conic Sections from the Plane Point of View, Sidney H. Kung, 38:5, 2007, 383-384, C, 0.5
Hermit Points on a Box, Richard Hess, Charles Grinstead, Marshall Grinstead, and Deborah Bergstrand, 39:1, 2008, 12-23, 5.7.1, 9.2
Two Problems with Table Saws, William R. Vautaw, 39:2, 2008, 121-128, 0.6, 5.1.3
Squaring a Circular Segment, Russell A. Gordon, 39:3, 2008, 212-220, 5.4.2, 9.6
How to Measure Angles with a Ruler, Travis Kowalski, 39:4, 2008, 273-279, 5.1.4
Diametric Quadrilaterals with Two Equal Sides, Raymond A. Beauregard, 40:1, 2009, 17-21, 0.3
Solomon’s Sea and Pi, Andrew J. Simoson, 40:1, 2009, 22-32, 2.1, 9.2
Lattice Triangles for Mathematicians, James Tanton, 40:5, 2009, 336, 360, 369, 375, C
A Pi Curiosity, David W. Hoffman, 40:5, 2009, 399, C, 9.6
POEM’s and Newton’s Aerodynamic Frustrum, Jaime Cruz-Sampredo and Margarita Tetlalmatzi-Montiel, 41:2, 2010, 145-153, 0.5, 5.1.4, 9.10
How Spherical Are the Archimedean Solids and Their Duals?, P. K. Aravind, 42:2, 2011, 98-107, 0.3
The Symmedian Point: Constructed and Applied, Robert K. Smither, 42:2, 2011, 115-117, 0.3, 9.7
The Shad-Fack Transom, Annalisa Crannell, 42:4, 2011, 309-316, 0.3, 5.4.2
Three Equal Lines, Two Midpoints - |AG|/|AB|=? , Jo Niemeyer, 43:2, 2012, 151, C
The Spider and the Fly, Keith E. Mellinger and Raymond Viglione, 43:2, 2012, 169-172, C, 9.2
Geometry of Sum-Difference Numbers, Paul Yiu, 43:5, 2012, 408-409, C, 9.3

Conic sections

Three-D Pictures from Your Computer-Linked Plotter, Charles John Acker and Joe Frank Allison, 9:5,
1978, 303-308
An Ellipse Problem Beyond the Reach of Calculus, Ivan Niven, 10:3, 1979, 162-168, 0.6
Stories in Combinatorial Geometry, Ross Honsberger, 10:5, 1979, 344-347, 3.2
The Curve Parallel to a Parabola is not a Parabola: Parallel Curves, F. Max Stein, 11:4, 1980, 239-246, 0.7
Conic Section or Degenerate Form—A Simple Test, Stewart Venit, 11:5, 1980, 316-319
The Curve Parallel to a Parabola is not a Parabola: Parallel Curves, F. Max Stein, 13:3, 1982, 186-190
Ellipses from a Circular and Spherical Point of View, Alden R. Partridge, 14:5, 1983, 436-438, 0.3
Deriving the Equations of the Ellipse and Hyperbola, John C. Huber and Joseph Wiener, 15:1, 1984, 58-59, C
Reflection Property of the Ellipse and the Hyperbola, Michael K. Brozinsky, 15:2, 1984, 140-142, C
Geometric Procedures for Graphing the General Quadratic Equation, Duane W. DeTemple, 15:4, 1984, 313-323, 0.7
Constructing the Foci and Directrices of a Given Ellipse, Charles G. Moore, 16:2, 1985, 122-128
Area of a Parabolic Region, R. Rozen and A. Sofo, 16:5, 1985, 400-402, C, 5.2.6
A Pretrigonometry Proof of the Reflection Property of the Ellipse, Zalman P. Usiskin, 17:5, 1986, 418, C, 0.4
To View an Ellipse in Perspective, Charles G. Moore, 20:2, 1989, 134-136, C, 0.4
Moire Fringes and the Conic Sections, M. R. Cullen, 21:5, 1990, 370-378, 5.7.1
Single Equations Can Draw Pictures, Keith M. Kendig, 22:2, 1991, 134-139, C, 0.4, 5.1.5, 5.6.1, 5.6.2
Visualization of Limits and Limits of Visualization: Student Research Projects, Lee H. Minor, 23:1, 1992, 48-51, 0.4, 5.1.3
Isaac Newton: Credit Where Credit Won't Do, Robert Weinstock, 25:3, 1994, 179-192, 2.2, 5.1.3, 5.4.3, 5.6.1
In Defense of Newton: A Physicist's View, A. P. French, 25:3, 1994, 206-209, 2.2, 5.6.1
Newton's Principia and Inverse-Square Orbits, N. Nauenberg, 25:3, 1994, 212-221, 2.2, 6.4, 6.5
Robert Weinstock's Response to Nauenberg, Robert Weinstock, 25:3, 1994, 221-222, 2.2
Cutting Corners: A Four-gon Conclusion, S. C. Althoen and K. E. Schilling and M. F. Wyneken, 25:4, 1994, 266-279, 0.4, 9.5
Functions of a Curve: Leibniz's Original Notion of Functions and Its Meaning for the Parabola, David Dennis and Jere Confrey, 26:2, 1995, 124-131, 0.3, 2.2
Cylinder and Cone Cutting, Michael R. Cullen, 28:2, 1997, 122-123, C
Construction Without Words: Focus and Directrix, Michel Bataille, 30:3, 1999, 212, C
The Average Distance of the Earth from the Sun, David Deever, 30:3, 1999, 218-220, C, 5.2.3, 5.2.8
A Quick Construction of Tangents to an Ellipse, Arthur Segal, 31:2, 2000, 131, C
Elliptical Tangents, I, Barnabas Hughes, 32:1, 2001, 69, C
Miscellanea: Tangents to an Ellipse, David Bloom, 32:4, 2001, 317-318, C
Miscellanea: The Center of an Ellipse, Sidney Kung, 32:4, 2001, 318, C
Using Differential Equations to Describe Conic Sections, Ranjith Munasinghe, 33:2, 2002, 145-148, C, 6.4
The Eccentricity of a Conic Section, Ayoub B. Ayoub, 34:2, 2003, 116-121
The Tangent Lines of a Conic Section, Daniel Wilkins, 34:4, 2003, 296-303, 9.5
Intersections of Tangent Lines of Exponential Functions, Timothy G. Feeman and Osvaldo Marrero, 36:3, 2005, 205-208, 5.1.3, 5.3.2
Archimedes’ Quadrature of the Parabola: A Mechanical View, Thomas J. Osler, 37:1, 2006, 24-28, 5.2.6
Folding Beauties, Leah Wrenn Berman, 37:3, 2006, 176-186, 5.6.1, 9.7
Conic Sections from the Plane Point of View, Sidney H. Kung, 38:5, 2007, 383-384, C, 0.4
Proof Without Words: The Volume of an Ellipsoid via Cavalieri’s Principle, Sidney H. Kung, 39:3, 2008, 190, C, 5.2.7
The Dance of the Foci, David Seppala-Holatzman, 41:2, 2010, 122-128, 5.6.1
The Locus of the Foci of a Rolling Parabola, Anurag Agarwal and James Marengo, 41:2, 2010, 129-133, 5.2.8
POEM’s and Newton’s Aerodynamic Frustrum, Jaime Cruz-Sampedro and Margarita Tetlalmatzi-Montiel, 41:2, 2010, 145-153, C, 0.4, 5.1.4, 9.10
Generalized Parabolas, Dan Joseph, Gregory Hartman, and Caleb Gibson, 42:4, 2011, 275-282, 5.6.1, 5.7.3, 9.8 (see also 43:5, 429)
From the Dance of the Foci to a Strophoid, Andrew Joblings, 42:4, 2011, 289-298, 5.6.1

0.6 Trigonometry (also see 5.3)

Factoring Functions, J. C. Bodenrader, 2:1, 1971, 23-26, 5.1.2, 3.2, 9.1
An Interesting Correspondence and Its Consequence, Sidney Penner, 2:1, 1971, 40-44
A "Doodling" Inequality, Benjamin Greenberg, 4:1, 1973, 78-79, C
A Classroom Theorem on Trigonometric Irrationalities, Norman Schaumberger, 5:1, 1974, 73-76, C
Square Functions, Helmer Junghans, 5:2, 1974, 15-18, 0.7
A Set of Trigonometric Inequalities with Applications to Maxima and Minima, Norman Schaumberger, 5:3, 1974, 26-30, 5.1.4
A Generator of Trigonometric Identities, Aron Pinker, 5:4, 1974, 54-55, C
Mathematical Astronomy, Vincent J. Motto, 6:1, 1975, 21-26
Closing the Loopholes, Morton Bloomfield and Frank Lasak, 6:2, 1975, 42-44, C
An Interesting Use of Generating Functions, Aron Pinker, 6:4, 1975, 39-45, 5.4.2, 9.5
Closing the Loopholes in "Closing the Loopholes", Gene Zirkel, 7:3, 1976, 55-58, C
Another Note on "Closing the Loopholes", Larry F. Bennett, 7:3, 1976, 56-58, C
Quasi-Pythagorean Triples for an Oblique Triangle, Kay Dundas, 8:3, 1977, 152-155, 9.3
Geometric Proofs of the Formulas for Sin(x+y) and Cos(x+y), Norman Schaumberger, 10:1, 1979, 35, C
An Ellipse Problem Beyond the Reach of Calculus, Ivan Niven, 10:3, 1979, 162-168, 0.5
Why Can't We Trisect an Angle This Way?, David Beran, 10:3, 1979, 199-200, C
Products of Sines, Zalman Usiskin, 10:5, 1979, 334-340
Geometric Interpretations of Sin(\phi_1)+Sin(\phi_2)=1, Charles Muses, 10:5, 1979, 350-351, C
A Formula for Sin (A+B), Simon J. Lawrence, 11:2, 1980, 125-126, C
Formulas for sin(x+y) and cos(x+y), Robert Geist, 11:2, 1980, 126, C
Trigonometric Solutions to the Quadratic Equation, Leo Chosid, 11:5, 1980, 330-331, C
Visual Application of Sin(theta1 + theta2) = Sin(theta1)Cos(theta2) + Cos(theta1)Sin(theta2), Gerald E. Gannon, 12:3, 1981, 206, C
Sum Formulas for Sine and Cosine, Dan Kalman, 14:1, 1983, 55-56, C
The Steiner-Lehmus Theorem as a Challenge Problem, Ken Seydel and Carl Newman, 14:1, 1983, 72-75, 0.4
Approximation to an Angle Trisection, Glen Peterson, 14:2, 1983, 166-167, C
Integer-Sided Triangles with One Angle Twice Another, R. S. Luthar, 15:1, 1984, 5-56, C, 9.3
Proving Heron's Formula Tangentially, David E. Dobbs, 15:3, 1984, 252-253, C, 0.4
Approximate Angle Trisection, David Gauld, 15:5, 1984, 420-422, C, 5.4.2
Generalized Pythagorean Triples, W. J. Hildebrand, 16:1, 1985, 48-52, 5.5, 9.3
Pitfalls in Graphical Computation, or Why a Single Graph Isn't Enough, Franklin Demana and Bert K. Waits, 19:2, 1988, 177-183
The Double-Angles Formulas, Roger B. Nelsen, 20:1, 1989, 51, C
Where There is Pattern, There is Significance, Lloyd Olson, 20:4, 1989, 321, C
(Sin x)^2: A Sheep in Wolf's Clothing, Mark E. Saul, 21:1, 1990, 43-44, C, 5.1.5
China's 1989 National College Entrance Examination, Bart Braden, 21:5, 1990, 390-393, 0.2, 0.4, 1.2
Trigonometric Identities through Calculus, Herb Silverman, 21:5, 1990, 403, C, 5.3.1
Cos(s-t) from the Distance Formula, Gilbert Strang, 23:4, 1992, 333, C
The Half-Angle Formulas for the Tangent, Sidney H. Kung, 25:3, 1994, 205, C
A Simple Geometric Proof of the Addition Formula for the Sine, Jeffrey Li-chieh Ho, 25:3, 1994, 229-230, C
An Early Iterative Method for the Determination of Sine of One Degree, Farhad Riahi, 26:1, 1995, 16-21, 2.1
cos(x+y) (Proof Without Words), Sidney H. Kung, 26:2, 1995, 145, C
The Double-Angle Formulas via the Laws of Sines and Cosines, Sidney H. Kung, 27:2, 1996, 155, C
Trigonometric Identity: The Difference of Two Sines or Two Cosines (proof without words), Yukio Kubayashi, 29:2, 1998, 133, C
Trigonometric Identity: The Sum of Two Sines or Two Cosines (proof without words), Yukio Kobayashi, 29:2, 1998, 157, C
FFF #133. Identifying the Angle, K. R. S. Sastry, 29:5, 1998, 405-406, F
Proof Without Words: tan(a-b), Guanshen Ren, 30:3, 1999, 212, C
0.7 Elementary theory of equations

Maximize x(a-x), L. H. Lange, 5:1, 1974, 22-24, 0.2, 5.1.4
Square Functions, Helmer Junghans, 5:2, 1974, 15-18, 0.6
Investigations of Linear and Reciprocal Functions by the Line-to-Line Technique, David R. Duncan and Bonnie H. Litwiller, 6:2, 1975, 2-7, 0.2
A Precalculus Unit on Area Under Curves, Samuel Goldberg, 6:4, 1975, 29-35, 5.4.2
Several Hyperbolic Encounters, L. H. Lange, 7:1, 1976, 2-6
Finding Super Accurate Integers, Pasquale Scopelliti and Herbert Peebles, 7:3, 1976, 52-54, 0.2, 9.6
Can This Polynomial Be Factored?, Harold L. Dorwart, 8:2, 1977, 67-72, 9.4
Polygonal Roots, Barnabas B. Hughes, 10:5, 1979, 313-318, 0.2
Luddhar's Method of Solving a Cubic Equation with a Rational Root, R. S. Luthar, 11:2, 1980, 107-110, 0.2
Approximation of Square Roots, Leon Weintrob, 14:5, 1983, 427-430, 0.2, 9.6
Complex Roots Made Visible, Alec Norton and Benjamin Lotto, 15:3, 1984, 248-249, C, 0.2
Nested Polynomials and Efficient Exponential Algorithms for Calculators, Dan Kalman and Warren Page, 16:1, 1985, 57-60, C, 0.2, 9.6
Graphing the Complex Roots of a Quadratic Equation, Floyd Vest, 16:4, 1985, 257-261, C, 0.2, 9.5
Newton's nth Root Method Without Derivatives, David A. Smith, 18:5, 1987, 403-406, C, 0.4
Powers and Roots by Recursion, Joseph F. Aieta, 18:5, 1987, 411-416, 0.2, 6.3
Finding Rational Roots of Polynomials, Don Redmond, 20:2, 1989, 139-141, C, 9.3
A Zero-Row Reduction Algorithm for Obtaining the gcd of Polynomials, Sidney H. Kung and Yap S. Chua, 21:2, 1990, 138-141, 4.1, 9.4
Reading Bombelli's x-purgated Algebra, Abraham Arcavi and Maxim Bruckheimer, 22:3, 1991, 212-219, 2.2
Euler and the Fundamental Theorem of Algebra, William Dunham, 22:4, 1991, 282-293, 2.2
Infinitely Many Different Quartic Polynomial Curves, Nitsa Movshovitz-Hader and Alla Shmukler, 23:3, 1992, 186-195, 0.2
Commutativity of Polynomials, Shmuel Avital and Edward Barbeau, 23:5, 1992, 386-395, 0.2, 6.3
FFF #65. Solving a Cubic, Ed Barbeau, 24:4, 1993, 344, F, 0.2
Roots of Cubics via Determinants, Robert Y. Suen, 25:2, 1994, 115-117, 4.2
FFF #84. A Method for Solving a Cubic Equation, Ed Barbeau, 26:1, 1995, 35-36, F, 0.2
A Genuine Application of Synthetic Division, Descartes' Rule of Signs, and All That Stuff, Dwight D. Freund, 26:2, 1995, 106-110, 0.8
The Hyperbolic Number Plane, Garret Sobczyk, 26:4, 1995, 268-280, 9.5
Critical Points of Polynomial Families, Elias Y. Deeba, Dennis M. Rodriguez, and Ibrahim Wazir, 27:4,
1996, 291-295, C, 5.1.5
Visualizing the Complex Roots of Quadratics (Proof Without Words), Shaun Pieper, 28:5, 1997, 359, C, 0.2
Who Cares if X^2 + 1 = 0 Has a Solution?, Viet Ngo and Saleem Watson, 29:2, 1998, 141-144, C, 5.2.5, 5.4.2, 6.2
A Simple Solution of the Cubic, Dan Kalman and James White, 29:5, 1998, 415-418, C
Do Most Cubic Graphs Have Two Turning Points?, Robert Fakler, 30:5, 1999, 367-369, 5.2.6, 7.2
Meta-Problems in Mathematics, Al Cuoco, 31:5, 2000, 373-378, 5.1.2, 9.3
Tangents without Calculus, Jorge Aarao, 31:5, 2000, 406-407, C, 0.2, 5.1.3
The Roots of a Quadratic, Leonard Gillman, 33:3, 2002, 237-238, C, 0.2
The Band Around a (non)Convex Set, Jack Stewart and Annalisa Crannell, 34:5, 2003, 377-379, 0.2, 9.4
A Rational Root Theorem for Imaginary Roots, Sharon Barrs, James Braselton, and Lorraine Braselton, 34:5, 2003, 380-382, 0.2, 9.4
Quirky Quadratics, Christopher S. Withers and Saralees Nadarajah, 38:3, 2007, 178, C, 0.2
Fibonacci's Forgotten Number, Ezra Brown and Jason C. Brunson, 39:2, 2008, 112-120, 2.1, 9.6
Sam Loyd's Courier Problem with Diophantus, Pythagoras, and Martin Gardner, Owen O'Shea, 39:5, 2008, 387-391, C, 0.2, 9.2
Cubic Polynomials with Rational Roots and Critical Points, Shiv K. Gupta and Waclaw Szymanski, 41:5, 2010, 365-369, 0.2, 9.3
On a Perplexing Polynomial Puzzle, Bettina Richmond, 41:5, 2010, 400-403, C, 9.3
Partitioning Pythagorean Triangles Using Pythagorean Angles, Carl E. Swenson and Andre L. Yandl, 43:3, 2012, 220-225, 0.6, 9.3

0.8 Business mathematics

A Question of Interest, Ann D. Holley, 9:2, 1978, 81-83
Another Question of Interest, Stanley G. Wayment, 11:4, 1980, 252-254
Compounding Energy Savings, Leo Chosid, 12:1, 1981, 56-57, C
Guessing and Algorithm—A Case for Interpolation, Denis R. Lichtman, 12:3, 1981, 199-203
Selection of a Fair Currency Exchange Rate, Allen J. Schwenk, 13:2, 1982, 154-155, C, 0.2
Income Averaging Can Increase your Tax Liability, Gino T. Fala, 16:1, 1985, 53-55, C, 9.5
Both a Borrower and a Lender Be, William Miller, 16:4, 1985, 284, C, 6.1
Arithmetic Progression and the Consumer, John D. Baildon, 16:5, 1985, 395-397, C, 5.4.1
A Case of True Interest, Soo Tang Tan, 17:3, 1986, 247-248, C, 5.4.2
A Hidden Case of Negative Amortization, Bert K. Waits and Franklin Demana, 21:2, 1990, 121-126, 6.3
FFF. Dollars and Sense, Stuart E. Mills, 22:4, 1993, 446-448, F (also 25:5, 1994, 435)
A Genuine Application of Synthetic Division, Descartes' Rule of Signs, and All That Stuff, Dwight D. Freund, 26:2, 1995, 106-110, 0.7
How Much Should You Pay for a Derivative?, Bennett Eisenberg, 29:5, 1998, 412-414, C
Amortization: An Applications of Calculus, Richard E. Klima and Robert G. Donnelly, 30:5, 1999, 388-
Techniques of proof (including mathematical induction)

Good Induction versus Bad Induction, from Howard Eves, 1:2, 1970, 16, C

If...Some Suggestions on Presenting the Connector "if...then", Aaron Seligman, 1:2, 1970, 22-26, 9.1

Mathematical Induction: If Student k Understands It, Will Student k + 1?, Judith L. Gersting, 6:2, 1975, 18-20, 0.2

The Well-Ordering Principle as an Alternative to Mathematical Induction in Our Lower Division

Recursive Formula Proofs, Orrin G. Cocks, 7:1, 1976, 13-14

A Helpful Device: or One More Use for Pascal's Triangle, Robert Rosenfeld, 8:3, 1977, 188-191, C, 5.4.2

A Note on the Principle of Mathematical Induction, Charles M. Bundrick and David L. Sherry, 9:1, 1978, 17-18

Mathematical Induction, or "What Good is All This Stuff if We Are Going to Assume It's True Anyway?", Leonard G. Swanson and Rodney T. Hansen, 12:1, 1981, 8-12

A Discrete Look at 1 + 2 + ... + n, Loren C. Larson, 16:5, 1985, 369-382, 0.2, 3.1, 3.2, 5.4.2, 6.3

Behold! (1x2)+(2x3)+ ... +nx(n+1) = (1/3)((n+1)^3 - (n+1)], Ali R. Amir-Moez, 18:4, 1987, 318, C

Sum of Squares (Proof by Picture), Pi-Chun Chuang, 20:2, 1989, 123, C

Product of k^k times k! (Proof by Picture), Edward T. A. Wang, 20:2, 1989, 152, C

Sum of Squares (Proof by Picture), Sidney H. Kung, 20:3, 1989, 205, C

FFF. Four Weighings, Ed Barbeau, 22:2, 1991, 133, F

FFF #45. All Powers of x are Constant, Ed Barbeau, 22:5, 1991, 403, F, 5.1.2

FFF #59. A Formula that Works Only for n=1, Ed Barbeau, 24:3, 1993, 229-230, F, 0.2

FFF. Which Balls are Actually There?, Ruma Falk, 26:1, 1995, 37, F

Count the Dots: 1+2+...+n = [n(n+1)]/2 (proof by picture), S. J. Farlow, 26:3, 1995, 190, C

Sum of Alternating Series (proof by picture), Guanshen Ren, 26:3, 1995, 213, 5.4.2

FFF #92. An Inductive Fallacy, Adrian Riskin and William Stein, 26:5, 1995, 382, F

FFF #94. Every Second Square is the Same, Allen J. Schwenk, 27:1, 1996, 44, F

FFF #103. Polynomial Detection, Ed Barbeau, 27:2, 1996, 118, F

FFF #118. Rabbits Reproduce; Integers Don't, Annie and John Selden, 28:4, 1997, 285, F

Weighing Coins: Divide and Conquer to Detect a Counterfeit, Mario Martelli and Gerald Gannon, 28:5, 1997, 365-367, 3.3

The End of Aviation, Peter Ross, 30:5, 1999, C

Yet Another Refreshing Induction Fallacy, Shay Gueron, 31:3, 2000, 205-207, F, 3.1

Leapfrogs: The Mathematical Details, Matt Wyneken, Steve Althoen, and John Berry, 36:2, 2005, 144-146, C
Towers of Hanoi Puzzle Revisited, Steve Althoen, 40:3, 2009, 225, C
One Problem, Nine Student-Produced Proofs, Geoffrey Birky, Connie M. Campbell, Manya Raman, James Sandefur, and Kay Somers, 42:5, 2011, 355-360, 0.2, 9.3

0.10 Software for precalculus mathematics

A Mathematics Software Database, R. S. Cunningham and David A. Smith, 17:3, 1986, 255-266, 3.4, 4.8, 5.8, 6.7, 7.4, 9.11
A Mathematics Software Database Update, R. S. Cunningham and David A. Smith, 18:3, 1987, 242-247, 3.4, 4.8, 5.8, 6.7, 7.4, 9.11
The Compleat Mathematics Software Database, R. S. Cunningham and David A. Smith, 19:3, 1988, 268-289, 3.4, 4.8, 5.8, 6.7, 7.4, 9.11
Mathematics by Machine with Mathematica®, Alan Hoenig, 21:2, 1990, 146-149
Derive®, A Mathematical Assistant, Jeanette R. Palmeter, 23:2, 1992, 158-161
The Geometer's Sketchpad and Cabri-Geometre (software review), Dennis DeTurck, 24:4, 1993, 370-376, 0.3, 0.4
Converge, Version 4.0 (Software Review), Lawrence G. Gilligan, 26:1, 1995, 58-63, 5.8
Toolkit for Interactive Mathematics, review by L. Carl Leinbach, 26:2, 1995, 152-156, 5.8
Software Review: f(g) Scholar, David C. Arney and Daniel J. Arney, 26:5, 1995, 401-403, 4.8, 5.8
Software Review: StudyWorks III Mathematics, Pat Stone, 31:4, 2000, 310-313, 5.8

1 Mathematics Education

1.1 Teaching techniques and research reports

Programmed Instruction in Elementary Algebra: An Experiment, Margaret L. Lial, 1:2, 1970, 17-21
New Results of Research Comparing Programmed and Lecture-Text Instruction, Maurice E. Nott, 2:1, 1971, 19-22
Two-Year College Faculty Participation in Professional Mathematics Organizations, John B. Davis and T. J. Pignani, 2:1, 1971, 53-57
An Experiment in Teaching Elementary Algebra, Donald Perry, 2:2, 1971, 40-46
The Crossover Mathematics Program at Milwaukee Area Technical College, Keith J. Roberts and Leo E. Michels, 2:2, 1971, 47-50
Academic Qualifications of North Carolina's Community College Professors, Phillip E. Johnson, 3:2, 1972, 33-36
Do Students Learn From and Like An Audio-Tutorial Course in Freshman Mathematics?, Peter M. Wilson, 3:2, 1972, 37-41
A Look at That 1971 MAA Information Services Survey, Lester H. Lange, 3:2, 1972, 56-69
The Effects of a Laboratory on Achievement in College Freshman Mathematics, Cameron Douthitt, 4:1, 1973, 55-59
A Study: Using CUPM Recommendations As Criteria of the Academic Preparation of Two-Year College Teachers, Donald Perry, 4:2, 1973, 67-71
Achivement, Aptitude and Attitude in Mathematics, Anthony N. Behr, 4:2, 1973, 72-74
An Audio-Tutorial Method of Instruction vs. the Traditional Lecture-Discussion Method, Shelba Jean Morman, 4:3, 1973, 56-61
The Contract Method vs. the Traditional Method of Teaching Developmental Mathematics to Underachievers: A Comparative Analysis, Wayne L. Miller, 5:2, 1974, 45-49
Some Research Support for A Second Chance for Beginning Algebra Students, Paul W. Merritt, 5:2, 1974, 50-54
A Mastery Approach to Mathematical Literacy, Judith Harle Hector, 6:2, 1975, 22-27
Research and Development of Synchronized Slide-Tape Units for a Mathematics Laboratory, Eddie R. Williams and Harold W. Mick, 7:2, 1976, 28-33
Flow Charts in Mathematics Classes for Elementary School Teachers, Janet E. Ford and Douglas B. McLeod, 8:1, 1977, 15-19
A Look at General Education Mathematics Programs, Charles D. Friesen, 9:4, 1978, 218-221
The Two-Year Colleges and the Graduate Schools: The Teachers' Perspective, Robert McKelvey, 10:2, 1979, 136
1978 AMS Survey: Two-Year College Report, Wendell Fleming, 10:2, 1979, 143
A Classroom Experiment Involving Basic Mathematics and Women, Pansy Waycaster Brunson, 14:4, 1983, 318-324
Asking Good Questions about Differential Equations, Paul Davis, 25:5, 1994, 394-400, 1.2, 6.1
Assessing the Quantitative Skills of College Juniors, Steven F. Bauman and William O. Martin, 26:3, 1995, 214-220
The Mathematical Judge: A Fable, William G. Frederick and James R. Hersberger, 26:5, 1995, 377-381, 0.1
An Attempt to Foster Students’ Construction of Knowledge During a Semester Course in Abstract Algebra, Thomas G. Edwards and Lawrence Brenton, 30:2, 1999, 120-128, 9.4
Recommendations for Teaching the Reasoning of Statistical Inference, Allan Rossman and Beth Chance, 30:4, 1999, 297-305, 7.3
455 Mathematics Majors: What Have They Done Since?, Patricia Clark Kenschaft, 31:3, 2000, 193-199
Can We Improve the Teaching of Calculus?, Hugh Thurston, 31:4, 2000, 262-267, 5.1.2, 5.7.1
Conceptions of Area: In Students and in History, Bronislaw Czarnocha, Ed Dubinsky, Sergio Loch, Vrunda Prabhu, and Draga Vidakovic, 32:2, 2001, 99-109, 5.2.6
Is There Enough Poison Gas to Kill the City?: The Teaching of Ethics in Mathematics Classes, Bonnie Shulman, 33:2, 2002, 118-125
Independent Thinking, Reuben Hersh, 34:2, 2003, 112-115
Spherical Coordinates, Tevian Dray and Corinne A. Manogue, 34:2, 2003, 168-169, C, 5.6.2
Suggestions to Teachers, Daniel W. Fish, 39:2, 2008, 101, 120, C
How to Be a Good Teacher is an Undecidable Problem, Erica Flapan, 42:5, 2011, 350-354
Teaching Tip: How to Manipulate Test Scores, Colin Foster, 34:2, 2012, 121-122, C, 0.2
1.2 Courses and programs

The Summer Developmental Mathematics Program at Kalamazoo Valley Community College, Fred Toxopeus, 1:1, 1970, 14-16

Junior College Cooperative Program in Colorado, James C. Davis and Ralph H. Niemann, 1:1, 1970, 41-43

The Use of the Computer in Mathematics Instruction, Albert E. Hickey, 1:1, 1970, 44-54

A New Graduate Degree for Mathematics Teachers, Jon M. Laible, 1:1, 1970, 55-58

A Curriculum Suggestion for Teaching College Arithmetic, Stanley Schmidt, 1:1, 1970, 92

Remedial or Developmental? Confusion over Terms, Don Ross, 1:2, 1970, 27-31, 0.1

Mini-Calculus, Joseph C. Bodenrader, 5:2, 1974, 74, C

Pills: Mathematics Instructional Models, Louise Dyson and Edward B. Wright, 5:3, 1974, 31-33

Bubbles, Frank O. Armbruster and Jean J. Pedersen, 5:3, 1974, 34-38
Geometry is Alive and Well: The Coxeter Symposium in Toronto, Jean J. Pedersen, 11:1, 1980, 19-25, 0.3
Fixed Point Iteration—An Interesting Way to Begin a Calculus Course, Thomas Butts, 12:1, 1981, 2-7, 5.1.1, 9.6
Mathematical Proof: What It Is and What It Ought to Be, Peter Renz, 12:2, 1981, 83-103
A Digression on Proof, Yu I. Manin, 12:2, 1981, 104-107
The Nature of Proof: Limits and Opportunities, Kenneth Appel and Wolfgang Haken, 12:2, 1981, 118-119
Shouldn't We Teach GEOMETRY?, Branko Grunbaum, 12:4, 1981
The Thrills of Abstraction, P. R. Halmos, 13:4, 1982, 243-251, 0.2
A First Course in Continuous Simulation, Richard Bronson, 13:5, 1982, 300-310, 9.10
Imbedding the Metric, John D. Neff, 14:3, 1983, 197-202
Toward a Common Understanding of the Content of College Preparatory Mathematics, Joan R. Leitzel, 14:3, 1983, 206-209
Nonnumeric Computer Applications to Algebra, Trigonometry, and Calculus, David R. Stoutemyer, 14:3, 1983, 233-239
Integrating Writing into the Mathematics Curriculum, Dorothy Goldberg, 14:5, 1983, 421-424
Zork, RAMS and the Curse of Ra: Computo, ergo sum, Curt Suplee, 15:2, 1984, 158-159
Responses to: Will Discrete Mathematics Surpass Calculus, Saunders MacLane and Daniel H. Wagner and Peter J. Hilton and R. L. Woodriff and Daniel J. Kleitman and Peter D. Lax, 15:5, 1984, 373-380
FORUM: The Algorithmic Way of Life is Best, Stephen B. Maurer, 16:1, 1985, 2-5
Responses to the FORUM on the Algorithmic Way of Life, R. G. Douglas and Bernhard Korte and Peter Hilton and Peter Renz and Craig Smorynski and J. M. Hammersley and P. R. Halmos, 16:1, 1985, 5-21
Testing Understanding and Understanding Testing, Jean Pedersen and Peter Ross, 16:3, 1985, 178-185, 0.2, 5.1.2, 5.2.2
Routine Problems, Sherman Stein, 16:5, 1985, 383-385, 0.2, 5.1.5
Interactive Graphics for Multivariable Calculus, Michael E. Frantz, 17:2, 1986, 172-181, 5.1.1, 5.1.4, 5.7.1
A Mathematics Software Database, R. S. Cunningham and David Smith, 17:3, 1986, 255-266
Computer Algebra Systems in Undergraduate Mathematics, Don Small, John Hosack and Kenneth Lane, 17:5, 1986, 423-433, 5.1.4, 5.1.5, 5.2.2, 5.4.2
Should Mathematicians Teach Statistics?, David S. Moore, 19:1, 1988, 3-7, 7.3
Should Mathematicians Teach Statistics (2)?, A. Blanton Godfrey, 19:1, 1988, 8-11, 7.3
No! But Who Should Teach Statistics?, Judith Tanur, 19:1, 1988, 11-12, 7.3
Statistics Teachers need Experience With Data, R. Gnanadesikan and J. R. Kettenring, 19:1, 1988, 12-14, 7.3
The Mathematicians' Statistics Has a Subsidiary Role, Barbara A. Bairal, 19:1, 1988, 14-15, 7.3
Growth and Advances in Statistics, Frederick Mosteller, 19:1, 1988, 15-16, 7.3
Statistician, Examine Thyself: Response, Gudmund R. Iversen, 19:1, 1988, 16-18, 7.3
It's Not "By Whom" But Rather "How", John E. Freund, 19:1, 1988, 18-19, 7.3
The Need for Good Teaching of Statistics, Henry L. Alder, 19:1, 1988, 20-21, 7.3
Let the Experts Teach and Judge, David L. Hanson, 19:1, 1988, 21-24, 7.3
Who Teaches What to Whom?, Michael Reed, 19:1, 1988, 24-26, 7.3
What Should the Introductory Statistics Course Contain?, Gerald J. Hahn, 19:1, 1988, 26-30, 7.3
Mathematics is Only One Tool that Statisticians Use, Ronald D. Snee, 19:1, 1988, 30-32, 7.3
Reaction to Responses to "Should Mathematicians Teach Statistics?", David S. Moore, 19:1, 1988, 32-35, 7.3
A Computer in the Classroom: The Time is Right, David P. Kraines and David A. Smith, 19:3, 1988, 261-267
Teaching with CAL: A Mathematics Teaching and Learning Environment, James E. White, 19:5, 1988, 424-443, 5.1.5
Copyright Law As It Applies to Computer Software, Michael Gemignani, 20:4, 1989, 332-338
Notational Collisions, J. Hillel, 20:5, 1989, 418-422, C, 4.1
Graphing with the HP-28S, John Selden and Annie Selden, 20:5, 1989, 423-432, 5.1.5
Sum the Alternating Harmonic Series, Dave P. Kraines and Vivian Y. Kraines and David A. Smith, 20:5, 1989, 433-435, C, 5.4.2
Taylor Polynomials, David P. Kraines and Vivian Y. Kraines and David A. Smith, 20:5, 1989, 435-436, C, 5.4.2
Calculus Quiz, David P. Kraines and Vivian Y. Kraines and David A. Smith, 20:5, 1989, 437-438, C, 5.1.5
What's an Assignment Like You Doing in a Course Like This? Writing to Learn Mathematics, George D. Gopen and David A. Smith, 21:1, 1990, 2-19
Let's Teach Philosophy of Mathematics!, Reuben Hersh, 21:2, 1990, 105-111
Proofs by -Tion, John S. Robertson, 21:3, 1990, 220-222, C
Recruitment and Retention of Students in Undergraduate Mathematics, Miriam P. Cooney and Jacqueline M. Dewar and Patricia Clark Kenschaft and Vivian Kraines and Brenda Latka and Barbara LiSanti, 21:4, 1990, 294-301
China's 1989 National College Entrance Examination, Bart Braden, 21:5, 1990, 390-393, 0.2, 0.4, 0.6
Forward Homework, Raymond A. McGivney, 21:5, 1990, 400-402, C
Physical Demonstrations in the Calculus Classroom, Tom Farmer and Fred Gass, 23:2, 1992, 146-148, C, 5.2.1, 6.1
How Should We Introduce Integration?, David M. Bressoud, 23:4, 1992, 296-298, 5.2.1
The Growing Importance of Linear Algebra in Undergraduate Mathematics, Alan Tucker, 24:1, 1993, 3-9
Teaching Linear Algebra: Must the Fog Always Roll In?, David Carlson, 24:1, 1993, 29-40, 4.1
The Linear Algebra Curriculum Study Group Recommendations for the First Course in Linear Algebra, David Carlson and Charles R. Johnson and David C. Lay and A. Duane Porter, 24:1, 1993, 41-46, 4.1,
History of Mathematics

2.1 History of mathematics before 1400

The origin of our word "sine", Howard Eves, 1:1, 1970, 93, C
On the origin of ">" and "<", Howard Eves, 1:1, 1970, 94, C
The Genesis and Development of Set Theory, Phillip E. Johnson, 3:1, 1972, 55-62
Hippocrates and Archytas Double the Cube: A Heuristic Interpretation, Barnabas B. Hughes, 20:1, 1989, 42-48, 0.3
Misconceptions about the Golden Ratio, George Markowsky, 23:1, 1992, 2-19
An Early Iterative Method for the Determination of Sine of One Degree, Farhad Riahi, 26:1, 1995, 16-21, 0.6
Did Plutarch Get Archimedes' Wishes Right?, Lester H. Lange, 26:3, 1995, 199-204, 5.2.7
Mathematics and the Liberal Arts, Hardy Grant, 30:2, 1999, 96-105
Mathematics and the Liberal Arts II, Hardy Grant, 30:3, 1999, 197-203, 2.2
Where Do Functions Come From?, Leigh Atkinson, 33:2, 2002, 107-112, 2.2
The "Origin" of Geometry, Reuben Hersh, 33:3, 2002, 207-211, 0.3, 9.2
Discovering Roots: Ancient, Medieval, and Serendipitous, Bryan Dorner, 36:1, 2005, 35-43, 0.2, 4.5, 9.3
When the Pope was a Mathematician, Leigh Atkinson, 36:5, 2005, 354-362
Fibonacci’s Forgotten Number, Ezra Brown and Jason C. Brunson, 39:2, 2008, 112-120, 0.7, 9.6
Solomon’s Sea and Pi, Andrew J. Simoson, 40:1, 2009, 22-32, 0.4, 9.2
Fibonacci’s Forgotten Number Revisited, Richard Maruszewski, 40:4, 2009, 248-251, 0.7, 5.1.3, 9.6
False Position, Double False Position and Cramer’s Rule, Eugene C. Boman, 40:4, 2009, 279-283, 0.2, 4.2

2.2 History of mathematics after 1400

4.3, 4.2, 4.5
A Computer Lab for Multivariate Calculus, Casper R. Curjel, 24:2, 1993, 175-177, C, 5.7.1, 8.3
Old Calculus Chestnuts: Roast, or Light a Fire?, Margaret Cibes, 24:3, 1993, 241-243, C, 5.1.4
A Note from the Guest Editor and other ODE Resources, Beverly H. West, 25:5, 1994, 362-363
Teaching Differential Equations with a Dynamical Systems Viewpoint, Paul Blanchard, 25:5, 1994, 385-393, 6.1, 6.2, 6.4
Asking Good Questions about Differential Equations, Paul Davis, 25:5, 1994, 394-400, 1.1, 6.1
The Computer-oriented Calculus Course at Rensselaer Polytechnic Institute, William E. Boyce and Joseph G. Ecker, 26:1, 1995, 45-50
On “Rethinking Rigor in Calculus …,” or Why We Don’t Do Calculus on the Rational Numbers, Scott E. Brodie, 30:2, 1999, 135-138, C, 5.1.2
Verse, Marylou Zapf, 34:2, 2003, 169-170, C

2 History of Mathematics
The History of the Calculus, Carl B. Boyer, 1:1, 1970, 60-86
Kepler's Explanation of the Timaeus Associations, Howard Eves, 1:2, 1970, 31, C, 0.3
Mathematics of the Yoruba People and of Their Neighbors in Southern Nigeria, Claudia Zaslavsky, 1:2, 1970, 76-79
Terminology: logarithm, Howard Eves, 2:2, 1971, 27, C
Mathematician, Violinist, Fencer—Bolyai, Howard Eves, 3:1, 1972, 41, C
How Gauss was Won to Mathematics, Howard Eves, 3:1, 1972, 65, C
Eighteenth Century British Mathematics, Phillip E. Johnson, 7:2, 1976, 22-27
A Brief History of Logarithms, R. C. Pierce, Jr., 8:1, 1977, 22-26
Women Mathematicians, Debra Charpentier, 8:2, 1977, 73-79
Martin Gardner: Defending the Honor of the Human Mind, Irving Joshua Matrix, 10:4, 1979, 227-244
The Pentagon and the Discovery of an Irrational Number, James R. Choike, 11:5, 1980, 312-316, 0.3
On the History and Solution of the Four-Color Map Problem, John Mitchem, 12:2, 1981, 108-119, 3.1
A Profile of Ronald L. Graham, Gina Bari Kolata, 12:5, 1981, 290-301
A Machine as Smart as God, Rudy Rucker, 13:2, 1982, 115-121, 9.1
The Thread, Philip J. Davis, 14:2, 1983, 98-104
The Autobiography of Julia Robinson, Constance Reid, 17:1, 1986, 2-21
Teaching Elementary Probability through its History, Sharon Kunoff and Sylvia Pines, 17:3, 1986, 210-219, 7.2
The Bernoullis and the Harmonic Series, William Dunham, 18:1, 1987, 18-23, 5.4.2
Charlotte Angas Scott 1858-1931, Patricia C. Kenschaft, 18:2, 1987, 98-110
FFF #12. The Authority of the Written Word, Ed Barbeau, 20:5, 1989, 404, F
The Function sin x / x, William B. Gearhart and Harris S. Shultz, 21:2, 1990, 90-99, 5.1.2, 5.1.5
The Birth of the Eotvos Competition, Agnes Arvai Wieschenberg, 21:4, 1990, 286-293, 9.3
Two Surprising Theorems on Cavalieri Congruence, Howard Eves, 22:2, 1991, 118-124, 0.3
Reading Bombelli's x-purgated Algebra, Abraham Arcavi and Maxim Bruckheimer, 22:3, 1991, 212-219, 0.7
Euler and the Fundamental Theorem of Algebra, William Dunham, 22:4, 1991, 282-293, 0.7
Misconceptions about the Golden Ratio, George Markowsky, 23:1, 1992, 2, 0.3
A "Very Pleasant Theorem", Roger Herz-Fischler, 24:4, 1993, 318-324, 0.3
Euler and Differentials, Anthony P. Ferzola, 25:2, 1994, 102-111, 5.1.3
Isaac Newton: Credit Where Credit Won't Do, Robert Weinstock, 25:3, 1994, 179-192, 0.5, 5.1.3, 5.4.3, 5.6.1
Newton's Orbit Problem: A Historian's Response, Curtis Wilson, 25:3, 1994, 193-200, 0.5, 6.4
3 Discrete Mathematics

3.1 Graph theory

Shapes of the Future, Victor Klee, 2:2, 1971, 14-27, 0.3
Topological Regular Solids, Stewart S. Cairns, 4:1, 1973, 74-76, C
Partitions of the Plane, Nathan Hoffman, 5:2, 1974, 71-73, C, 0.3
Mathematics—Is It Any of Your Business?, Ralph Mansfield, 6:3, 1975, 20-26, 1.2, 9.1
The Game of Sprouts, Gordon D. Prichett, 7:4, 1976, 21-25, 9.2
Binary Grids and a Related Counting Problem, Nathan Hoffman, 9:4, 1978, 267-272, 6.3
The Pigeonhole Principle, Kenneth R. Rebman, 10:1, 1979, 3-13, 9.3
Who Stole the Apples and The Sticks?, Ross Honsberger, 10:1, 1979, 30-32, 3.3
An Application of Turan's Theorem, Ross Honsberger, 11:3, 1980, 196-200
On the History and Solution of the Four-Color Map Problem, John Mitchem, 12:2, 1981, 108-119, 2.2
Computer-Generated Knight Tours, Michael Gilpin, 13:4, 1982, 252-259, 3.3, 9.2
Labeling of Graphs, J. L. Brenner, 14:1, 1983, 36-41
Connect-It Games, Frank Harry and Robert W. Robinson, 15:5, 1984, 411-419, 9.2
Realization of Parity Visits in Walking a Graph, Robert C. Bugham and Ronald D. Dutton and Phyllis Z. Chinn and Frank Harary, 16:4, 1985, 280-282, C
A Discrete Look at 1 + 2 + ... + n, Loren C. Larson, 16:5, 1985, 369-382, 0.2, 0.9, 3.2, 5.4.2, 6.3
Trees and Tennis Rankings, Curtis Cooper, 17:1, 1986, 76-78, C, 3.2
Coloring Points in the Unit Square, Charles H. Jepsen, 17:3, 1986, 231-237, 5.1.4
Combinatorics by Coin Flipping, Joel Spencer, 17:5, 1986, 407-412, 3.2, 7.2
Facility Location Problems, Fred Buckley, 18:1, 1987, 24-32, 9.10
One Factorization of Graphs: Tournament Applications, W. D. Wallis, 18:2, 1987, 116-123
How to Define an Irregular Graph, Gery Chartrand and Paul Erdos and Ortrud B. Oellermann, 19:1, 1988, 36-42
Constructing a Map from a Table of Intercity Distances, Richard J. Pulskamp, 19:2, 1988, 154-163, 4.5, 9.10
Are Graphs Finally Surfacing?, Lowell W. Beineke, 20:3, 1989, 206-225
The Number of Paths in a Rooted Binary Tree of Infinite Height, Roger H. Marty, 21:4, 1990, 305-307, C
Using Euler's Formula to Solve Plane Separation Problems, Thomas L. Moore, 22:2, 1991, 125-130, 3.2
Optimal Locations, Bennett Eisenberg and Samir Khabbaz, 23:4, 1992, 282-289, 0.4, 9.9
Graphs, Matrices, and Subspaces, Gilbert Strang, 24:1, 1993, 20-28, 4.1, 4.3
The Linear Transformation Associated with a Graph: Student Research Project, Irl C. Bivens, 24:1, 1993, 76-78, 4.3, 9.1
A Combinatorial Queueing Model, Shahar Boneh and David C. Ogden, 26:5, 1995, 346-357, 3.2
The "Join the Club" Interpretation of Some Graph Algorithms, Harold Reiter and Isaac Sonin, 27:1, 1996, 54-58, C
Colored Polygon Triangulations, Duane W. DeTemple, 29:1, 1998, 43-47, C
Modeling Trees with a Stochastic Matrix, Anne M. Burns, 29:3, 1998, 230-236, 8.3
FFF. Yet another refreshing induction fallacy, Shay Gueron, 31:2, 2000, 120-123, F
Yet Another Refreshing Induction Fallacy, Shay Gueron, 31:3, 2000, 205-207, F, 0.9
Tree Diagram (poem), Michael Naylor, 32:3, 2001, 238, C
Tiling with Dominoes, Nathan S. Mendelsohn, 35:2, 2004, 115-120, 3.2
The Growth of Trees (Student Research Projects), Philip K. Hotchkiss and John Meier, 35:2, 2004, 143-151, 9.8
The Truth about Konigsberg, Brian Hopkins and Robin J. Wilson, 35:3, 2004, 198-207
Proof Without Words: A Graph Theoretic Summation of the First n Integers, Joe DeMaio and Joey Tyson, 38:4, 2007, C, 3.2
FFF #276. Eight is enough, I. B. Keene, 39:2, 2008, 136, F
Graph Theory and Surface Reconstruction, Darren A. Narayan, 39:4, 2008, 301-303, C
Flipping Triangles!, Marc Zucker, 40:3, 2009, 36, C
Proof Without Words: A Graph Theoretic Summation of the First n Integers, Joe DeMaio and Joey Tyson, 40:4, 2009, C, 3.2
Lewis Carroll, Voting, and the Taxicab Metric, Thomas C. Ratliff, 41:4, 2010, 303-311, 0.3, 3.3
The V-flex, Triangle Orientation, and Catalan Numbers in Hexaflexagons, Ionut E. Iacob, Bruce McLean, and Hua Wang, 43:1, 2012, 6-10, 0.3, 2.9, 9.2, 5.4.1, 9.8
From Hexaflexagons to Edge Flexagons to Point Flexagons, Les Pook, 43:1, 2012, 11-14, 0.3, 9.2, 9.4, 9.8
A Platonic Sextet for Strings, Karl Schaffer, 3:1, 2012, 64-69, 0.3, 9.2
The Continuing Saga of Snarks, sarah-marie belcastro, 43:1, 2012, 82-87
Counting Triangles to Sum Squares, Joe DeMaio, 43:4, 2012, 297-303, 3.2

3.2 Combinatorics

Factoring Functions, J. C. Bodenrader, 2:1, 1971, 23-26, 0.6, 5.1.2, 9.1
Pascal's Triangle, Karl J. Smith, 4:1, 1973, 1-13, 0.6, 9.2
Checkerboards and Sugar Cubes: Geometric Counting Patterns, David R. Duncan and Bonnie H. Litwiller, 4:2, 1973, 41-47
A Study of the Coefficients J[n, i], David L. Jones, 5:4, 1974, 12-15
A Computer Solution to "Instant Insanity", Larry Collister, 6:2, 1975, 36-41
Stories in Combinatorial Geometry, Ross Honsberger, 10:5, 1979, 344-347, 0.5
An Application from Combinatorics to Dice-Sum Frequencies, David L. Pugh, 11:5, 1980, 331-333, C, 7.1
An Alternative Proof to Dirac's Theorem, Penelope Barlow, 12:1, 1981, 57-58, C
On Dice-Sum Frequencies, V. N. Murty, 12:3, 1981, 209-211, C, 7.2
Paths and Pascal Numbers, John F. Lucas, 14:4, 1983, 329-341, 9.2
A Sequel to "Another Way of Looking at n!", William Moser, 15:2, 1984, 142-143, C, 5.2.7, 5.7.2
Pascal's Triangle, Difference Tables and Arithmetic Sequences of Order N, Calvin Long, 15:4, 1984, 290-298, 5.4.1, 6.3, 9.2
On the Probability that the Better Team Wins the World Series, James L. Kepner, 16:4, 1985, 250-256, 7.2
A Discrete Look at 1 + 2 + ... + n, Loren C. Larson, 16:5, 1985, 369-382, 0.2, 0.9, 5.4.2, 3.1, 6.3
Trees and Tennis Rankings, Curtis Cooper, 17:1, 1986, 76-78, C, 3.1
The Pascal Polytope: An Extension of Pascal's Triangle to N Dimensions, John F. Putz, 17:2, 1986, 144-155, 5.4.1, 6.3, 9.2
Combinatorics by Coin Flipping, Joel Spencer, 17:5, 1986, 407-412, 3.1, 7.2
A Division Game: How Far Can You Stretch Mathematical Induction?, William H. Ruckle, 18:3, 1987, 212-218, 0.9, 9.9
Pascal Triangles and Combinations Where Repetitions Are Allowed, Kendell Hyde, 19:1, 1988, 60-62, C, 9.2
Rencontres Reencountered, Karl David, 19:2, 1988, 138-148, 9.4
How Many Bridge Actions?, Douglas S. Jungreis and Erich Friedman, 19:2, 1988, 171-172, C, 7.1
Ties at Rotation, Howard Lewis Penn, 19:3, 1988, 230-239, 9.10
Musical Notes, Angela B. Shiflet, 19:4, 1988, 345-347, C, 7.2, 9.2
A Chessboard Coloring Problem, May Beresin and Eugene Levine and John Winn, 20:2, 1989, 106-114
Herbert and the Hungarian Mathematician: Avoiding Certain Subsequence Sums, Dean S. Clark and James T. Lewis, 21:2, 1990, 100-104
Using Euler's Formula to Solve Plane Separation Problems, Thomas L. Moore, 22:2, 1991, 125-130, 3.1
Permutation Puzzles: Student Research Project, John H. Wilson, 24:2, 1993, 163-165, 9.2
The Doors: Student Research Project, L. R. King and Benjamin G. Klein and Irl C. Bivens, 24:3, 1993, 245-246
Lottery Drawings Often Have Consecutive Numbers, David M. Berman, 25:1, 1994, 45-47, C
A Combinatorial Queueing Model, Shahar Boneh and David C. Ogden, 26:5, 1995, 346-357, 3.1
Minimizing Aroma Loss, Robert Barrington Leigh and Richard Travis Ng, 30:5, 1999, 356-358, 9.10
A Rational Solution to Cootie, Arthur Benjamin and Matthew Fluet, 31:2, 2000, 124-125, C, 7.2
More on Cootie, Michael Hirschhorn, 31:2, 2000, 126-128, C, 7.2
The Pascal Pyramid, Hans Walser, 31:5, 2000, 383-392, 0.3
The Sum of \text{min}(i,j) Equals the Sum of the First k Integers Squared (Mathematics Without Words),
Abraham Arcavi and Alfino Flores, 31:5, 2000, 392, C
Against the Odds, Martin Gardner, 32:1, 2001, 39-43, 2.2
Slicing Space, Seth Zimmerman, 32:2, 2001, 126-128, C
Linear Relations Between Powers of Terms in Arithmetic Progression, Calvin Long and Boyd Henry, 32:2, 2001, 135-137, C, 0.2
The Interior Diagonals of a Polygon, Margaux Marie Siegel, 32:3, 2001, 239-240, C
Generating Functions and the Electoral College, Christopher Stuart, 32:5, 2001, 380, C
A Sum Equaling n cubed (Mathematics Without Words), Roger Nelsen, 33:2, 2002, 171, C
Sums of Uniformly Distributed Variables: A Combinatorial Approach, Jeanne Albert, 33:3, 2002, 201-206, 7.2
Introducing Binary and Ternary Codes via Weighings, James Tanton, 33:4, 2002, 313-314, C, 0.1
Two Quick Combinatorial Proofs of the Sum of the First n Cubes, Arthur T. Benjamin and Michael E. Orrison, 33:5, 2002, 406-408, C
A Codeword Proof of the Binomial Theorem, Mark Ramras, 34:2, 2003, 144, C
Dice Distributions Using Combinatorics, Recursion, and Generating Functions, Janet M. McShane and Michael I. Ratliff, 34:5, 2003, 370-376, 7.2
The Old Hats Problem Revisited, Heba Hathout, 35:2, 2004, 97-102
Tiling with Dominoes, Nathan S. Mendelsohn, 35:2, 2004, 115-120, 3.1
Combinatorial Proofs via Flagpole Arrangements, Duane DeTemple, 35:2, 2004, 129-133, C
The Probability that an Amazing Card Trick Is Dull, Christopher Swanson, 36:3, 2005, 209-212, 7.2
Graeco-Latin Squares and a Mistaken Conjecture of Euler, Dominic Klyve and Lee Stemkoski, 37:1, 2006, 2-15, 9.2, 9.4
FFF #244. Combination lock, Ed Barbeau, 37:1, 2006, 40, F
Pizza Combinatorics Revisited, Griffin Weber and Glen Weber, 37:1, 2006, 43-44, C
Streaks and Generalized Fibonacci Sequences, Shahla Ahdout, Sheldon Rothman, and Helen Strassberg, 37:3, 2006, 221-223, C
Names in Boxes Puzzle, Peter Winkler, 37:4, 2006, 260, 285, 289, C, 9.4
Fibonacci Identities via the Determinant Sum Property, Michael Z. Spivey, 37:4, 2006, 286-289, 4.2, 9.3
Exhaustive sampling and related binomial identities, Jim Ridenhour and David Grimmett, 37:4, 2006, 296-299, C, 7.2
Not Just Hats Anymore: Binomial Inversion and the Problem of Multiple Coincidences, Leith Hathout, 38:3, 2007, 179-184, 7.2
Some Half-Row Sums from Pascal’s Triangle via Laplace Transforms, Thomas P. Dence, 38:3, 2007, 205-
Proof Without Words: A Graph Theoretic Summation of the First n Integers, Joe DeMaio and Joey Tyson, 38:4, 2007, C, 3.1
Finding All Solutions to the Magic Hexagram, Alexander Karabegov and Jason Holland, 39:2, 2008, 102-106, 9.2
Sums of Integer Powers via the Stolz-Cesaro Theorem, Sidney H. Kung, 40:1, 2009, 42-44, C, 5.4.1
Lobb’s Generalization of Catalan’s Parenthesization Problem, Thomas Koshy, 40:2, 2009, 99-107
n-Card Tricks, Hang Chen and Curtis Cooper, 40:3, 2009, 196-201, 9.2
Reflections on the $N + k$ Queens Problem, R. Douglas Chatham, 40:3, 2009, 204-210, 4.1, 9.2
An Application of Group Theory to Change Ringing, Michele Intermont and Aileen Murphy, 42:3, 2011, 223-228, 9.4
Student Research Project: Making Change Efficiently, Jack E. Graver, 42:4, 2011, 317-322, 0.1, 5.1.4, 9.9
Student Research Project: One-dimensional Czedli-type Islands, Eszter K. Horvath, Attila Mader, and Andreja Tepavcevic, 42:5, 2011, 374-378, C, 0.9, 9.2, 9.3
Hexaflexagons, Martin Gardner, 43:1, 2012, 2-5, 0.3, 9.2, 9.4, 9.8
The V-flex, Triangle Orientation, and Catalan Numbers in Hexaflexagons, Ionut E. Iacob, Bruce McLean, and Hua Wang, 43:1, 2012, 6-10, 0.3, 3.1, 5.4.1, 9.2, 9.8
Cups and Downs, Ian Stewart, 43:1, 2012, 15-19, 4.1, 9.2
The Secretary Problem from the Applicant’s Point of View, Darren Glass, 43:1, 2012, 76-81, 7.2
30 Years of Bulgarian Solitaire, Brian Hopkins, 43:2, 2012, 135-140, 9.2, 9.3
Convergence of a Catalan Series, Thomas Koshy and Zhenguang Gao, 43:2, 2012, 141-146, 5.4.2, 9.3
RATWYT, Aviezri S. Fraenkel, 43:2, 2012, 160-164, 3.1, 9.2
Ben-Hur Staircase Climbs, John Dodge and Andrew Simoson, 43:4, 2012, 274-284
Counting Triangles to Sum Squares, Joe DeMaio, 43:4, 2012, 297-303, 3.1

3.3 Other topics in discrete mathematics (also see 6.3)

Who Stole the Apples and The Sticks?, Ross Honsberger, 10:1, 1979, 30-32, 3.1
Computer-Generated Knight Tours, Michael Gilpin, 13:4, 1982, 252-259, 3.1, 9.2
Drawing the Line Segment Connecting Two Points, Harley Flanders, 18:1, 1987, 53-57, 0.4, 8.1
Putting the Pieces Together: Understanding Robinson's Nonperiodic Tilings, Aimee Johnson and Kathleen...
Madden, 28:3, 1997, 172-181, 0.3
Weighing Coins: Divide and Conquer to Detect a Counterfeit, Mario Martelli and Gerald Gannon, 28:5, 1997, 365-367, 0.9
A Discrete Intermediate Value Theorem, Richard Johnsonbaugh, 29:1, 1998, 42, C, 0.9
Recursion in Action, Peter Ross, 31:1, 2000, 68, C
Ten into Eight Won’t Go?, Marc Brodie, 32:4, 2001, 296, C
In Search of a Missing Link: A Case Study in Error-Correcting Codes, Andy Liu, 32:5, 2001, 343-347
Centering, Jim Sauerberg and Alan Tarr, 33:1, 2002, 24-31, 0.4, 6.3
Apportionment and the 2000 Election, Michael G. Neubauer and Joel Zeitlin, 34:1, 2003, 2-10
Simmons’ Subliminal Channel, Hector Rosario, 35:3, 2004, 208-212
Taking Turns, Brian Hopkins, 41:4, 2010, 289-297, 3.2, 9.4
Who Does the Housework?, Angela Vierling-Claassen, 41:4, 2010, 298-302
Lewis Carroll, Voting, and the Taxicab Metric, Thomas C. Ratliff, 41:4, 2010, 303-311, 0.3, 3.1
Visualizing Elections using Saari Triangles, Mariah Birgen, 41:4, 2010, 325-328, 0.1, 0.3
A Talmudic Fair-Division Problem, Theodore Hill, 41:4, 2010, 338, C, 0.1
Two-Person Pie-Cutting: The Fairest Cuts, Julius B. Barbanel and Steven J. Brams, 42:1, 2011, 25-32
Retrolife and the Pawns Neighbors, Yossi Elran, 43:2, 2012, 147-151, 9.2, 9.10
Lake Wobegon Dice, Jorge Moraleda and David G. Stork, 43:2, 2012, 152-159, 7.2, 9.2, 9.9

3.4 Software for discrete mathematics
A Mathematics Software Database, R. S. Cunningham and David A. Smith, 17:3, 1986, 255-266, 0.10, 4.8, 5.8, 6.7, 7.4, 9.11
A Mathematics Software Database Update, R. S. Cunningham and David A. Smith, 18:3, 1987, 242-247, 0.10, 4.8, 5.8, 6.7, 7.4, 9.11
The Compleat Mathematics Software Database, R. S. Cunningham and David A. Smith, 19:3, 1988, 268-289, 0.10, 4.8, 5.8, 6.7, 7.4, 9.11
Forget Not the Lowly Spreadsheet, Michael G. Henle, 26:4, 1995, 320-328, 6.7

4 Linear Algebra
4.1 Matrices, systems of linear equations, and matrix algebra
Mathematics, A Solitary Game, Olof Hanner, 1:2, 1970, 5-16, 0.2
On One-Sided Inverses of Matrices, Elmar Zemgalis, 2:1, 1971, 45-48
On Transformations and Matrices, Marc Swadener, 4:3, 1973, 44-51, 4.4
Binomial Matrices, Jay E. Strum, 8:5, 1977, 260-266
Integer Matrices Whose Inverses Contain Only Integers, Robert Hanson, 13:1, 1982, 18-21
Mathematics in Archaeology, Gareth Williams, 13:1, 1982, 56-58, C
Basic Null Space Calculations, Dan Kalman, 15:1, 1984, 42-47
Self-Inverse Integer Matrices, Robert Hanson, 16:3, 1985, 190-198.
Why Should We Pivot in Gaussian Elimination?, Edward Rozema, 19:1, 1988, 63-72.
Minimum Dimension for a Square Matrix of Order n, Robert Hanson, 21:1, 1990, 28-34.
Software Review: Spreadsheets in Linear Algebra, Deane Arganbright, 24:1, 1993, 64.
How Does the NFL Rate the Passing Ability of Quarterbacks?, Roger W. Johnson, 24:5, 1993, 451-453.
For matrices: AB transpose equals B transpose times A transpose (proof by picture), James G. Simmonds,
26:3, 1995, 250, C
Linear Algebra on the Gridiron, Daniel C. Isaksen, 26:5, 1995, 358-360
Using the College Mathematics Journal Topic Index in Undergraduate Courses, Donald E. Hooley, 28:2, 1997, 106-109, 4.2, 5.1.4, 5.7.1
FFF #114. An Inversion Conundrum, Barry D. Ganapol, 28:2, 1997, 120, F
A Diagonal Perspective on Matrices, Eugene C. Boman and Margaret A. Misconish, 29:1, 1998, 37-38, C
Using Consistence Condition to Solve Linear Systems, Geza Schay, 30:3, 1999, 226-229, C
N-Site Insights, Bret Draayer, 31:4, 2000, 250-258, 5.5
The Profit in Being Unbalanced, Wolf von Ronik, 32:5, 2001, 348-351, 0.8
When is 1/(a-b) = 1/a + 1/b, Anyway?, Eugene Boman and Frank Uhlig, 33:4, 2002, 296-300, 9.5
Obtaining the QR Decomposition by Pairs of Row and Column Operations, Sidney H. Kung, 33:4, 2002, 320-321, C, 4.6
An Underdetermined Linear System for GPS, Dan Kalmar, 33:5, 2002, 384-390
FFF. Matrix Inverses and the Great Injustice, Zoran Sunik, 33:5, 2002, 395-398, F
Parrondo's Paradox – Hope for Losers!, Darrell P. Minor, 34:1, 2003, 15-20, 7.2
On the Square Root of aa^T + bb^T, Dietrich Trenkler and Gotz Trenkler, 34:1, 2003, 39-41
A Class of Exponential Matrices, M. A. Khan, 34:3, 2003, 194-195
Reflections on the N + k Queens Problem, R. Douglas Chatham, 40:3, 2009, 204-210, 3.2, 9.2
Student Research Project: Golden Matrix Families, Anne Fontaine and Susan Hurley, 42:2, 2011, 140-147, 4.5, 9.4
The Easiest Lights Out Games, Bruce Torrence, 42:5, 2011, 361-371, 4.3, 9.2
Cups and Downs, Ian Stewart, 43:1, 2012, 15-19, 3.2, 9.2
Push-To Telescope Mathematics, Donald Teets, 43:3, 2012, 227-231, 4.4

4.2 Determinants (also see 5.5)

On the Evaluation of Determinants by Chio's Method, L. E. Fuller and J. D. Logan, 6:1, 1975, 8-10
Determinants: A Short Program, Alban J. Roques, 10:5, 1979, 340-343
Predetermined Determinants, David C. Buchtal, 16:4, 1985, 277-279, C
The Surveyor's Area Formula, Bart Braden, 17:4, 1986, 326-337, 5.2.6, 5.2.8
Computing Determinants, Clyde Dubbs and David Siegel, 18:1, 1987, 48-50, C
Cramer's Rule via Selective Annihilation, Dan Kalman, 18:2, 1987, 136-137, C, 4.3
Apropos Predetermined Determinants, Antal E. Fekete, 19:3, 1988, 254-257, C
Evaluating "Uniformly Filled" Determinants, Simon M. Goberstein, 19:4, 1988, 343-345, C
Determinants of Sums, Marvin Marcus, 21:2, 1990, 130-134, C
On 'Uniformly Filled' Determinants, Carsten Thomassen and Herbert S. Wilf, 21:2, 1990, 135-137, C
Determinantal Loci, Marvin Marcus, 23:1, 1992, 44-47, C

Roots of Cubics via Determinants, Robert Y. Suen, 25:2, 1994, 115-117, 0.7

Using the College Mathematics Journal Topic Index in Undergraduate Courses, Donald E. Hooley, 28:2, 1997, 106-109, 4.1, 5.1.4, 5.7.1

Cramer's Rule (proof by picture), The Mathematica Initiative, 28:2, 1997, 118, C

Finding a Determinant and Inverse Matrix by Bordering, Yong-Zhuo Chen and Richard F. Melka, 29:1, 1998, 38-39, C

Taylor’s Formula via Determinants, K. S. Sarkaria, 32:1, 2001, 53, C, 5.4.3

FFF #207. Evaluating a determinant, Michel Bataille, 34:2, 2003, 135-136, F

“Shutting up like a telescope”: Lewis Carroll’s “Curious” Condensation Method for Evaluating Determinants, Adrian Rice and Eve Torrence, 38:2, 2007, 85-95

A Tricky Linear Algebra Example, David Sprows, 39:1, 2008, 54-56, C, 4.3

False Position, Double False Position and Cramer’s Rule, Eugene C. Boman, 40:4, 2009, 279-283, 0.2, 2.1

Computing Determinants by Double-Crossing, Deanna Leggett, John Perry, and Eve Torrence, 42:1, 2011, 43-53

4.3 Vector spaces and inner product spaces (also see 5.5)

Vectors Point Toward Pisa, Richard A. Dean, 2:2, 1971, 28-39, 6.3

Cramer's Rule via Selective Annihilation, Dan Kalman, 18:2, 1987, 136-137, C, 4.2

FFF #35. Yet Another Proof that 0=1, Ed Barbeau, Editor, 22:2, 1991, 131, F

Graphs, Matrices, and Subspaces, Gilbert Strang, 24:1, 1993, 20-28, 4.1, 3.1

Arithmetic Matrices and the Amazing Nine-Card Monte, Dean Clark and Dilip K. Datta, 24:1, 1993, 52-56

Subspaces and Echelon Forms, David C. Lay, 24:1, 1993, 57-62

A Geometric Interpretation of the Columns of the (Pseudo)Inverse of A, Melvin J. Maron and Ghansham M. Manwani, 24:1, 1993, 73-75, C

When Is "Rank" Additive?, David Callan, 29:2, 1998, 145-147, C

A Picture is Worth a Thousand Words, J. B. Thoo, 29:5, 1998, 408-411, C

FFF #153. The Schwarz-Cauchy Inequality, M. J. de la Puente, 30:5, 1999, 385, F

Elementary Linear Algebra and the Division Algorithm, Airton von Sohsten de Medeiros, 33:1, 2002, 51-52, C, 9.4

Mind Your ∀'s and ∃'s, Stephen M. Walk, 35:5, 2004, 362-369, 9.1

The Sample Correlation Coefficient from a Linear Algebra Perspective, C. Ray Rosenthaler, 37:1, 2006, 47-50, C, 7.3

A Geometric View of Complex Trigonometric Functions, Richard Hammack, 38:3, 2007, 210-217, 0.6, 9.5

A Direct Proof that Row Rank Equals Column Rank, Nicholas Loehr, 38:4, 2007, 300-301, C
4.4 Linear transformations

On Transformations and Matrices, Marc Swadener, 4:3, 1973, 44-51, 4.1
Visual Thinking about Rotations and Reflections, Tom Brieske, 15:5, 1984, 406-410, 4.1
The Matrix of a Rotation, Roger C. Alperin, 20:3, 1989, 230, C, 8.3
Linear Algebra and Affine Planar Transformations, Gerald J. Porter, 24:1, 1993, 47-51, 0.4, 4.1
Rotation Matrices in the Plane without Trigonometry, Arnold J. Insel, 24:1, 1993, 71-73, C
The Linear Transformation Associated with a Graph: Student Research Project, Irl C. Bivens, 24:1, 1993, 76-78, 3.1, 9.1
Fractals in Linear Algebra, James A. Walsh, 27:4, 1996, 298-304, 6.3
Additivity + Homogeneity, Michael J. Bradley and Michael St. Vincent and David L. Finn, 30:2, 1999, 133-135, C (see also Joseph Ling, 31:4, 332, C)
The Orbits of a Unimodular Affine Transformation, Roman W. Wong, 31:4, 2000, 290-296, 6.3
Linear Transformation of the Unit Circle in R^2, Pratibha Ghatage and Sally Shao, 32:3, 2001, 204-206, C
The Mathematics of “Go To” Telescopes, Donald Teets, 38:3, 2007, 170-178, 5.6.2
Push-To Telescope Mathematics, Donald Teets, 43:3, 2012, 227-231, 4.1

4.5 Eigenvalues and eigenvectors

Linear Algebra: A Potent Tool, Anneli Lax, 7:2, 1976, 3-15
On Polynomial Matrix Equations, Harley Flanders, 17:5, 1986, 388-391, 4.1
Constructing a Map from a Table of Intercity Distances, Richard J. Pulskamp, 19:2, 1988, 154-163, 3.1, 9.10
The Linear Algebra Curriculum Study Group Recommendations for the First Course in Linear Algebra, David Carlson and Charles R. Johnson and David C. Lay and A. Duane Porter, 24:1, 1993, 41-46, 1.2, 4.1, 4.2, 4.3
Iterative Methods in Introductory Linear Algebra, Donald R. LaTorre, 24:1, 1993, 79-88, 4.1, 9.6
Using Computer Algebra Systems to Teach Linear Algebra (software review), Maurino P. Bautista, 24:5, 1993, 462-471, 4.1, 4.8
Approaches to the Formula for the nth Fibonacci Number, Russell Jay Hendel, 25:2, 1994, 139-142, C, 0.2, 5.4.2, 9.3, 9.5
The Matrix Exponential Function and Systems of Differential Equations Using Derive, Robert J. Hill and Mark S. Mazur, 26:2, 1995, 146-151, 6.2
Eigenpictures: Picturing the Eigenvector Problem, Steven Schonefeld, 26:4, 1995, 316-319, C
Eigenpictures and Singular Values of a Matrix, Peter Zizler and Holly Fraser, 28:1, 1997, 59-62, C
Clock Hands Pictures for 2x2 Real Matrices, Charles R. Johnson and Brenda K. Kroschel, 29:2, 1998, 148-150, C
The Eigenvalues of an Infinite Matrix, Bobette Thorsen, 31:2, 2000, 107-110
Eigenvalues of Matrices of Low Rank, Stewart Venit and Richard Katz, 31:3, 2000, 208-210, C
Collapsed Matrices with (Almost) the Same Eigenstuff, Donald E. Hooley, 31:4, 2000, 297-299, C
Discovering Roots: Ancient, Medieval, and Serendipitous, Bryan Dorner, 36:1, 2005, 35-43, 0.2, 2.1, 9.3
Tennis with Markov, Roman Wong and Megan Zigarovich, 38:1, 2007, 53-55, C, 7.2, 9.9, 9.10
Singular Vectors’ Subtle Secrets, David James, Michael Lachance, and Joan Remskii, 42:2, 2011, 86-95, 4.6, 4.7 (see also 2. Correction, 42:5, 2011, 429)
Student Research Project: Golden Matrix Families, Anne Fontaine and Susan Hurley, 42:2, 2011, 140-147, 4.1, 9.4
An Application of Sylvester’s Rank Inequality, Sidney H. Kung, 42:2, 2011, 148, C
An Intuitive Proof of the Singular Value Decomposition of a Matrix, Keith J. Coates, 42:5, 2011, 394-395, C, 4.3, 4.6
A Real Proof of the Principal Axis Theorem, Suk-Geun Hwang, 43:2, 2012, 172-173, C
The Numerical Range of the Luoshu Is a Piece of Cake – Almost, Gotz Trenkler and Dietrich Trenkler, 43:5, 2012, 371-376, 4.6

4.6 Numerical methods of linear algebra

Harvesting a Grizzly Bear Population, Michael Caulfield and John Kent and Daniel McCaffery, 17:1, 1986, 34-46, 4.1, 9.10
Why Should We Pivot in Gaussian Elimination?, Edward Rozema, 19:1, 1988, 63-72, 4.1
A Singularly Valuable Decomposition: The SVD of a Matrix, Dan Kalman, 27:1, 1996, 2-23
Of Memories, Neurons, and Rank-One Corrections, Kevin G. Kirby, 28:1, 1997, 2-19, 8.4
Gaussian Elimination and Dynamical Systems, Kathie Yerion, 28:2, 1997, 89-97, 9.6
A Fresh Approach to the Singular Value Decomposition, Colm Mulcahy and John Rossi, 29:3, 1998, 199-207
If It’s in the Textbook, It Must Be True, Donald A. Teets, 31:4, 2000, 307-308, F, 6.6
Obtaining the QR Decomposition by Pairs of Row and Column Operations, Sidney H. Kung, 33:4, 2002, 320-321, C, 4.1
Singular Vectors’ Subtle Secrets, David James, Michael Lachance, and Joan Remski, 42:2, 2011, 86-95, 4.5, 4.7 (see also 2. Correction, 42:5, 2011, 429)

4.7 Other topics in linear algebra

Some Applications of Elementary Linear Algebra in Combinatorics, Richard A. Brualdi and Jennifer J. Q. Massey, 24:1, 1993, 10-19, 3.2
Problem Collection for Linear Algebra, Ed Barbeau, 24:1, 1993, 64-66, F
Image Reconstruction in Linear Algebra, Andrzej Kedzierski and Olympia Nicodemi, 32:2, 2001, 128-134, C
Teaching Linear Algebra: Issues and Resources, Dan Kalman and Jane Day, 32:3, 2001, 162-168, 1.1
Linear Algebra in the Financial World, Barbara Swart, 32:3, 2001, 208-210, C
A Remark on the Chain Rule for Exponential Matrix Functions, James H. Liu, 34:2, 2003, 141-143, C
Breaking the Holiday Inn Priority Club CAPTCHA, Edward Aboufadel, Julia Olsen, and Jesse Windle, 36:2, 2005, 101-108, 8.3, 9.10
FFF #249. Linearly dependent sets of polynomials, R. Bruce Mattingly, 37:2, 2006, 122, F
Singular Vectors’ Subtle Secrets, David James, Michael Lachance, and Joan Remski, 42:2, 2011, 86-95, 4.5, 4.6 (see also 2. Correction, 42:5, 2011, 429)

4.8 Software for linear algebra

A Mathematics Software Database, R. S. Cunningham and David A. Smith, 17:3, 1986, 255-266, 0.10, 3.4, 5.8, 6.7, 7.4, 9.11
A Mathematics Software Database Update, R. S. Cunningham and David A. Smith, 18:3, 1987, 242-247, 0.10, 3.4, 5.8, 6.7, 7.4, 9.11
The Complete Mathematics Software Database, R. S. Cunningham and David A. Smith, 19:3, 1988, 268-289, 0.10, 3.4, 5.8, 6.7, 7.4, 9.11
Linear Algebra Software for the IBM PC, David P. Kraines and Vivian Y. Kraines, 21:1, 1990, 57-64, 4.1
Derive®, A Mathematical Assistant, Jeanette R. Palmeter, 23:2, 1992, 158-161
Spreadsheets in Linear Algebra, Deane Arganbright, 24:1, 1993, 89-94, 4.1
Theorist®, Francis Gulick, 24:2, 1993, 178-182
Using Computer Algebra Systems to Teach Linear Algebra (software review), Maurino P. Bautista, 24:5, 1993, 462-471, 4.1, 4.5
Software Review: f(g) Scholar, David C. Arney and Daniel J. Arney, 26:5, 1995, 401-403, 0.10, 5.8

5 Calculus
5.1 Limits and differentiation

5.1.1 Limits (including l'Hopital's rule)

Delta as a Function of Epsilon, A Suggestion for the Calculus Teacher, John W. LeDuc, 4:3, 1973, 85-86, C
A Note on Epsilons and Deltas, Peter A. Lindstrom, 5:3, 1974, 12-14
Another Note on Epsilons and Deltas, Larry F. Bennett, 7:3, 1976, 18
Comparing \(a^b\) and \(b^a\) Using Elementary Calculus, John T. Varner III, 7:4, 1976, 46, C, 5.1.2
An Interesting Approach to Delta, Epsilon Proofs, Allen R. Angel, 8:5, 1977, 278-280
Note on l'Hopital's Rule for the Indeterminate Form infinity over infinity, James E. Carpenter, 9:2, 1978, 73-74
A Neglected Approach to the Logarithm, Bruce S. Babcock and John W. Dawson, Jr., 9:3, 1978, 136-140, 5.3.2
Stirling's Formula Improved, Jerry B. Keiper, 10:1, 1979, 38-39, C
L'Hopital's Rule and the Continuity of the Derivative, J. P. King, 10:3, 1979, 197-198, C
Calculator-Demonstrated Math Instruction, George McCarty, 11:1, 1980, 42-48, 5.2.2, 5.4.2, 9.6
Calculators to Motivate Infinite Composition of Functions, E. D. McCune and R. G. Dean and W. D. Clark, 11:3, 1980, 189-195
Fixed Point Iteration—An Interesting Way to Begin a Calculus Course, Thomas Butts, 12:1, 1981, 2-7, 1.2, 9.6
Probability Solution to a Limit Problem, Homer W. Austin, 13:4, 1982, 272, C, 7.2
The Epsilon-Delta Connection, Larry King, 14:1, 1983, 42-47
Some Subtleties in l'Hopital's Rule, Robert J. Bumcrot, 15:1, 1984, 51-52, C
Alternate Approach to Two Familiar Results, Norman Schaumberger, 15:5, 1984, 422-423, C, 5.1.2
Bernoulli's Inequality and the Number e, Joseph Wiener, 16:5, 1985, 399-400, C
Using Riemann Sums in Evaluating a Familiar Limit, Frank Burk, 17:2, 1986, 170-171, C, 5.2.1, 5.3.2
Interactive Graphics for Multivariable Calculus, Michael E. Frantz, 17:2, 1986, 172-181, 5.1.4, 5.7.1, 1.2
Picturing Infinite Values, Robert A. Cicenia, 17:4, 1986, 322-325
An Unexpected Appearance of the Golden Ratio, George Manuel and Amalia Santiago, 19:2, 1988, 168-170, C, 0.4
A Generalization of the limit of \([n!]^{1/n}/n = e^{(-1)},\) Norman Schaumberger, 20:5, 1989, 416-418, C, 9.5
A Recursively Computed Limit, Stephan C. Carlson and Jerry M. Metzger, 21:3, 1990, 222-224, C
A Geometric Proof of the limit as \(d\) approaches 0 from the positive side of \(-d \ln d\) equals 0, John H. Mathews, 23:3, 1992, 209-210, C
A Circular Argument, Fred Richman, 24:2, 1993, 160-162, C
Does a Parabola Have an Asymptote?, David Bange and Linda Host, 24:4, 1993, 331-342, 5.1.5, 5.6.1
Maclaurin Expansion of Arctan \(x\) via L'Hopital's Rule, Russell Euler, 24:4, 1993, 347-350, C, 5.4.3
FFF. Two Limit Fallacies, Ed Barbeau, editor, 28:1, 1997, 44-46, F
Introduction to Limits, or Why Can't We Just Trust the Table?, Allen J. Schwenk, 28:1, 1997, 51, C
Proof of a Common Limit (\(x / e^{x}\)) (proof without words), Alan H. Stein and Dennis McGavran, 29:2, 1998, 147, C
Things I Have Learned at the AP Reading, Dan Kennedy, 30:5, 1999, 346-355, 0.2, 5.1.2, 5.2.1, 5.2.6,
5.4.2, 6.1
The Limit of $t \ln t$ as t approaches 0 (Proofs Without Words), Thomas Gantner, 31:4, 2000, 273, C
FFF #175. A Proof that $-1 = 1$, Sung Soo Kim, 32:4, 2001, 282, F
FFF #197. Hospitalization, Bill Sands, 33:4, 2002, 309, F
FFF #202. A limit at negative infinity, Dunrun Huang, 34:1, 2003, 51-52, F
On the Indeterminate Form 0^0, Leonard J. Lipkin, 34:1, 2003, 55-56, C
A Non-Smooth Band Around a Non-Convex Region, J. Aarao, A. Cox, C. Jones, M. Martelli, and A. Westfahl, 37:4, 2006, 269-278, 5.7.3, 9.8
Skipping over logs in finding limits of the form 1^∞: Teaching Tip, Sidney Kung, 38:1, 2007, 42, C
The Convergence Behavior of $f^\alpha(x) = (1 + 1/x)^{e^\alpha}$, Cong X. Kang and Eunjeong Yi, 38:5, 2007, 385-387, C, 5.3.2, 9.5
The Depletion Ratio, C. W. Groetsch, 39:1, 2008, 43-48, 5.2.1, 9.10
FFF #275. More striking results, Peter Schumer and Michael A. Jones, 39:1, 2008, 50, F, 0.2
Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers, Lawrence Downey, Boon W. Ong, and James A. Sellers, 39:5, 2008, 391-394, C, 5.2.5, 5.4.2
A Class of Multivariable Limits, Yingfan Liu and Youguo Wang, 41:2, 2010, 154-156, C, 5.7.1
Teaching Tip: The Limit of $(\sin t)/t$, Claudi Alsina and Roger Nelsen, 41:3, 2010, 192, C
Teaching Tip: How $\tan(x)$ Grows, Juan Tolosa, 41:3, 2010, 219-220, C, 0.6
Intriguing Limit, Roman Witula and Damian Slota, 42:4, 2011, 328, C
Limit Interchange and L’Hôpital’s Rule, Michael W. Ecker, 42:5, 2011, 382-383, C, 5.2.9

5.1.2 The derivative and mean value theorems

Factoring Functions, J. C. Bodenrader, 2:1, 1971, 23-26, 0.6, 3.2, 9.1
How Steep Is a Hill?, Robert L. Page, 3:1, 1972, 66-67, C
A Note on Derivatives of Polynomials, Aron Pinker, 3:2, 1972, 77-78, C
Generalizing Rolle’s Theorem in Elementary Calculus, Rodney D. Gentry, 4:3, 1973, 11-17
Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.4, 5.2.2, 5.2.3, 5.2.5, 5.2.3, 5.7.2, 5.2.10, 5.4.2, 5.6.1
Continuous Deformation of a Polynomial into Its Derivatives, Roland E. Larson, 5:2, 1974, 68-69, C, 0.7
When Does $(fg)' = f'g'$?, Lewis G. Maharam and Edward P. Shaughnessy, 7:1, 1976, 38-39, C
Comparing a^b and b^a Using Elementary Calculus, John T. Varner III, 7:4, 1976, 46, C, 5.1.1
An Elementary Result on Derivatives, David A. Birnbaum and Northrup Fowler III, 8:1, 1977, 10-11
Some Elementary Results Related to the Mean Value Theorem, Roy E. Myers, 8:1, 1977, 51-53, C
Differentiating Area and Volume, Jay I. Miller, 9:1, 1978, 47-49, C
Differentiation and Synthetic Division, Dan Kalman, 10:1, 1979, 37, C
Travelers’ Surprises, R. P. Boas, 10:2, 1979, 82-88
Another Application of the Mean Value Theorem, Norman Schaumberger, 10:2, 1979, 114-115, C
An Alternate Approach to the Derivative of the Trigonometric Functions, Norman Schaumberger, 10:4, 1979, 276-277, C
Wavefronts, Box Diagrams, and the Product Rule: A Discovery Approach, John W. Dawson, Jr., 11:2, 1980, 102-106, 7.2
The Sums of Zeros of Polynomial Derivatives, Michael W. Ecker, 13:5, 1982, 328-329, C
Exactly n-Times Differentiable Functions, Robert Bumcrot, 14:3, 1983, 258-259, C
The Derivatives of Sin x and Cos x, Norman Schaumberger, 15:2, 1984, 143-145, C
Another Look at x^n(1/x), Norman Schaumberger, 15:3, 1984, 249-250, C, 5.4.1
Alternate Approaches to Two Familiar Results, Norman Schaumberger, 15:5, 1984, 422-423, C, 5.1.1
A Self-Contained Derivation of the Formula of the Derivative with Respect to x of x^r for Rational r, Peter A. Lindstrom, 16:2, 1985, 131-132, C
Average Values and Linear Functions, David E. Dobbs, 16:2, 1985, 132-135, 5.2.1
More Applications of the Mean Value Theorem, Norman Schaumberger, 16:5, 1985, 397-398, C
Rolle over Lagrange—Another Shot at the Mean Value Theorem, Robert S. Smith, 17:5, 1986, 403-406
A Guide to Computer Algebra Systems, John M. Hosack, 17:5, 1986, 434-441, 0.4, 4.1, 5.1.5, 5.2.3, 5.2.4, 5.2.5
The Derivatives of the Sine and Cosine Functions, Barry A. Cipra, 18:2, 1987, 139-142, C
The Power Rule and the Binomial Formula, Stephen H. Friedberg, 20:4, 1989, 322, C, 5.4.2
A Simple Auxiliary Function for the Mean Value Theorem, Herb Silverman, 20:4, 1989, 323, C
The Function sin x / x, William B. Gearhart and Harris S. Shultz, 21:2, 1990, 90-99, 2.2, 5.1.5
The Derivative of x^n = nx^(n-1): Six Proofs, Russell Jay Hendel, 21:4, 1990, 312-313, C
FFF #37. 3 Equals 2, Ed Barbeau, 22:2, 1991, 132, F
The Differentiability of Sin x, David A. Rose, 22:1, 1991, 139-142, C
FFF #45. All Powers of x are Constant, Ed Barbeau, 22:5, 1991, 403, F, 0.9
Summation by Parts, Gregory Fredricks and Roger B. Nelsen, 23:1, 1992, 39-42, C, 5.4.1, 5.4.2, 9.3
Another Proof of the Formula e equals the infinite sum of reciprocals of n!, Norman Schaumberger, 25:1, 1994, 38-39, C, 5.3.2
Newton's Method for Resolving Affected Equations, Chris Christensen, 27:5, 1996, 330-340, 0.7, 5.4.3
On “Rethinking Rigor in Calculus …,” or Why We Don’t Do Calculus on the Rational Numbers, Scott E. Brodie, 30:2, 1999, 135-138, C, 1.2
FFF #142. Calculating the Average Speed, Bill Simpson, 30:3, 1999, 209, F, 6.1
A Natural Proof of the Chain Rule, Stephen Kenton, 30:3, 1999, 216-218, C
Things I Have Learned at the AP Reading, Dan Kennedy, 30:5, 1999, 346-355, 0.2, 5.1.1, 5.2.1, 5.2.6, 5.4.2, 6.1
From Square Roots to n-th Roots: Newton’s Method in Disguise, W. M. Priestley, 30:5, 1999, 387-388, C, 9.6
Amortization: An Applications of Calculus, Richard E. Klima and Robert G. Donnelly, 30:5, 1999, 388-391, C, 0.8
Can We Improve the Teaching of Calculus?, Hugh Thurston, 31:4, 2000, 262-267, 1.1, 5.7.1
Meta-Problems in Mathematics, Al Cuoco, 31:5, 2000, 373-378, 0.7, 9.3
5.1.3 Tangents, differentials, and differentiation

A Simple Proof of the Reflection Property for Parabolas, R. H. Cowen, 7:2, 1976, 59-60, C, 0.5
Mappings, Diagrams, Continuous Functions and Derivatives, Thomas J. Brieske, 9:2, 1978, 67-72
A Note on the Derivative of a Composite Function, V. N. Murty, 11:1, 1980, 50, C
Derivatives Without Limits, Harry Sedinger, 11:1, 1980, 54-55, C, 5.1.2
Related Rates and the Speed of Light, Steven C. Althoen and John F. Weidner, 16:3, 1985, 186-189
What a Tangent Line is When it isn't a Derivative, Irl C. Bivens, 17:2, 1986, 133-143
Transitions, Jeannie L. Agnew and James R. Choike, 18:2, 1987, 124-133, 0.7, 5.6.1, 9.10
A Chaotic Search for i, Gilbert Strang, 22:1, 1991, 3-12, 6.3, 9.5
Who Needs the Sine Anyway?, Carlos C. Huerta, 23:1, 1992, 43-44, C, 5.4.2
Visualization of Limits and Limits of Visualization: Student Research Projects, Lee H. Minor, 23:1, 1992, 48-51, 0.4, 0.5
An Exponential Rule, G. E. Bilodeau, 24:4, 1993, 350-351, C
FFF #70. Reading a Calculator Display, Sandra Z. Keith, 25:1, 1994, 36, F, 0.2
Euler and Differentials, Anthony P. Ferzola, 25:2, 1994, 102-111, 2.2
Isaac Newton: Credit Where Credit Won't Do, Robert Weinstock, 25:3, 1994, 179-192, 0.5, 2.2, 5.4.3, 5.6.1
The Dynamics of Newton's Method for Cubic Polynomials, James A. Walsh, 26:1, 1995, 22-28, 6.3
The Spider's Spacewalk Derivation of sin' and cos', Tim Hesterberg, 26:2, 1995, 144-145, C
The Falling Ladder Paradox, Paul Scholten and Andrew Simoson, 27:1, 1996, 49-54, C, 6.2
Bond Duration: An Application of Calculus, John C. Hegarty, 27:1, 1996, 47-49, C
Area and Perimeter, Volume and Surface Area, Jingcheng Tong, 28:1, 1997, 57, C, 0.4
A Continuous Version of Newton's Method, Steven M. Hetzler, 28:5, 1997, 348-351, 6.3
The Derivative of Sin theta, Selvaratnam Sridharma, 30:4, 1999, 314-315, C
Normal Lines and Curvature, Kirby C. Smith, 31:1, 2000, 54-56, C, 9.8
Related Rates Collide with Vectors, Stephen Fulling, 31:2, 2000, 116-119, 5.5
Normal Lines and the Evolute Curve, David Sanchez and Kirby C. Smith, 31:5, 2000, 397-403, C, 5.6.1
Tangents without Calculus, Jorge Aarao, 31:5, 2000, 406-407, C, 0.2, 0.7
Derivative of the Tangent (Mathematics Without Words), Yukio Kobayashi, 32:1, 2001, 14, C
Off on a Tangent, Russell A. Gordon and Brian C. Dietel, 34:1, 2003, 62-63, C, 9.5
Tangent Line Transformations, Steven Butler, 34:2, 2003, 105-106
FFF #214. The area under a tangent, Ed Barbeau, 34:4, 2003, 312-313, F, 5.1.4
FFF #216. A simple way to differentiate a quotient, Anand Kumar, 34:4, 2003, 313-314, F
Finding the Tangent to a Conic Section Without Calculus, Sidney H. Kung, 34:5, 2003, 394-395, C, 0.2
On Determining the Non-Circularity of a Plane Curve, Lane F. Burgette and Russell A. Gordon, 35:2, 2004, 74-83, 5.2.8, 9.7
A Property Possessed by Every Differentiable Function, Jingcheng Tong, 35:3, 2004, 216-217, C
Successive Differentiation and Leibniz’s Theorem, P. K. Subramanian, 35:4, 2004, 274-282, 5.4.3, 6.2
Logarithmic Differentiation: Two Wrongs Make a Right, Noah Samuel Brannen and Ben Ford, 35:5, 2004, 388-390, C
The Computation of Derivatives of Trigonometric Functions via the Fundamental Theorem of Calculus, Horst Martini and Walter Wenzel, 36:2, 2005, 154-158, C, 5.2.1, 5.3.1
Intersections of Tangent Lines of Exponential Functions, Timothy G. Feeman and Osvaldo Marrero, 36:3, 2005, 205-208, 0.5, 5.3.2
The Naïve Chain Rule, M. Leigh Lunsford, Marcus Penndergrass, Phillip Poplin and David Shoenthal, 39:2, 2008, 142-145, C
Fibonacci’s Forgotten Number Revisited, Richard Maruszewski, 40:4, 2009, 248-251, 0.7, 2.1, 9.6
Putting Differentials Back into Calculus, Tevian Dray and Corinne A. Manogue, 41:2, 2010, 90-100
A Characterization of a Quadratic Function in R^n, Conway Xu, 41:3, 2010, 212-214, 5.7.1
The Product and Quotient Rules Revisited, Roger Eggleton and Vladimir Kustov, 42:4, 2011, 323-325, C
A Generalization of the Parabolic Chord Property, John Mason, 42:4, 2011, 326-328, C, 5.4.3

5.1.4 Maxima and minima

Using Polyhedrons to Define Maximum Volumes, D. L. Carleton, 3:1, 1972, 30-32
Some Socially Relevant Applications of Elementary Calculus, Colin Clark, 4:2, 1973, 1-15, 6.1
An Interpolation Question Resolved by Calculus, Martin D. Landau and William R. Jones, 4:1, 1973, 36-39
Four Theorems About Montana, H. E. Reinhardt, 4:1, 1973, 76-78, C
Construction of an Exercise Involving Minimum Time, Robert Owen Armstrong, 5:2, 1974, 12-14
Maximize x(a-x), L. H. Lange, 5:1, 1974, 22-24, 0.2
A Set of Trigonometric Inequalities with Applications to Maxima and Minima, Norman Schaumberger,
Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.2, 5.2.2, 5.2.3, 5.2.5, 5.2.10, 5.4.2, 5.6.1, 5.7.2

A Calculus Proof of the Arithmetic-Geometric Mean Inequality, Norman Schaumberger, 9:1, 1978, 16-17

On the "Rule of 72", Warren B. Gordon and Harold D. Shane, 10:2, 1979, 117-118, C

An interesting way to test students' understanding of the first derivative test, Dick A. Wood, 10:2, 1979, 118, C

How Good is the "Rule of 72"?, Alan Kroopnick, 10:4, 1979, 279-280, C

Another way to test understanding of the first derivative test, Thomas M. Greene, 10:4, 1979, 282-283, C

Must a "Dud" Necessarily Be an Inflection Point?, Michael W. Ecker, 12:5, 1981, 332-333, C

A Bifurcation Problem in First Semester Calculus, W. L. Perry, 14:1, 1983, 57-60, C

When Does a Square Give Maximum Area?, Ray C. Shiflett and Harris S. Schultz, 14:3, 1983, 194-196

To Build a Better Box, Kay Dundas, 15:1, 1984, 30-36

The Maximum and Minimum of Two Numbers Using the Quadratic Formula, Dan Kalman, 15:4, 1984, 329-330, C, 9.5

The Problem of Managing a Strategic Reserve, David Cole, Loren Haarsma and Jack Snoeyink, 17:1, 1986, 48-60, 6.1, 9.10

A Note on Differentiation, Russell Euler, 17:2, 1986, 166-167, C

Interactive Graphics for Multivariable Calculus, Michael E. Frantz, 17:2, 1986, 172-181, 1.2, 5.1.1, 5.7.1

Coloring Points in the Unit Square, Charles H. Jepsen, 17:3, 1986, 231-237, 3.1

Computer Algebra Systems in Undergraduate Mathematics, Don Small and John Hosack and Kenneth Lane, 17:5, 1986, 423-433, 1.2, 5.1.5, 5.2.2, 5.4.2

A Surprising Max-Min Result, Herbert Bailey, 18:3, 1987, 225-229, C

On Partitioning a Real Number, William Staton, 19:1, 1988, 53-54, C, 9.3

Behold! Two Extremum Problems (and the Arithmetic-Geometric Mean Inequality), Paolo Montuchi and Warren Page, 19:4, 1988, 347, C, 0.4

Hanging a Bird Feeder: Food for Thought, John W. Dawson, Jr., 21:2, 1990, 129-130, C

Using a Computer Algebra System to Solve for Maxima and Minima, Robert Lopez and John Mathews, 21:5, 1990, 410-414

Extrema and Saddle Points, David P. Kraines and Vivian Y. Kraines and David A. Smith, 21:5, 1990, 416-418, C, 5.7.1

FFF #34. The Shortest Distance from a Point to a Parabola, Ed Barbeau, 22:2, 1991, 131, F (also 23:1, 1992, 38)

The Curious 1/3, James E. Duemmel, 24:3, 1993, 236-237, C

Old Calculus Chestnuts: Roast, or Light a Fire?, Margaret Cibes, 24:3, 1993, 241-243, C, 1.2

A Visual Proof of Eddy and Fritsch's Minimal Area Property, Robert Pare, 26:1, 1995, 43-44, C, 5.7.2
The Chair, the Area Rug, and the Astroid, Mark Schwartz, 26:3, 1995, 229-231, C, 5.6.1
The Rental Car Problem, Gary D. White and Kirby Smith, 27:5, 1996, 374-378, C, 5.2.1
Halley's Gunnery Rule, C. W. Groetsch, 28:1, 1997, 47-50, C
Using the College Mathematics Journal Topic Index in Undergraduate Courses, Donald E. Hooley, 28:2, 1997, 106-109, 4.1, 4.2, 5.7.1
The Pen and the Barn, Peter Schumer, 28:3, 1997, 205-206, C
FFF #123. A Foot by Any Other Name, David Protas, 29:1, 1998, 34, F (see also 30:2, 1999, 132)
Two Historical Applications of Calculus, Alexander J. Hahn, 29:2, 1998, 93-103, 5.2.9
Minimal Pyramids, Michael Scott McClendon, 29:3, 1998, 224-226, C
FFF #146. Maximizing a Subtended Angle, Richard Askey, 30:3, 1999, 315-317, C, 0.6
Measuring the Curl of Paper, Joseph Paulet and Richard Bertram, 30:4, 1999, 315-317, C, 0.6
Ca\-ble\-laying and Intuition, Yael Roitboerg and Joseph Roitberg, 32:1, 2001, 52-54, C
FFF #177. A Standard Box Problem, Dale R. Buske, 32:4, 2001, 282-283, F
Research Questions from Elementary Calculus (Student Research Projects), Jack E. Graver and Lawrence J. Lardy, 32:5, 2001, 388-393
It's Perfectly Rational, Philip K. Hotchkiss, 33:2, 2002, 113-117, 9.3
The Distance Between Two Graphs, Rhonda Huettenmueller, 33:2, 2002, 142-143, C
Moving a Couch Around a Corner, Christopher Moretti, 33:3, 2002, 196-200, 9.5
A Generalization of a Minimum Area Problem, Russell A. Gordon, 34:1, 2003, 21-23
A Dozen Minima for a Parabola, Leon M. Hall, 34:2, 2003, 139-141, C
Constrained Optimization with Implicit Differentiation, Gary W. DeYoung, 34:2, 2003, 148-152, C
Do Dogs Know Calculus?, Timothy J. Pennings, 34:3, 2003, 148-152, C
A New Wrinkle on an Old Folding Problem, Greg N. Frede\-rickson, 34:4, 2003, 258-263, 5.2.7
FFF #214. The area under a tangent, Ed Barbeau, 34:4, 2003, 312-313, F, 5.1.3
Maximizing the Area of a Quadrilateral, Thomas Peter, 34:4, 2003, 315-316, C
A Hairy Parabola, Aaron Montgomery, 34:5, 2003, 395-397, C
Maximal Revenue With Minimal Calculus, Byron L. Walden, 34:5, 2003, 402-404, C
FFF #222. Falling ball, Karl Havlak, 35:2, 2004, 122-123, F
An Apothem Apparently Appears, Pat Cade and Russell A. Gordon, 36:1, 2005, 52-55, C
Making a Bed, Anthony Wexler and Sherma\-n Stein, 36:3, 2005, 213-221, 0.4
The Flip-Side of a Lagrange Multiplier Problem, Angelo Segalla and Saleem Watson, 36:3, 2005, 232-235, C, 5.7.1
Differentiate Early, Differentiate Often!, Robert Dawson, 36:5, 2005, 404-407, C
Do Dogs Know Related Rates Rather than Optimization?, Pierre Perruchet and Jorge Gallego, 37:1, 2006, 16-18, 9.10
The Tippy Trough, Donald Francis Young, 37:3, 2006, 205-213, 9.10
An Exceptional Exponential Function, Branko Curgus, 37:5, 2006, 344-354, 5.3.2, 5.3.4
An Introduction to Simulated Annealing, Brian Albright, 38:1, 2007, 37-42, 9.9
FFF #270. Maximizing an area, Ed Barbeau, 38:5, 2007, 375, F, 0.4
FFF #271. Two distributivity howlers, John A. Quintanilla, 38:5, 2007, 375-376, F, 5.2.1
How to Measure Angles with a Ruler, Travis Kowalski, 39:4, 2008, 273-279, 0.4
FFF #287. Criticizing a critical point, Ollie Nanyes, 39:5, 2008, F, 383, 5.3.2
Maximizing the Spectacle of Water Fountains, Andrew J. Simoson, 40:4, 2009, 263-274, 5.2.6, 5.2.7, 5.2.8, 9.10
5.1.5 Graphs of functions

The Quadratic Polynomial and Its Zeroes, C. A. Long, 3:1, 1972, 23-29, 0.7, 9.5
Graphing a Cubic Using Calculus and a Computer, Roland E. Larsen, 6:1, 1975, 32-40, 0.7
Darboux’s Theorem and Points of Inflection, Michael Olinick and Bruce B. Peterson, 7:3, 1976, 5-9
A Flexible Model for Peak, Ridge, and Pass, Cliff Long, 7:3, 1976, 16-17
Discovering a Calculus Theorem, John Taylor Varner III, 8:5, 1977, 304, C
Income Tax Averaging and Convexity, Michael Henry and G. E. Trapp, Jr., 15:3, 1984, 253-255, C, 0.8, 5.7.1, 9.5
Geometrically Asymptotic Curves, Dan Kalman, 16:3, 1985, 199-206, 9.5
Routine Problems, Sherman Stein, 16:5, 1985, 383-385, 0.2, 1.2
Computer Algebra Systems in Undergraduate Mathematics, Don Small and John Hosack and Kenneth Lane, 17:5, 1986, 423-433, 1.2, 5.1.4, 5.2.2, 5.4.2
A Guide to Computer Algebra Systems, John M. Hosack, 17:5, 1986, 434-441, 0.2, 4.1, 5.1.2, 5.2.3, 5.2.4, 5.2.5
Problem Solving Using Microcomputers, Franklin Demana and Bert Waits, 18:3, 1987, 236-241
Pitfalls in Graphical Computation, or Why a Single Graph Isn't Enough, Franklin Demana and Bert K. Waits, 19:2, 1988, 177-183, 0.6
Parameter-generated Loci of Critical Points of Polynomials, F. Alexander Norman, 19:3, 1988, 223-229, 0.7, 9.5
Teaching with CAL: A Mathematics Teaching and Learning Environment, James E. White, 19:5, 1988, 424-443, 1.2
Graphing the Complex Zeros of Polynomials Using Modulus Surfaces, Cliff Long and Thomas Hern, 20:2, 1989, 98-105, 0.7, 9.5
The Curious Fate of an Applied Problem, Alan H. Schoenfeld, 20:2, 1989, 115-123, 8.3, 9.5
Graphing with the HP-28S, John Selden and Annie Selden, 20:5, 1989, 423-432, 1.2
Calculus Quiz, David P. Kraines and Vivian Y. Kraines and David A. Smith, 20:5, 1989, 437-438, C, 1.2
(Sin x)^2: A Sheep in Wolf's Clothing, Mark E. Saul, 21:1, 1990, 43-44, C, 0.6
Quick Function Evaluation, Daniel S. Yates, 21:1, 1990, 51, C, 0.2
The Function sin x / x, William B. Gearhart and Harris S. Shultz, 21:2, 1990, 90-99, 2.2, 5.1.2
Single Equations Can Draw Pictures, Keith M. Kendig, 22:2, 1991, 134-139, C, 0.4, 0.5, 5.6.1, 5.6.2
Positivity from Evaluation of a Single Point, Henry Mark Smith, 22:3, 1991, 230-231, C, 0.2
Individualized Computer Investigations for Calculus, Sheldon P. Gordon, 23:5, 1992, 426, C, 0.7, 5.1.4
Does a Parabola Have an Asymptote?, David Bange and Linda Host, 24:4, 1993, 331-342, 5.1.1, 5.6.1
Can We Use the First Derivative to Determine Inflection Points?, Duane Kouba, 26:1, 1995, 31-34
Dynamic Function Visualization, Mark Bridger, 27:5, 1996, 361-369, 5.8, 9.5
Bounding the Roots of Polynomials, Holly P. Hirst and Wade T. Macey, 28:4, 1997, 292-295, C, 0.7
Undersampled Sine Waves, J. C. Derderian and Enriqueta Rodriguez-Carrington, 29:3, 1998, 213-218, 0.6
FFF #181. Finding Asymptotes, Carl Libis, 32:5, 2001, 366, F, 0.2
FFF #230. The function y = x^(6/7) has a node at the origin, Robert J. MacG. Dawson, 35:5, 2004, 383-384, F
Trigonometric Identities on a Graphing Calculator, Joan Weiss, 35:5, 2004, 393-396, C, 0.6
Spraying a Wall with a Garden Hose, James Alexander, 36:2, 2005, 149-152, C, 9.10
From Chebyshev to Bernstein: A Tour of Polynomials Small and Large, Matthew Boelkins, Jennifer Miller, and Benjamin Vugteveen, 37:3, 2006, 194-204, 9.5
The Intermediate Value Theorem is NOT Obvious -- and I Am Going to Prove It to You, Stephen M. Walk, 42:4, 2011, 254-259, 5.1.2

5.2 Integration

5.2.1 Definition of integrals and the fundamental theorem

Evaluating the integral from a to b of x^k dx Where k Is Any Negative Integer Other Than -1, Norman Schaumberger, 4:2, 1973, 91-93, C
Some Comments on the Exceptional Case in a Basic Integral Formula, Norman Schaumberger, 5:3, 1974, 58, C, 5.3.2
Mean Value Theorems of Integral Calculus, C. W. Baker, 10:1, 1979, 35-37, C
Using Integrals to Evaluate Voting Power, Philip D. Straffin, Jr., 10:3, 1979, 179-191, 7.2
Is Ln the Other Shoe?, Byron L. McAllister and J. Eldon Whitesitt, 12:1, 1981, 20-23, 5.3.2
Finding Bounds for Definite Integrals, W. Vance Underhill, 15:5, 1984, 426-429, C, 5.2.2
Inverse Functions, Ralph P. Boas, 16:1, 1985, 42-47, 5.3.2, 5.4.2
Average Values and Linear Functions, David E. Dobbs, 16:2, 1985, 132-135, C, 5.1.2
Using Riemann Sums in Evaluating a Familiar Limit, Frank Burk, 17:2, 1986, 170-171, C, 5.1.1, 5.3.2
The Derivatives of the Sine and Cosine Functions, Barry A. Cipra, 18:2, 1987, 139-140, C, 5.1.2
Two Simple Recursive Formulas for Summing 1^k + 2^k + ... + n^k, Michael Carchidi, 18:5, 1987, 406-409, C, 6.3
Riemann Integral of cos x, John H. Mathews and Haines S. Schultz, 20:3, 1989, 237, C
Sums and Differences vs. Integrals and Derivatives, Gilbert Strang, 21:1, 1990, 20-27
Using the Finite Difference Calculus to Sum Powers of Integers, Lee Zia, 22:4, 1991, 294-300, 5.4.1, 5.4.2
Physical Demonstrations in the Calculus Classroom, Tom Farmer and Fred Gass, 23:2, 1992, 146-148, C, 1.2, 6.1
How Should We Introduce Integration?, David M. Bressoud, 23:4, 1992, 296-298, 1.2
The Integral of x^(1/2), etc., John H. Mathews, 25:2, 1994, 142-144, C
The Point-Slope Formula Leads to the Fundamental Theorem of Calculus, Anthony J. Macula, 26:2, 1995, 135-139, C
The Rental Car Problem, Gary D. White and Kirby Smith, 27:5, 1996, 374-378, C, 5.1.4
Integration from First Principles, Paddy Barry, 32:4, 2001, 287-289, C
The Computation of Derivatives of Trigonometric Functions via the Fundamental Theorem of Calculus, Horst Martini and Walter Wenzel, 36:2, 2005, 154-158, C, 5.1.3, 5.3.1
If F(x) equals the integral from x to 2x of f(t) dt is Constant, Must f(t) = c/t?, Tian-Ziao He, Zachariah Sinkala, and Xiaoya Zha, 36:3, 2005, 199-204, 9.5
The Depletion Ratio, C. W. Groetsch, 39:1, 2006, 43-48, 5.1.1
Saddle Points and Inflection Points, Felix Martinez de la Rosa, 38:5, 2007, 375-376, F, 5.1.4
The Deletion Ratio, C. W. Groetsch, 39:1, 2008, 43-48, 5.1.1, 9.10
Sledge-Hammer Integration, Henry F. Ahner, 40:1, 2009, 6-9, 5.2.2
Computing Definite Integrals using the Definition, Jim Hartman, 41:1, 2010, 58-60, C
Waiting to Turn Left?, Maureen T. Carroll, Elyn K. Rykken, and Jody M. Sorensen, 41:1, 2010, 60-63, C, 9.10
Teaching Tip: Is This Integral Zero?, Ken Luther, 42:5, 2011, 373, C, 5.7.2
5.2.2 Numerical integration
Encouraging Mathematical Inquisitiveness, Carl L. Main, 1:1, 1970, 32-36, 5.4.2
Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.2, 5.1.4, 5.2.3, 5.2.5, 5.2.10, 5.4.2, 5.6.1, 5.7.2
An Integral Approximation Exact for Fifth-Degree Polynomials, Burt M. Rosenbaum, 7:3, 1976, 10-14, 9.6
Finding Bounds for Definite Integrals, W. Vance Underhill, 15:5, 1984, 426-429, C, 5.2.1
5.2.4 Partial fraction decomposition

An Alternative for Partial Fractions (part of the time), J.E Nymann, 14:1, 1983, 60-61, C
Efficient Techniques for Partial Fractions, Padmini T. Joshi, 14:2, 1983, 110-118
An Algebraic Approach to Partial Fractions, Phillip Schultz, 14:4, 1983, 346-348, C
An Alternative for Certain Partial Fractions, Sylvan Burgstahler, 15:1, 1984, 57-58, C
An Algebraic Approach to Partial Fractions, Joseph Wiener, 17:1, 1986, 71-72, C
A Guide to Computer Algebra Systems, John M. Hosack, 17:5, 1986, 434-441, 0.2, 4.1, 5.1.2, 5.1.5, 5.2.3, 5.2.5
A Shortcut to Partial Fractions, Xun-Cheng Huang, 22:5, 1991, 413-415, C
An Invitation to Integration in Finite Terms, Elena Anne Marchisotto and Gholam-Ail Zakeri, 25:4, 1994, 295-308, 2.2, 5.2.5, 5.2.9
Designing a Calculus Mobile, Tom Farmer, 33:2, 2002, 131-136, 5.4.2
Calculus, Pi, and the Machine Age, Susan Jane Colley, 34:3, 2003, 264-269, 5.4.2, 9.6
Proof Without Words: A Partial Fraction Decomposition, Steven J. Kifowit, 36:2, 2005, 122, C
Partial Fraction Decomposition by Division, Sidney H. Kung, 37:2, 2006, 132-134, C
Partial Fractions by Substitution, David A. Rose, 38:2, 2007, 145-147, C
FFF #278. The integral of a positive function equals 0, Hongwei Chen, 39:3, 2008, 227-228, F, 5.3.1
Four Ways to Skin a Definite Integral, Joseph B. Dence and Thomas P. Dence, 41:2, 2010, 134-144, 5.2.3, 9.5
Teaching Tip: Another Way to Break Up Partial Fractions, William Paulsen, 41:3, 2010, 221, C
Teaching Tip: Practice Integration on Problem Triplets, Meg B. Huddleston, 42:3, 2011, 214, C, 5.2.3, 5.2.5
A Fifth Way to Skin a Definite Integral, Satyanand Singh, 43:5, 2012, 377-378, 5.2.3, 5.2.10

5.2.5 Integration by parts

The integral of f(x) exp(ax)dx, H. L. Kung, 1:2, 1970, 106, C, 5.3.2
Integration by Undetermined Coefficients, Louise Grinstein, 2:2, 1971, 98-100, 5.3.2
Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.2, 5.1.4, 5.2.2, 5.2.3, 5.2.10, 5.4.2, 5.6.1, 5.7.2
Inter-related Concepts: An Example, Mark D. Galit and John P. Pace, 7:1, 1976, 7-10
A Discovery Approach to Integration by Parts, John Staib and Howard Anton, 10:5, 1979, 353-354, C
Integration by Parts, V. N. Murty, 11:2, 1980, 90-94
Creative Teaching by Mistakes, Andrejs Dunkels and Lars-Erik Persson, 11:5, 1980, 296-300, 6.1
Evaluating Integrals by Differentiation, Joseph Wiener, 14:2, 1983, 168-169, C, 5.3.1
Evaluating the integrals of sec x dx and (sec x)^3 dx, Bruce Sommer and Norman Schaumberger, 14:3, 1983, 256-257, C, 5.3.3
A Note on Integration by Parts, Andre L. Yandl, 16:4, 1985, 282-283, C
Numerical Integration via Integration by Parts, Frank Burk, 17:5, 1986, 418-422, C, 5.2.2
A Guide to Computer Algebra Systems, John M. Hosack, 17:5, 1986, 434-441, 0.2, 4.1, 5.1.2, 5.1.5, 5.2.3, 5.2.4
Pi/4 and ln 2 Recursively, Frank Burk, 18:1, 1987, 51, C, 5.4.2
FFF #17. cosh x = sinh x and 1 = 0, Ed Barbeau, 21:2, 1990, 128, F, 5.3.3
Moments on a Rose Petal, Douglass L. Grant, 21:3, 1990, 225-227, C, 5.6.1
Four Crotchets on Elementary Integration, Leroy F. Meyers, 22:5, 1991, 410-413, C, 5.2.3, 5.3.2, 6.1
Integrals of Products of Sine and Cosine with Different Arguments, Sherrie J. Nicol, 24:2, 1993, 158-160, C
An Invitation to Integration in Finite Terms, Elena Anne Marchisotto and Gholam-Ail Zakeri, 25:4, 1994, 295-308, 2.2, 5.2.4, 5.2.9
FFF #96. Derivative of Products, W. Heierman, 27:1, 1996, 45, F
Who Cares if X^2 + 1 = 0 Has a Solution?, Viet Ngo and Saleem Watson, 29:2, 1998, 141-144, C, 0.7, 5.4.2, 6.2
FFF #165. Two separate answers?, Ken Taylor, 31:5, 2000, 396, F, 5.2.3
FFF. Integration by parts, Karl Havlak, 33:2, 2002, 139, F
Column Integration and Series Representations, Thomas P. Dence and Joseph B. Dence, 34:2, 2003, 144-148, C, 5.4.2
A Quotient Rule Integration by Parts Formula, Jennifer Switkes, 36:1, 2005, 58-60, C
Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers, Lawrence Downey, Boon W. Ong, and James A. Sellers, 39:5, 2008, 391-394, C, 5.1.1, 5.4.2
Trick or Technique?, Michael Sheard, 40:1, 2009, 10-14
The Center of Mass of a Soft Spring, Juan D. Serna and Amitabh Joshi, 42:5, 2011, 389-393, C, 5.2.9, 9.10
Quotient-Rule-Integration-by-Parts, Michael Deveau and Robie Hennigar, 43:3, 2012, 254-256, C

5.2.6 Area
Integration by Geometric Insight—A Student’s Approach, Ann D. Holley, 12:4, 1981, 268-270, C, 5.3.1, 5.3.2
Area of a Parabolic Region, R. Rozen and A. Sofo, 16:5, 1985, 400-402, C, 0.5
The Surveyor’s Area Formula, Bart Braden, 17:4, 1986, 326-337, 4.2, 5.2.8
Annuities as Areas, Kurt W. Riemann, 18:1, 1987, 45-47, C
Relations between Surface Area and Volume in Lakes, Daniel Cass and Gerald Wildenberg, 21:5, 1990, 384, 5.2.7
Things I Have Learned at the AP Reading, Dan Kennedy, 30:5, 1999, 346-355, 0.2, 5.1.1, 5.1.2, 5.2.1,
5.2.7 Volume

Another Way of Looking at n!, David Hsu, 11:5, 1980, 333-334, C, 5.7.2
A Note on the Surface of a Sphere, Arthur C. Segal, 13:1, 1982, 63-64, C
The Grazing Goat in n Dimensions, Marshall Fraser, 15:2, 1984, 126-134
A Sequel to "Another Way of Looking at n!", William Moser, 15:2, 1984, 142-143, C, 3.2, 5.7.2
Return of the Grazing Goat in n Dimensions, Mark D. Meyerson, 15:5, 1984, 430-431
Exploring the Volume - Surface Area Relationship, Keith A. Struss, 21:1, 1990, 40-43, C, 5.2.6
Relations between Surface Area and Volume in Lakes, Daniel Cass and Gerald Wildenberg, 21:5, 1990, 384-389, 5.2.6

Disks, Shells, and Integrals of Inverse Functions, Eric Key, 25:2, 1994, 136-138, C
Did Plutarch Get Archimedes' Wishes Right?, Lester H. Lange, 26:3, 1995, 199-204, 2.1
Finding Volumes with the Definite Integral: A Group Project, Mary Jean Winter, 26:3, 1995, 227-228, C
The World's Biggest Taco, David D. Bleecker and Lawrence J. Wallen, 29:1, 1998, 2-12, 5.3.4, 9.5
Characterizing Power Functions by Volumes of Revolution, Bettina Richmond and Tom Richmond, 29:1, 1998, 40-41, C, 6.4
FFF #166. Several wrongs make a right, Carl Libis, 31:5, 2000, 396, F
Dipsticks for Cylindrical Storage Tanks – Exact and Approximate, Pam Littleton and David Sanchez, 32:5, 2001, 352-358, 0.4, 5.3.1
FFF. Solid of revolution of 1/x, Don Koks, 33:3, 2002, 227-228, F, 5.6.1
On the Work to Fill a Water Tank, Robert R. Rogers, 34:1, 2003, 56-58, C, 5.2.9
A New Wrinkle on an Old Folding Problem, Greg N. Frederickson, 34:4, 2003, 258-263, 5.1.4
A Calculation of the integral from 0 to infinity of e to the negative x-squared dx, Alberto Delgado, 34:4, 2003, 321-323, C

Solids in \mathbb{R}^n Whose Area Is the Derivative of the Volume, Michael Dorff and Leon Hall, 34:5, 2003, 350-358, 5.2.6

FFF #236. The volume of a cone, Dale R. Buske, 36:2, 2005, 142, F

A Paradoxical Paint Pail, Mark Lynch, 36:5, 2005, 402-404, C, 5.2.6, 9.5

Complementary Coffee Cups, Thomas Banchoff, 37:3, 2006, 170-175 (see also 38:2, 2007, 191)

A Bug Problem, Aaron Melman, 37:3, 2006, 219-221, C, 5.2.8

Proof Without Words: The Volume of an Ellipsoid via Cavalieri’s Principle, Sidney H. Kung, 39:3, 2008, 190, C, 0.5

Maximizing the Spectacle of Water Fountains, Andrew J. Simoson, 40:4, 2009, 263-274, 5.1.4, 5.2.6, 5.2.8, 9.10

5.2.8 Arc length

Formal Integration: Dangers and Suggestions, S. K. Stein, 5:2, 1974, 1-7, 5.2.3

Some Ridge-Length Problems, John W. Dawson, Jr., 7:4, 1976, 43-45, C

Surface Area and the Cylinder Area Paradox, Frieda Zames, 8:4, 1977, 207-211

Rectangular Aids for Polar Graphs, Alice W. Essary, 13:3, 1982, 200-205, 5.6.1

The Surveyor's Area Formula, Bart Braden, 17:4, 1986, 326-337, 4.2, 5.2.6

A Note on the Ratio of Arc Length to Chordal Length, Paul Eenigenburg, 28:5, 1997, 391-393, C

The Buckled Rail: Three Formulations, James E. Mann Jr., 29:2, 1998, 138-141, C

Maximizing the Arclength in the Cannonball Problem, Ze-Li Dou and Susan G. Staples, 30:1, 1999, 44-45, C

The Average Distance of the Earth from the Sun, David Deever, 30:3, 1999, 218-220, C, 0.5, 5.2.3

Sequences of Chords and of Parabolic Segments Enclosing Proportional Areas, Timothy Feeman and Osvaldo Marrero, 31:5, 2000, 379-382, 5.2.6, 9.5

FFF. Arc length, E. T. H. Wang, 33:2, 2002, 139, F

FFF. Arc length, Robert Weinstock, 34:1, 2003, 53-54, F

Centers of the United States, David Richeson, 36:5, 2005, 366-373, 5.2.6

A Bug Problem, Aaron Melman, 37:3, 2006, 219-221, C, 5.2.7

Finding Curves with Computable Arc Length, John Ferdinand, 38:3, 2007, 221-222, C

Arc Length and Pythagorean Triples, Courtney Moen, 38:3, 2007, 222-223, C

Teaching Tip: An Integration Technique, Roger Pinkham, 39:1, 2008, 42, C, 5.3.3

Maximizing the Spectacle of Water Fountains, Andrew J. Simoson, 40:4, 2009, 263-274, 5.1.4, 5.2.6, 5.2.7, 9.10
The Locus of the Focus of a Rolling Parabola, Anurag Agarwal and James Marengo, 41:2, 2010, 129-133, 0.5

5.2.9 Other theory and applications of integration

A New Look at an Old Work Problem, Bert K. Waits and Jerry L. Silver, 4:3, 1973, 52-55
Bat and Superbat, Herbert R. Bailey, 18:4, 1987, 307-314, 6.4
FFF. The Surface Area of a Sphere, Ed Barbeau, 23:3, 1992, 206, F
An Invitation to Integration in Finite Terms, Elena Anne Marchisotto and Gholam-Ail Zakeri, 25:4, 1994, 295-308, 2.2, 5.2.4, 5.2.5
Symmetry and Integration, Roger Nelsen, 26:1, 1995, 39-41, C
A Generalization of the Mean Value Theorem for Integrals, M. Sayrafiezadeh, 26:3, 1995, 223-224, C
A Normal Density Project, Robert K. Stump, 26:4, 1995, 310-312, C
Integrals of $(\cos x)^n$ and $(\sin x)^n$, Joseph Wiener, 31:1, 2000, 60-61, C
Plummeting: Check This Calculation!, Jonathan Franzen, 31:4, 2000, 296
Fast-Food-Frusta and the Center of Gravity, Andrew Simoson, 31:4, 2000, 303-306, C
Differentiation with Respect to a Parameter, Joseph Wiener, 32:3, 2001, 180-184
The Attraction of Surfaces of Revolution, Adam Coffman, 32:5, 2001, 372-375, C
Mathematics Without Words: An Integral Transform, Sidney Kung, 33:4, 2002, 278, C
A Generalization of the Mean Value Theorem for Integrals, Jingcheng Tong, 33:5, 2002, 408-409, C
On the Work to Fill a Water Tank, Robert R. Rogers, 34:1, 2003, 56-58, C, 5.2.7
Odd-like (Even-like) Functions on (a, b), Zhibo Chen, Peter Hammond and Lisa Hazinski, 34:1, 2003, 64-67, C, 9.5
FFF #232. Pi = 3, Frank Burk, 36:1, 2005, 50, F
Limit Interchange and L’Hôpital’s Rule, Michael W. Ecker, 42:5, 2011, 382-383, C, 5.1.1
The Cobb-Douglas Function and Holder’s Inequality, Thomas E. Goebeler, Jr., 42:5, 2011, 387-388, C, 9.5
The Center of Mass of a Soft Spring, Juan D. Serna and Amitabh Joshi, 42:5, 2011, 389-393, C, 5.2.5, 9.10

5.2.10 Improper integrals

Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.2, 5.1.4, 5.2.2, 5.2.3, 5.2.5, 5.4.2, 5.6.1, 5.7.2
Circumference of a Circle—The Hard Way, David P. Kraines and Vivian Y. Kraines and David A. Smith, 21:2, 1990, 142-144, C, 5.2.2
Numerical Methods for Improper Integrals, Gerald Flynn, 26:4, 1995, 284-291, 9.6
FFF #101. The Disappearing Factor, James C. Kirby, 27:2, 1996, 117, F, 5.2.3
FFF #117. Blowing up the Integrand, Ronald J. Fischer, 28:3, 1997, 199, F
Two Historical Applications of Calculus, Alexander J. Hahn, 29:2, 1998, 93-103, 5.1.4
5.3 Elementary and special functions

5.3.1 Inverse trigonometric functions

Applying Complex Arithmetic, Herbert L. Holden, 12:3, 1981, 190-194, 0.6, 9.3, 9.5
Integration by Geometric Insight—A Student's Approach, Ann D. Holley, 12:4, 1981, 268-270, C, 5.2.6, 5.3.2
The Derivative of Arctan x, Norman Schaumberger, 13:4, 1982, 274-276, C
Evaluating Integrals by Differentiation, Joseph Wiener, 14:2, 1983, 168-169, C, 5.2.5
The Derivatives of Arcsec x, Arctan x, and Tan x, Norman Schaumberger, 17:3, 1986, 244-246, C
Three Familiar Formulas for \(\pi \) via Geometry, Norman Schaumberger, 17:4, 1986, 339, C
Behold! Sums of Arctan, Edward M. Harris, 18:2, 1987, 141, C
Trigonometric Identities through Calculus, Herb Silverman, 21:5, 1990, 403, C, 0.6
Gudermann and the Simple Pendulum, John S. Robertson, 28:4, 1997, 271-276, 6.4
The Derivative of the Inverse Sine, Craig Johnson, 29:4, 1998, 313, C
An Arctangent Triangle, Michael W. Ecker, 31:2, 2000, 119, C
Arcos(sin(n/2)): A Surprising Formula?, Russell Eskew, 31:2, 2000, 147, C
arctan 1 + arctan 2 + arctan 3 = \(\pi \) (Mathematics Without Words), Jonathon Schaefer, 32:1, 2001, 68, C
Arctan (x + sqrt(1+x^2)) (Mathematics Without Words), P. D. Barry, 32:1, 2001, 69, C
Arctangent Sums, Louis Bragg, 32:4, 2001, 255-257, 5.4.2
Dipsticks for Cylindrical Storage Tanks – Exact and Approximate, Pam Littleton and David Sanchez, 32:5, 2001, 352-358, 0.4, 5.2.7
FFF #199. Arctangents with the same derivative, David M. Bloom, 33:4, 2002, 310, F
Arctangent Identities (Mathematics Without Words), Rex H. Wu, 34:2, 2003, 115, 138, C
The Computation of Derivatives of Trigonometric Functions via the Fundamental Theorem of Calculus, Horst Martini and Walter Wenzel, 36:2, 2005, 154-158, C, 5.1.3, 5.2.1
How to Avoid the Inverse Secant (and Even the Secant Itself), S. A. Fulling, 36:5, 2005, 381-387, 5.3.3
Revisited: arctan 1 + arctan 2 + arctan 3 = \(\pi \), Michael W. Ecker, 37:3, 2006, 218-219, C
Transcendental Functions and Initial Value Problems: A Different Approach to Calculus II, Byungchul Cha, 38:4, 2007, 288-296, 5.3.2, 5.3.3, 6.1
The Right Theta, William Freed and Athanasios Tavouktoglou, 39:2, 2008, 148-152, C (see also The Historical Theta Formula, R. B. Burckel and Zdislav Kovarik, 39:3, 2008, 229), 0.6, 5.7.3
FFF #278. The integral of a positive function equals 0, Hongwei Chen, 39:3, 2008, 227-228, F, 5.2.4
Differentiating the Arctangent Directly, Eric Key, 40:4, 2009, 287-289, C
Series with Inverse Function Terms, Sergei Ovchinnikov, 42:4, 2011, 283-288, 5.3.3, 5.4.2, 9.5

5.3.2 Exponential and logarithmic functions

The integral of f(x)exp(ax) dx, H. L. Kung, 1:2, 1970, 106, C, 5.2.5
Integration by Undetermined Coefficients, Louise Grinstein, 2:2, 1971, 98-100, 5.2.5
Which is Larger, \(e^\pi \) or \(\pi^e \)?, Ivan Niven, 3:2, 1972, 13-15
An Alternate Classroom Proof of the Familiar Limit for \(e \), Norman Schaumberger, 3:2, 1972, 72-73, C
Random Sieving and the Prime Number Theorem, Karl Greger, 5:1, 1974, 41-46, 9.3
Some Comments on the Exceptional Case in a Basic Integral Formula, Norman Schaumberger, 5:3, 1974,
58, C, 5.2.1
Two More Proofs of a Familiar Inequality, Erwin Just and Norman Schaumberger, 6:2, 1975, 45, C
A Geometric Approach to a Basic Limit, Norman Schaumberger, 7:1, 1976, 11-12
Using Inverse Functions in Integration, Robert C. Crawford, 8:2, 1977, 107-109, C, 5.3.3
A Neglected Approach to the Logarithm, Bruce S. Babcock and John W. Dawson, Jr., 9:3, 1978, 136-140, 5.1.1
Is Ln the Other Shoe?, Byron L. McAllister and J. Eldon Whitesitt, 12:1, 1981, 20-23, 5.2.1
Obtaining a Numerical Estimate for e, David H. Anderson, 12:1, 1981, 30-33
A "Proof" that 0=1, Norman Schaumberger, 12:3, 1981, 211, C
Euclid's 'Elements' - excerpts from a 1660 edition, 12:2, 1981, 117, 0.3, 5.3.3
Integration by Geometric Insight—A Student's Approach, Ann D. Holley, 12:4, 1981, 268-270, C, 5.2.6, 5.3.1
A Nonlogarithmic Proof That (1 +1/n)^n has limit e, Lee Badger, 13:5, 1982, 331-332, C
A Logarithm Algorithm for Four-Function Calculators, David Cusick, 14:4, 1983, 322, 0.2
A Logarithm Algorithm for a Five-Function Calculator, Donald L. Muench and Gerald Wildenberg, 14:4, 1983, 324-326
Another Way to Introduce Natural Logarithms and e, Robert R. Christian, 14:5, 1983, 424-426
Evaluating e^x Using Limits, Sheldon P. Gordon, 15:1, 1984, 63-65, 5.4.2
Inverse Functions, Ralph P. Boas, 16:1, 1985, 42-47, 5.2.1, 5.4.2
Euler's Constant, Frank Burk, 16:4, 1985, 279, C
An Instant Proof of e^pi > pi^e, Norman Schaumberger, 16:4, 1985, 280, C
Using Riemann Sums in Evaluating a Familiar Limit, Frank Burk, 17:2, 1986, 170-171, C, 5.1.1, 5.2.1
The Change of Base Formula for Logarithms, Chris Freiling, 17:5, 1986, 413, C, 0.2
Comparing B^A and A^B for A>B, John Rosendahl and James Gilmore, 18:1, 1987, 50, C
Behold! The Graphs of f and f inverse are Reflections about the Line y=x, Ayoub B. Ayoub, 18:1, 1987, 52, C, 0.2
A Depreciation Model for Calculus Classes, John C. Hegarty, 18:3, 1987, 219-221, C
The Relationship Between Hyperbolic and Exponential Functions, Roger B. Nelsen, 19:1, 1988, 54-56, C, 5.3.3
The Snowplow Problem Revisited, Xiao-peng Xu, 22:2, 1991, 139, C, 6.1
FFF #44. A New Way to Obtain the Logarithm, Ed Barbeau, 22:5, 1991, 403, F
Four Crotchets on Elementary Integration, Leroy F. Meyers, 22:5, 1991, 410-413, C, 5.2.3, 5.2.5, 6.1
FFF #49. Two Transcendental Equations, Ed Barbeau, 23:1, 1992, 36, F, 0.2
The Relationship Between Hyperbolic and Exponential Functions—Revisited, Roger B. Nelsen, 23:3, 1992, 207-208, C, 5.3.3
Napier's Inequality (two proofs), Roger B. Nelsen, 24:2, 1993, 165, C
FFF #58. A Rational Combination of Two Transcendentals, Ed Barbeau, 24:3, 1993, 229, F, 0.2
FFF #60. A Two-Valued Function, Ed Barbeau, 24:3, 1993, 230, F, 0.2 (also 25:3, 1994, 225)
An Alternative Definition of the Number e, Carl Swenson and Andre Yandl, 24:5, 1993, 458-461
Another Proof of the Formula e = the infinite sum of reciprocals of n!, Norman Schaumberger, 25:1, 1994, 38-39, C, 5.1.2
Log Cabin (Lost at C), Paul R. Halmos, 25:1, 1994, 70, C
Proof Without Words: (a+b)/2 > SQR[ab], Michael K. Brozinsky, 25:2, 1994, 98, C
FFF #95. The Integral of ln sin x, Russ Euler, 27:1, 1996, 44-45, F
A Visual Proof that ln(ab) = ln(a) + ln(b), Jeffrey Ely, 27:4, 1996, 304, C
1983, 256-257, C, 5.2.5
Inverse Hyperbolic Functions as Areas, B. M. Saler, 16:2, 1985, 129-131, C
Some Interesting Consequences of a Hyperbolic Inequality, Frank Burk, 17:1, 1986, 75-76, C
Elementary Transcendental Functions, Harley Flanders and J. Sutherland Frame, 18:5, 1987, 417-421, 6.3
The Relationship Between Hyperbolic and Exponential Functions, Roger B. Nelsen, 19:1, 1988, 54-56, C, 5.3.2

FFF #17. \(\cosh x = \sinh x \) and \(1 = 0 \), Ed Barbeau, 21:2, 1990, 128, F, 5.2.5
The Relationship Between Hyperbolic and Exponential Functions—Revisited, Roger B. Nelsen, 23:3, 1992, 207-208, C, 5.3.2

Hyperbolic Functions and Proper Time in Relativity, Howard Shaw, 26:4, 1995, 312-315, C
An Exercise (Hyperbolic Identity), The Editor, 30:1, 1999, 43, C
Reexamining the Catenary, Paul Cella, 30:5, 1999, 391-393, C
Verhulst’s Logistic Curve, David Bradley, 32:2, 2001, 94-98, 6.1
An Exercise on the Catenary, Leon Gerber, 33:2, 2002, 170-171, C
Tugging a Barge with Hyperbolic Functions, William B. Gearhart and Harris S. Shultz, 34:1, 2003, 42-49, 5.3.3, 6.4
How to Avoid the Inverse Secant (and Even the Secant Itself), S. A. Fulling, 36:5, 2005, 381-387, 5.3.1
FFF #250. Minding the technology, Paul H. Schuette, 37:2, 2006, 122-123, F, 5.3.2
The Ubiquitous \(\cosh \) – a Square-wheeled Tricycle, Stan Wagon, Ken Moffett, Wayne Roberts, and Dave Bole, 37:3, 2006, 186, 193, 204, C
Transcendental Functions and Initial Value Problems: A Different Approach to Calculus II, Byungchul Cha, 38:4, 2007, 288-296, 5.3.1, 5.3.2, 6.1
Christiaan Huygens and the Problem of the Hanging Chain, John Bukowski, 39:1, 2008, 2-11, 0.3, 2.2
Teaching Tip: An Integration Technique, Roger Pinkham, 39-1, 2008, 42, C, 5.2.8
Series with Inverse Function Terms, Sergei Ovchinnikov, 42:4, 2011, 283-288, 5.3.1, 5.4.2, 9.5

5.3.4 Special functions

The World's Biggest Taco, David D. Bleecker and Lawrence J. Wallen, 29:1, 1998, 2-12, 5.2.7, 9.5
A Generalized Logarithm for Exponential-Linear Equations, Dan Kalman, 32:1, 2001, 2-14
Tugging a Barge with Hyperbolic Functions, William B. Gearhart and Harris S. Shultz, 34:1, 2003, 42-49, 5.3.3, 6.4
Sums of Harmonic-Type Series, James Lesko, 35:3, 2004, 171-182, 5.4.2
An Exceptional Exponential Function, Branko Curgus, 37:5, 2006, 344-354, 5.1.4, 5.3.2
Application of the Lambert W Function to the SIR Epidemic Model, Frank Wang, 41:2, 2010, 156-159, C, 6.3, 6.4, 9.10

5.4 Sequences and series

5.4.1 Sequences

A General Formula for the Nth term of a Sequence, Etta Mae Whitton, 2:2, 1971, 96-98, 6.3
Two Unusual Sequences, Ronald E. Kutz, 12:5, 1981, 316-319
A Simple Calculator Algorithm, Lyle Cook and James McWilliam, 14:1, 1983, 52-54
Application of a Generalized Fibonacci Sequence, Curtis Cooper, 15:2, 1984, 145-146, C, 7.2
The Electronic Spreadsheet and Mathematical Algorithms, Deane E. Arganbright, 15:2, 1984, 148-157, 4.1, 7.3, 9.6
Another Look at $x^{1/x}$, Norman Schaumberger, 15:3, 1984, 249-250, C, 5.1.2
Pascal’s Triangle, Difference Tables and Arithmetic Sequences of Order N, Calvin Long, 15:4, 1984, 290-298, 6.3, 3.2, 9.2
The Factorial Triangle and Polynomial Sequences, Steven Schwartzman, 15:5, 1984, 424-426, C, 0.2, 6.3
Arithmetic Progressions and the Consumer, John D. Baildon, 16:5, 1985, 395-397, C, 0.8
The Pascal Polytope: An Extension of Pascal’s Triangle to N Dimensions, John F. Putz, 17:2, 1986, 144-155, 3.2, 6.3, 9.2
Using the Finite Difference Calculus to Sum Powers of Integers, Lee Zia, 22:4, 1991, 294-300, 5.2.1, 5.4.2
A Sequence Related to the Harmonic Series, E. Ray Bobo, 26:4, 1995, 308-310, C
Another Way to Graph a Sequence, David Olson, 27:3, 1996, 208-209, C
Proofs Without Words: Galileo’s Ratios Revisited, Alfinio Flores, 36:3, 2005, 198, C, 9.5
Sequence converging to π, Andrew Cusumano, 37:2, 2006, 120, C
A Geometric Look at Sequences that Converge to Euler’s Constant, Duane W. DeTemple, 37:2, 2006, 128-131, C
Sums of Integer Powers via the Stolz-Cesaro Theorem, Sidney H. Kung, 40:1, 2009, 42-44, C, 3.2
The V-flex, Triangle Orientation, and Catalan Numbers in Hexaflexagons, Ionut E. Iacob, Bruce McLean, and Hua Wang, 43:1, 2012, 6-10, 0.3, 3.1, 3.2, 9.2, 9.8
Carryless Arithmetic Mod 10, David Applegate, Marc LeBrun, and N. J. A. Sloane, 43:1, 2012, 43-50, 0.1, 9.2, 9.4

5.4.2 Numerical series (convergence tests and summation)

Encouraging Mathematical Inquisitiveness, Carl L. Main, 1:1, 1970, 32-36, 5.2.2
Telescoping Sums and the Summation of Sequences, G. Baley Price, 4:2, 1973, 16-29, 6.3
Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.2, 5.1.4, 5.2.2, 5.2.3, 5.2.5, 5.2.10, 5.6.1, 5.7.2
A Precalculus Unit on Area Under Curves, Samuel Goldberg, 6:4, 1975, 29-35, 0.7
An Interesting Use of Generating Functions, Aron Pinker, 6:4, 1975, 39-45, 0.6, 9.5
A Helpful Device: or One More Use for Pascal’s Triangle, Robert Rosenfeld, 8:3, 1977, 188-191, C, 0.9
A Coin Game, Thomas P. Dence, 8:4, 1977, 240-246, 9.9, 9.10
A Note on Infinite Series, Louise S. Grinstein, 9:1, 1978, 46-47, C
A Note on the Integral Test, Peter A. Lindstrom, 9:2, 1978, 105-106, C
On Sum-Guessing, Mangho Ahuja, 10:2, 1979, 95-99
The Sum of the Reciprocals of the Primes, W. G. Leavitt, 10:3, 1979, 198-199, C
Calculator-Demonstrated Math Instruction, George McCarty, 11:1, 1980, 42-48, 5.1.1, 5.2.2, 9.6
A Precalculus Approximation of $n!$, Norman Schaumberger, 11:3, 1980, 202-204, C, 0.2
Some Sum of Sums, Gerald Lenz, 12:3, 1981, 208-209, C
Infinite Series Flow Chart for the Sum of $a(n)$, Franklin Kemp, 13:3, 1982, 199, C
Taxes on Taxes, Thomas E. Eisner, 13:4, 1982, 266-269
FFF. Pi is approximately ln 4, Frank Burk, 25:4, 1994, 311, F
Sum of Alternating Series (proof by picture), Guanshen Ren, 26:3, 1995, 213, 0.9
Divergence of a series (by picture), Sidney H. Kung, 26:4, 1995, 301, C
Sums of General Geometric Series (by picture), John Mason, 26:5, 1995, 381, C

FFF #111. The Bouncing Ball, Daniel J. Scully, 27:5, 1996, 372-373, F

Some Sums of Some Significance, Martha E. Dasef and Steven M. Kautz, 28:1, 1997, 52-55, C

Using Simpson's Rule to Approximate Sums of Infinite Series, Rick Kreminski, 28:5, 1997, 368-376
Can You Sum This Familiar Series? (Proof Without Words), Dennis Gittinger, 28:5, 1997, 393, C
Sum of Cubes (proof without words), Alfinio Flores, 29:1, 1998, 61, C

Harmonic Series, Andrew Casumano, 30:1, 1999, 34, C
Gabriel’s Wedding Cake, Julian F. Fleron, 30:1, 1999, 35-38, 5.2.10

FFF #141. Evaluation of a Sum, Joe Howard, 30:2, 1999, 130-131, F
Natural Logarithms via Long Division, Frank Burk, 30:4, 1999, 309-311, C

Things I Have Learned at the AP Reading, Dan Kennedy, 30:5, 1999, 346-355, 0.2, 5.1.1, 5.1.2, 5.2.1, 5.2.6, 6.1

The Series for e via Integration, Marc Chamberland, 30:5, 1999, 397, C
Summing Series via Integrals, Frank Burk, 31:3, 2000, 178-181
Sum of Infinite Series (Mathematics Without Words), Rick Mabry, 32:1, 2001, 19, C
Sum of a geometric series (Mathematics Without Words), Carlos G. Spaht and Craig M. Johnson, 32:2, 2001, 109, C
A series for ln k, James Lesko, 32:2, 2001, 119-122, C

What’s Harmonic About the Harmonic Series?, David Kullman, 32:3, 2001, 201-203, C
Convergence-Divergence of p-Series, Rasul Khan, 32:3, 2001, 206-208, C
Arctangent Sums, Louis Bragg, 32:4, 2001, 255-257, 5.3.1

Geometric Progressions – A Geometric Approach, Michael Strizhevsky and Dmitry Kreslavskiy, 32:5, 2001, 359-362, 0.6
Sum Rearrangements, Russell A. Gordon, 32:5, 2001, 377-380, C
Ln 2 (Mathematics Without Words), Norman Schaumberger, 33:1, 2002, 23, C, 5.3.2
FFF #182. New exponent laws, Carl Libis, 33:1, 2002, 38, F
A Tale of Two Series, Thomas J. Osler and Marcus Wright, 33:2, 2002, 99-106, 7.2
Designing a Calculus Mobile, Tom Farmer, 33:2, 2002, 131-136, 5.2.4
An Application of Condensation, Sidney Kung, 33:2, 2002, 168, C

Investigating Possible Boundaries Between Convergence and Divergence, Frederick Hartmann and David Sprows, 33:5, 2002, 405-406, C, 9.5
FFF #200. A lopsided interval of convergence, Ed Barbeau, 34:1, 2003, 50, F
FFF #206. A series that converges and diverges, Doug Kuhlman, 34:2, 2003, 135, F
Column Integration and Series Representations, Thomas P. Dence and Joseph B. Dence, 34:2, 2003, 144-148, C, 5.2.5
Calculus, Pi, and the Machine Age, Susan Jane Colley, 34:4, 2003, 264-269, 5.2.4, 9.6
An Improved Remainder Estimate for Use With the Integral Test, Roger B. Nelsen, 34:5, 2003, 397-399, C, 9.6
Improving the Convergence of Newton’s Series Approximation for e, Harlan J. Brothers, 35:1, 2004, 34-39, 5.3.2
FFF #218. Alternating madness, Ollie Nanyes, 35:1, 2004, 40-41, F
FFF #223. Product of sums equal sum of products, Dan Kalman, 35:2, 2004, 123, F
Improving the Convergence of Newton’s Series Approximation for e, Harlan J. Brothers, 35:1, 2004, 34-39, 5.3.2
Sums of Harmonic-Type Series, James Lesko, 35:3, 2004, 171-182, 5.3.4
Almost Alternating Harmonic Series, Curtis Feist and Ramin Naimi, 35:3, 2004, 183-191, 9.5
Finding the Sums of Harmonic Series of Even Order, Arpad Benyi, 36:1, 2005, 44-48
Alternating Series Test (Proof Without Words), Richard Hammack and David Lyons, 36:1, 2005, 72, C
A Geometric Series from Tennis, James Sandefur, 36:3, 2005, 224-226, C, 7.2
Another Proof for the p-Series Test, Yang Hansheng and Bin Lu, 36:3, 2005, 235-237, C
In Need of Analysis, Kevin Ferland, 26:5, 2005, 365, C
Series for the Square Root of 2, Sidney Kung, 36:5, 2005, 387, C
Another Look at Some p-Series, Ethan Berkove, 37:1, 2006, 385-386, C
Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers, Lawrence Downey, Boon W. Ong, and James A. Sellers, 39:5, 2008, 391-394, C, 5.1.1, 5.2.5
Series with Inverse Function Terms, Sergei Ovchinnikov, 42:4, 2011, 283-288, 5.3.1, 5.3.3, 9.5
The Shad-Fack Transom, Annalisa Crannell, 42:4, 2011, 309-316, 0.3, 0.4
Convergence of a Catalan Series, Thomas Koshy and Zhenguang Gao, 43:2, 2012, 141-146, 3.2, 9.3
The Basel Problem as a Telescoping Series, David Benko, 43:3, 2012, 244-250, 5.4.3
Series that Converge Absolutely but Don’t Converge, Robert Kantrowitz and Michael Schramm, 43:4, 2012, 331-333, C, 9.5
Proof Without Words: An alternating Series, Roger B. Nelsen, 43:5, 2012, 370, C
5.4.3 Taylor polynomials and power series
Extending the Series for \(\ln 2 \), Norman Schaumberger, 18:3, 1987, 223-225, C
More on the Series for \(\ln 2 \), Leonard Gillman, 19:3, 1988, 252-253, C
Spreadsheets, Power Series, Generating Functions, and Integers, Donald R. Snow, 20:2, 1989, 143-152, 6.3
FFF #20. A Power Series Representation of \(1/0 \), Ed Barbeau, 21:3, 1990, 217, F
Maclaurin Expansion of \(\arctan x \) via L'Hopital's Rule, Russell Euler, 24:4, 1993, 347-350, C, 5.1.1
Isaac Newton: Credit Where Credit Won't Do, Robert Weinstock, 25:3, 1994, 179-192, 0.5, 2.2, 5.1.3, 5.6.1
In Defense of Newton: His Biographer Replies, Richard S. Westfall, 25:3, 1994, 201-205, 2.2
FFF #83. Power Series Thinning, David Rose, 26:1, 1995, 35, F (also 26:5, 1995, 384)
Newton's Method for Resolving Affected Equations, Chris Christensen, 27:5, 1996, 330-340, 0.7, 5.1.2
A Note on Taylor's Series for \(\sin(ax+b) \) and \(\cos(ax+b) \), Russell Euler, 28:4, 1997, 297-298, C
Taylor Polynomials for Rational Functions, Mike O'Leary, 29:3, 1998, 226-228, C
Novel Maclaurin Series-Based Approximation to \(e \), John Knox and Harlan Brothers, 30:4, 1999, 269-275
Taylor's Formula via Determinants, K. S. Sarkaria, 32:1, 2001, 53, C, 4.2
When Do Approximating Polynomials Cross Graphs of Approximating Functions?, Samuel B. Johnson, 32:1, 2001, 57-58, C
Was Calculus Invented in India?, David Bressoud, 33:1, 2002, 2-13, 0.6, 2.2
The \(n \)th Derivative Test and Taylor Polynomials Crossing Graphs, David K. Ruch, 33:4, 2002, 321-324, C
Taylor Series – A Matter of Life or Death, The Observer (U.K.), 36:3, 2005, 237, C, 2.2
Taylor-Made Problems (poem), Jeremy Gorman, 37:5, 2006, 384, C
The Taylor Polynomials of \(\sin \theta \) (Proofs Without Words), John Quintanilla, 38:1, 2007, 58-59, C
Teaching Tip: An Introduction to \(e^x \) without Series, James Tanton, 39:1, 2008, 23, C, 5.3.2, 6.1
Taylor's Theorem: The Elusive \(c \) is Not So Elusive, Rick Kreminski, 41:3, 2010, 186-192, 9.5
Animating Nested Taylor Polynomials to Approximate a Function, Eric F. Mazzone and Bruce R. Piper, 41:5, 2010, 405-408, C
A Generalization of the Parabolic Chord Property, John Mason, 42:4, 2011, 326-328, C, 5.1.3
Derivative Sign Patterns, Jeffrey Clark, 42:5, 2011, 379-381, C, 5.1.2, 9.5
The Basel Problem as a Telescoping Series, David Benko, 43:3, 2012, 244-250, 5.4.2

5.5 Vector algebra and geometry (including 2x2 and 3x3 determinants)

A Note on the Vector Triple Product, Thomas A. McCullough, 11:3, 1980, 206-207, C
From an Inequality to Inversion, Man-Keung Siu, 12:2, 1981, 149-151, C, 0.4
Vector Identities from Quaternions, William C. Schultz, 12:4, 1981, 271-273, C, 0.4
Generalized Pythagorean Triples, W. J. Hildebrand, 16:1, 1985, 48-52, 0.6, 9.3
Tetrahedra, Skew Lines and Volume, James Smith and Mason Henderson, 16:2, 1985, 138-140, C
Three Ways to Maximize the Area of an Inscribed Quadrilateral, Leroy F. Meyers, 17:3, 1986, 238-239, C, 0.3
Distance from a Point to a Plane with a Variation on the Pythagorean Theorem, Abdus Sattar Gazdar, 23:5, 1992, 410-412, C
Kepler Orbits More Geometrico, Andrew Lenard, 25:2, 1994, 90-98, 0.3
On the Distance from a Point to a Curve, Mark Schwartz, 25:4, 1994, 317-319, C
Formulas of Linear Geometry, Heinrich W. Guggenheimer, 27:1, 1996, 24-32
Related Rates Collide with Vectors, Stephen Fulling, 31:2, 2000, 116-119, 5.1.3
N-Site Insights, Bret Draayer, 31:4, 2000, 250-258, 4.1
How Long Was Your Day?, Albert Schueller, 31:2, 2000, 116-119, 5.1.3
The Cross Product as a Polar Decomposition, Gotz Trenkler, 39:3, 2008, 237-239, C, 4.1, 4.3
Teaching Tip: A Vector Proof of the Addition Law for Cosines, Zhibo Chen, 41:5, 2010, 415, C, 0.6
Lattice Cubes, Richard Parris, 42:2, 2011, 118-125

5.6 Curves and surfaces

5.6.1 Parametric and polar curves

Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.2, 5.1.4, 5.2.2, 5.2.3, 5.2.5, 5.2.10, 5.4.2, 5.7.2
Rectangular Aids for Polar Graphs, Alice W. Essary, 13:3, 1982, 200-205, 5.2.8
On Hypocycloids and their Diameters, I. J. Schoenberg, 16:4, 1985, 262-267, 9.5
Vectors in a LOGO Learning Environment, Will Watkins, 16:4, 1985, 286-300
Defining Areas in Polar Coordinates, Frances W. Lewis, 17:5, 1986, 414-416, C
Transitions, Jeanne L. Agnew and James R. Choike, 18:2, 1987, 124-133, 0.7, 5.1.3, 9.10
Connecting the Dots Parametrically: An Alternative to Cubic Splines, Wilbur J. Hildebrand, 21:3, 1990, 208-215, 4.6, 9.6
Moments on a Rose Petal, Douglass L. Grant, 21:3, 1990, 225-227, C, 5.2.5
Single Equations Can Draw Pictures, Keith M. Kendig, 22:2, 1991, 134-139, C, 0.4, 0.5, 5.1.5, 5.6.2
Trochoids, Roses, and Thorns—Beyond the Spirograph, Leon M. Hall, 23:1, 1992, 20-35
Rotation of Axes—Not Just for Conics, Steven Schonefeld, 23:5, 1992, 418-425, 0.5
Does a Parabola Have an Asymptote?, David Bange and Linda Host, 24:4, 1993, 331-342, 5.1.1, 5.1.5
Heart to Bell (illustration), Michael W. Chamberlain, 25:1, 1994, 34
Isaac Newton: Credit Where Credit Won't Do, Robert Weinstock, 25:3, 1994, 179-192, 0.5, 2.2, 5.1.3, 5.4.3

In Defense of Newton: A Physicist's View, A. P. French, 25:3, 1994, 206-209, 0.5, 2.2, 5.1.5

The Chair, the Area Rug, and the Astroid, Mark Schwartz, 26:3, 1995, 229-231, C, 5.1.4

Rectangular-to-Polar Folding Fans, Dan Pritikin, 26:4, 1995, 305-308, C

A Perpetual Motion Machine, Eric Chandler, 26:4, 1995, 302-303, F

Some Comments on "Parametric Equations and Plane Curves", Zhibo Chen, 27:3, 1996, 210-211, C

A Note on the Brachistochrone Problem, Jim Zeng, 27:3, 1996, 206-208, C

Normal Lines and the Evolute Curve, David Sanchez and Kirby C. Smith, 31:5, 2000, 397-403, C, 5.1.3
The Brachistochrone Problem, Nils P. Johnson, 35:3, 2004, 192-197

Mechanical Circle-Squaring, Barry Cox and Stan Wagon, 40:4, 2009, 238-247, 0.4, 9.7, 9.10
The Helen of Geometry, John Martin, 41:1, 2010, 17-28, 0.3, 2.2
The Dance of the Foci, David Seppala-Holtzman, 41:2, 2010, 122-128, 0.5
Finding Rational Parametric Curves of Relative Degree One or Two, Dave Boyles, 41:5, 2010, 371-382, 9.3, 9.4
Newton’s Radii, Maupertuis’ Arc Length, and Voltaire’s Giant, Andrew J. Simoson, 42:3, 2011, 183-190, 5.2.8, 9.10
Generalized Parabolas, Dan Joseph, Gregory Hartman, and Caleb Gibson, 42:4, 2011, 275-282, 0.3, 0.5, 5.7.3, 9.8 (see also 43:5, 429)
From the Dance of the Foci to a Strophoid, Andrew Jobbings, 42:4, 2011, 289-298, 0.5
Do Dogs Know the Trammel of Archimedes?, Mark Schwartz, 42:4, 2011, 299-308, 0.3, 0.5, 5.1.4, 9.10
The Catenary as Roulette, Javier Sanchez-Reyes, 43:3, 2012, 216-219, 0.5, 5.7.3

5.6.2 Surfaces and coordinate systems in space

Parametric Surfaces, Harley Flanders, 19:5, 1988, 444-447, 5.6.1, 8.3
Graphing Surfaces in Cylindrical and Spherical Coordinates, David P. Kraines and Vivian Y. Kraines and David A. Smith, 21:2, 1990, 144-145, C
Least Squares and Quadric Surfaces, Donald Teets, 24:3, 1993, 243-244, C, 5.7.1, 7.3
FFF #77. Generalizing an Approach to the Radius of Curvature, Paul Deiermann and Rick Mabry, 25:4, 1994, 309-310, F
Spherical Coordinates from Cylindrical Coordinates on a Torus, Timothy Murdoch, 26:5, 1995, 385-387, C
Doughnut Slicing, Wolf von Ronik, 28:5, 1997, 381-383, C, 0.5
Numerically Parametrizing Curves, Steven Wilkinson, 29:2, 1998, 104-119, 5.6.1, 9.8
Spherical Coordinates, Tevian Dray and Corinne A. Manogue, 34:2, 2003, 168-169, C, 1.1
The Mathematics of “Go To” Telescopes, Donald Teets, 38:3, 2007, 170-178, 4.4
Pairs of Equal Surface Functions, Daniel Cass and Gerald Wildenberg, 39:1, 2008, 51-54, C, 5.2.6, 9.8

5.7 Multivariable calculus

5.7.1 Multivariable differential calculus

Income Tax Averaging and Convexity, Michael Henry and G. E. Trapp, Jr., 15:3, 1984, 253-255, C, 0.8, 5.1.5, 9.5
Interactive Graphics for Multivariable Calculus, Michael E. Frantz, 17:2, 1986, 172-181, 1.2, 5.1.1, 5.1.4
Moire Fringes and the Conic Sections, M. R. Cullen, 21:5, 1990, 370-378
Extreme and Saddle Points, David P. Kraines and Vivian Y. Kraines and David A. Smith, 21:5, 1990, 416-418, C, 5.1.4
Calculus and Computer Vision, Mark Bridger, 23:2, 1992, 132-141, 8.3
Relative Maxima or Minima for a Function of Two Variables: A Neglected Approach, Paul Chacon, 23:2, 1992, 145-146, C
Erratum: Relative Maxima or Minima for a Function of Two Variables, The Editors, 23:4, 1992, 314, C
A Computer Lab for Multivariate Calculus, Casper R. Curjel, 24:2, 1993, 175-177, C, 1.2, 8.3
Least Squares and Quadratic Surfaces, Donald Teets, 24:3, 1993, 243-244, C, 5.6.2, 7.3
FFF #68. Variable Results with Partial Differentiation, Hugh Thurston, 25:1, 1994, 35-36, F
Calculus in the Brewery, Susan Jane Colley, 25:3, 1994, 226-227, C
Will the Real Best Fit Curve Please Stand Up?, Helen Skala, 27:3, 1996, 220-223, C, 7.3
Real Analysis in the Brewery, Sidney Kravitz, 27:3, 1996, C
Using the College Mathematics Journal Topic Index in Undergraduate Courses, Donald E. Hooley, 28:2, 1997, 106-109, 4.1, 4.2, 5.1.4
Multiple Derivatives of Compositions: Investigating Some Special Cases, Irl C. Bivens, 28:4, 1997, 299-300, 3.2
Counterexamples to a Weakened Version of the Two-Variable Second Derivative Test, Allan A. Struthers, 28:5, 1997, 383-385, C
Paths of Minimum Length in a Regular Tetrahedron, Richard A. Jacobson, 28:5, 1997, 394-397, C, 0.4
An “Extremely” Cautionary Tale, Mark Krusemeyer, 31:2, 2000, 128-130, C
Can We Improve the Teaching of Calculus?, Hugh Thurston, 31:4, 2000, 262-267, 1.1, 5.1.2
FFF. An Epidemic of Jacobians, Edward Aboufadel, 32:4, 2001, 283-287, C
Interactive Teaching Aids for Multivariable Calculus, David E. Bailey and Gerald Kobylski, 32:4, 2001, 283-287, C
Examining Continuity, Partial Derivatives and Differentiability with Cylindrical Coordinates, Thomas C. McMillan, 34:1, 2003, 11-14
Lagrange Multipliers Can Fail to Determine Extrema, Jeffrey Nunemacher, 34:1, 2003, 60-62, C
FFF #208. Particle in circular motion, Peter M. Jarvis, 34:2, 2003, 136, F
Tangent Planes of a Quadratic Function, Panagiotis T. Krasopoulos, 34:3, 2003, 205-206
A Surface Useful for Illustrating the Implicit Function Theorem, Jeffrey Nunemacher, 34:4, 2003, 324-326, C
A Quick Proof that the Least Squares Formulas Give a Local Minimum, W. M. Dunn III, 36:1, 2005, 64-65, C, 7.3
The Flip-Side of a Lagrange Multiplier Problem, Angelo Segalla and Saleem Watson, 36:3, 2005, 232-235, C, 5.1.4
Limits of Functions of Two Variables, Ollie Nanyes, 36:4, 2005, 326-329, C
Teaching Tip: Potatoes in Calculus, Kristin Pfabe, 37:2, 2006, 92, C
The Maximal Deflection on an Ellipse, Dan Kalman, 37:4, 2006, 250-260, 5.6.1
Hermite Points on a Box, Richard Hess, Charles Grinstead, Marshall Grinstead, and Deborah Bergstrand, 39:1, 2008, 12-23, 0.4, 9.2
A Class of Multivariable Limits, Yingfan Liu and Youguo Wang, 41:2, 2010, 154-156, C, 5.1.1
A Characterization of a Quadratic Function in \mathbb{R}^n, Conway Xu, 41:3, 2010, 212-214, 5.1.3
Better Than Optimal By Taking A Limit?, David Betounes, 43:5, 2012, 379-386, 5.1.4
5.7.2 Multiple integrals

Some Problems of Utmost Gravity, William C. Stetton, 3:1, 1972, 72-75, C, 5.2.3
Interchanging the Order of Integration, Stewart Venit, 5:3, 1974, 20-21
Calculus by Mistake, Louise S. Grinstein, 5:4, 1974, 49-53, C, 5.1.2, 5.1.4, 5.2.2, 5.2.3, 5.2.5, 5.2.10, 5.4.2, 5.6.1
Another Way of Looking at n!, David Hsu, 11:5, 1980, 333-334, C, 5.2.7
A Sequel to "Another Way of Looking at n!", William Moser, 15:2, 1984, 142-143, C, 3.2, 5.2.7
An Alternative to Changing the Order of Integration, Elgin H. Johnston, 20:5, 1989, 405-409, C
A Mathematical Roller Derby, Daniel Drucker, 23:5, 1992, 396-401
Calculus Measures Tank Capacity and Avoids Oil Spills, Yves Nievergelt, 25:2, 1994, 132-136, C
A Visual Proof of Eddy and Fritsch's Minimal Area Property, Robert Pare, 26:1, 1995, 43-44, C, 5.1.4
Looking at Order of Integration and a Minimal Surface, Thomas Hern and Cliff Long and Andy Long, 29:2, 1998, 128-133, 9.8
FFF #143. One-step Double Integration, James C. Kirby, 30:3, 1999, 209, F
FFF #282. Spherical volume via cylindrical coordinates, James Swenson, 39:4, 2008, 300, F
Teaching Tip: Is This Integral Zero?, Ken Luther, 42:5, 2011, 373, C, 5.2.1

5.7.3 Line and surface integrals and vector analysis

Tangent Vectors and Orthogonal Projections, Jerry Johnson, 24:3, 1993, 259-262, C
Independence of Path and All That, Robert E. Terrell, 27:4, 1996, 272-276, 9.8
Eigenpictures and Singular Values of a Matrix, Peter Zizler and Holly Fraser, 28:1, 1997, 59-62, C, 4.5
The Band Around a Convex Set, Junpei Sekino, 32:2, 2001, 110-114
The Sun, The Moon, and Convexity, Noah Samuel Brannen, 32:4, 2001, 268-272, 5.6.1
Why the Moon's Orbit is Convex, Laurent Hodges, 33:2, 2002, 169-170, C, 5.6.1
The Murder Mystery Method for Determining Whether a Vector Field is Conservative, Tevian Dray and Corinne A. Manogue, 34:3, 2003, 228-231, C
A Non-Smooth Band Around a Non-Convex Region, J. Aarao, A. Cox, C. Jones, M. Martelli, and A. Westfahl, 37:4, 2006, 269-278, 5.1.1, 9.8
As the Planimeter's Wheel Turns: Planimeter Proofs for Calculus Class, Tanya Leise, 38:1, 2007, 24-31
An Improper Application of Green's Theorem, Robert L. Robertson, 38:2, 2007, 142-145, C, 5.2.10
The Right Theta, William Freed and Athanasios Tavouktoglou, 39:2, 2008, 148-152, C (see also The Historical Theta Formula, R. B. Burckel and Zdislav Kovarik, 39:3, 2008, 229), 0.6, 5.3.1
Teaching Tip: A “Wire Hanger” Frenet-Serret Frame, Julian F. Fleron, 41:1, 2010, 57, C
The Band Around a Convex Body, David Swanson, 42:1, 2011, 15-24, 9.5
Generalized Parabolas, Dan Joseph, Gregory Hartman, and Caleb Gibson, 42:4, 2011, 275-282, 0.3, 0.5, 5.6.1, 9.8
The Catenary as Roulette, Javier Sanchez-Reyes, 43:3, 2012, 216-219, 0.5, 5.6.1

5.8 Software for calculus
A Mathematics Software Database, R. S. Cunningham and David A. Smith, 17:3, 1986, 255-266, 0.10, 3.4, 4.8, 6.7, 7.4, 9.11
A Mathematics Software Database Update, R. S. Cunningham and David A. Smith, 18:3, 1987, 242-247, 0.10, 3.4, 4.8, 6.7, 7.4, 9.11
The Complete Mathematics Software Database, R. S. Cunningham and David A. Smith, 19:3, 1988, 268-289, 0.10, 3.4, 4.8, 6.7, 7.4, 9.11
Mathematics by Machine with Mathematica®, Alan Hoenig, 21:2, 1990, 146-149
IBM Three-Dimensional Graphing Software for Multivariate Calculus, Lillie Crowley and J. Stephen Ott, 23:1, 1992, 64-68
Derive®, A Mathematical Assistant, Jeanette R. Palmiter, 23:2, 1992, 158-161
Theorist®, Francis Gulick, 24:2, 1993, 178-182
MicroCalc Version 6, L. Carl Leinbach, 24:3, 1993, 263-270
Converge, Version 4.0 (Software Review), Lawrence G. Gilligan, 26:1, 1995, 58-63, 0.10
Toolkit for Interactive Mathematics, review by L. Carl Leinbach, 26:2, 1995, 152-156, 0.10
Derive®, Version 3.0, reviewed by Lawrence G. Gilligan, 26:3, 1995, 238-243, 6.7
Software Review: f(g) Scholar, David C. Arney and Daniel J. Arney, 26:5, 1995, 401-403, 0.10, 4.8
TI-92 Graphing Calculator (Review), Sally Fischbeck, 27:3, 1996, 224-230
Dynamic Function Visualization, Mark Bridger, 27:5, 1996, 361-369, 5.1.5, 9.5
Function Visualizer, L. Carl Leinbach, 27:5, 1996, 398-403
Mathwright 2.0, Angela Hare, 28:2, 1997, 140-144
Macsyma 2.1, Carl Leinbach, 28:3, 1997, 224-230
Derive for Windows, Robert Mayes, 28:4, 1997, 310-314
Cyclone the Implicit 3D Plotter, Jon Wilkin, 30:1, 1999, 54-59, 9.11
New Mathwright Library, Dan Kalman, 30:5, 1999, 398-405
Software Review: StudyWorks III Mathematics, Pat Stone, 31:4, 2000, 310-313, 0.10

6 Differential Equations and Dynamical Systems

6.1 First order equations

Some Socially Relevant Applications of Elementary Calculus, Colin Clark, 4:2, 1973, 1-15, 5.1.4
The Homicide Problem Revisited, David A. Smith, 9:3, 1978, 141-145, 6.2
Creative Teaching by Mistakes, Andrejs Dunkels and Lars-Erik Persson, 11:5, 1980, 296-300, 5.2.5
Differential Equations and the Battle of Trafalgar, David H. Nash, 16:2, 1985, 98-102, 6.2, 9.10
Both a Borrower and a Lender Be, William Miller, 16:4, 1985, 284, C, 0.8
The Problem of Managing a Strategic Reserve, David Cole and Loren Haarsma and Jack Snoeyink, 17:1, 1986, 48-60, 5.1.4, 9.10
A Linear Diet Model, Arthur C. Segal, 18:1, 1987, 44-45, C
The Snowplow Problem Revisited, Xiao-peng Xu, 22:2, 1991, 139, C, 5.3.2
Four Crotchets on Elementary Integration, Leroy F. Meyers, 22:5, 1991, 410-413, C, 5.2.3, 5.2.5, 5.3.2
Physical Demonstrations in the Calculus Classroom, Tom Farmer and Fred Gass, 23:2, 1992, 146-148, C, 1.2, 5.2.1
Teaching Differential Equations with a Dynamical Systems Viewpoint, Paul Blanchard, 25:5, 1994, 385-393, 1.2, 6.2, 6.4
Asking Good Questions about Differential Equations, Paul Davis, 25:5, 1994, 394-400, 1.1, 1.2

FFF #1
Calculating the Average Speed, Bill Simpson, 30:3, 1999, 209, F, 5.1.2
Things I Have Learned at the AP Reading, Dan Kennedy, 30:5, 1999, 346-355, 0.2, 5.1.1, 5.1.2, 5.2.1, 5.2.6, 5.4.2

FFF #163. A solution to savor, Dale R. Buske, 31:5, 2000, 395, F

Verhulst’s Logistic Curve, David Bradley, 32:2, 2001, 94-98, 5.3.3
Models for Growth, Elizabeth B. Appelbaum, 32:4, 2001, 258-259
FFF #209. A fallacy that wasn’t, Bill Gerson, 34:2, 2003, 136-137, F

Temperature Models for Ware Hall, J. K. Denny and C. A. Yackel, 35:3, 2004, 162-170, 6.2
Epidemic Models for SARS and Measles, Edward Rozema, 38:4, 2007, 246-259, 5.3.4, 9.10

Teaching Tip: An Introduction to e^x without Series, James Tanton, 39:1, 2008, 23, C, 5.3.2, 5.4.3

The Draining Cylinder, James Graham-Eagle, 40:5, 2009, 337-343, 9.10
What’s My Domain?, Dan Curtis, 41:2, 2010, 113-121, 9.5
Teaching Tip: Actuarial Science and Gompertz’s Law of Mortality, Jesse Byrne, 42:1, 2011, 40-42, 7.2

6.2 Higher order linear equations and linear systems

Talking About Particular Solutions, Sidney H. L. Kung, 3:1, 1972, 67-71, C
On Particular Solutions of Pn(D)Y=0, H. L. Kung, 4:1, 1973, 14-25
Factorization of Operators of Second Order Linear Homogeneous Ordinary Differential Equations, Donn C. Sandell and F. Max Stein, 8:3, 1977, 132-141

Another Approach to a Standard Differential Equation, R. S. Luthar, 10:3, 1979, 200-201, C
Differential Equations and the Battle of Trafalgar, David H. Nash, 16:2, 1985, 98-102, 6.1, 9.10
A General Method for Deriving the Auxiliary Equation for Cauchy-Euler Equations, Vedula N. Murty and James F. McCrory, 16:3, 1985, 212-215, C

FFF #63. An Euler Equation, Ed Barbeau, 24:4, 1993, 343-344, F
New Directions in Elementary Differential Equations, William E. Boyce, 25:5, 1994, 364-371, 1.2, 6.4
Teaching Differential Equations with a Dynamical Systems Viewpoint, Paul Blanchard, 25:5, 1994, 385-393, 1.2, 6.1, 6.4
A New Look at the Airy Equation with Fences and Funnels, John H. Hubbard, Jean Marie McDill, Anne Noonburg, and Beverly H. West, 25:5, 1994, 419-431, 6.6
FFF #78. Solving a Second-order Differential Equation, Ed Barbeau, 25:5, 1994, 432-433, 6.4
Matrix Patterns and Undertermined Coefficients, Herman Gollwitzer, 25:5, 1994, 444-448, C, 4.1
The Lighter Side of Differential Equations, J. M. McDill and Bjorn Felsager, 25:5, 1994, 448-452, 6.4
Sonnet from the Bard of Peirce-upon-Charles (poem), Ezra Hausman, 25:5, 1994, 457
Distinguished Oscillations of a Forced Harmonic Oscillator, T. G. Proctor, 26:2, 1995, 111-117, 6.6
Projectile Motion with Arbitrary Resistance, Tilak de Alwis, 26:5, 1995, 361-367, 9.10
The Falling Ladder Paradox, Paul Scholten and Andrew Simoson, 27:1, 1996, 49-54, C, 5.1.3
Harmonic Oscillators with Periodic Forcing, Temple H. Fay, 28:2, 1997, 98-105
Who Cares if X^2 + 1 = 0 Has a Solution?, Viet Ngo and Saleem Watson, 29:2, 1998, 141-144, C, 0.7, 5.2.5, 5.4.2
The Effects of a Stiffening Spring, Sharon Hill and Karen Clark, 30:5, 1999, 379-382
FFF. An Epidemic of Jacobians, Edward Aboufadel, 32:4, 2001, 279-281, F, 5.7.1
Some Calculus-Based Observations Concerning the Solutions to x^n-q(t)x = 0, Allan J. Kroopnick, 33:1, 2002, 52-53, C
Some Linear Differential Equations Forget That They Have Variable Coefficients, Ranjith Munasinghe, 35:1, 2004, 22-25
Temperature Models for Ware Hall, J. K. Denny and C. A. Yack, 35:3, 2004, 162-170, 6.1
Another Broken Symmetry, C. W. Groetsch, 36:2, 2005, 109-113, 9.10
Taking a Whippier-The Fall-Factor Concept in Rock Climbing, Dan Curtis, 36:2, 2005, 135-140, 9.10
Euler-Cauchy Using Undetermined Coefficients, Doreen De Leon, 41:3, 2010, 236-237, C
Abel’s Theorem Simplifies Reduction of Order, William R. Green, 42:5, 2011, 399-401, C

6.3 Difference equations, discrete dynamical systems and fractals

Vectors Point Toward Pisa, Richard A. Dean, 2:2, 1971, 28-39, 4.3
A General Formula for the Nth Term of a Sequence, Etta Mae Whitton, 2:2, 1971, 96-98, 5.4.1
Telescoping Sums and the Summation of Sequences, G. Baley Price, 4:2, 1973, 16-29, 5.4.2
Stirling’s Triangle of the First Kind—Absolute Value Style, Hugh Ouellette and Gordon Bennett, 8:4, 1977, 195-202, 0.2
Stirling’s Numbers of the Second Kind—Programming Pascal’s and Stirling’s Triangles, Satish K. Janardan
Candies and Dollars, Saad M. Adnan, 29:5, 1998, 414-415, C
Will the Real Bifurcation Diagram Please Stand Up!, Chip Ross and Jody Sorensen, 31:1, 2000, 2-14
Binomials to Binomials, Thomas Osler, 31:3, 2000, 211-212, C, 0.2
The Orbits of a Unimodular Affine Transformation, Roman W. Wong, 31:4, 2000, 290-296, 4.4
Centering, Jim Sauerberg and Alan Tarr, 33:1, 2002, 24-31, 0.4, 3.3
Clarifying Compositions with Cobwebs, Nial Neger and Michael Frame, 34:3, 2003, 196-204, 0.2
Phoebe Floats!, Ezra Brown, 36:2, 2005, 114-122, 2.2, 9.6
The Golden Ratio-A Contrary Viewpoint, Clement Falbo, 36:2, 2005, 123-134, 0.3
M&m Sequences, Harris S. Shultz and Ray C. Shiflett, 36:3, 2005, 191-198, 9.3
Truck Drivers, a Straw, and Two Glasses of Water, Kevin Iga and Kendra Kilpatrick, 37:2, 2006, 82-92, 0.2
The Truck Driver's Straw Problem and Cantor Sets, Kevin Iga, 39:4, 2008, 280-290
Dynamics of Exponential Functions, Jiu Ding and Zizhong Wang, 40:5, 2009, 361-368, 9.5
Application of the Lambert W Function to the SIR Epidemic Model, Frank Wang, 41:2, 2010, 156-159, C, 5.3.4, 6.4, 9.10

6.4 Nonlinear differential equations

How to Balance a Yardstick on an Apple, Herbert R. Bailey, 17:3, 1986, 220-225, 9.10
Bat and Superbat, Herbert R. Bailey, 18:4, 1987, 307-314, 5.2.9
Newton's Orbit Problem: A Historian's Response, Curtis Wilson, 25:3, 1994, 193-200, 0.5, 2.2
Newton's Principia and Inverse-Square Orbits, N. Nauenberg, 25:3, 1994, 212-221, 0.5, 2.2, 6.5
Teaching Differential Equations with a Dynamical Systems Viewpoint, Paul Blanchard, 25:5, 1994, 385-393, 1.2, 6.1, 6.2
Quenching a Thirst with Differential Equations, Martin Ehrismann, 25:5, 1994, 413-418, 9.10
The Lighter Side of Differential Equations, J. M. McDill and Bjorn Felsager, 25:5, 1994, 448-452, C, 6.2
Gudermann and the Simple Pendulum, John S. Robertson, 28:4, 1997, 271-276, 5.3.1
Characterizing Power Functions by Volumes of Revolution, Bettina Richmond and Tom Richmond, 29:1, 1998, 40-41, C, 5.2.7
Finding Unpredictable Behavior in a Simple Ordinary Differential Equation, Lisa Humphreys and Ray
Using Differential Equations to Describe Conic Sections, Ranjith Munasinghe, 33:2, 2002, 145-148, C, 0.5
Tugging a Barge with Hyperbolic Functions, William B. Gearhart and Harris S. Shultz, 34:1, 2003, 42-49, 5.3.3, 5.3.4
Using a Gradient Vector to Find Multiple Periodic Oscillations in Suspension Bridge Models, L. D. Humphreys and P. J. McKenna, 36:1, 2005, 16-26, 6.5
Some Half-Row Sums from Pascal’s Triangle via Laplace Transforms, Thomas P. Dence, 38:3, 2007, 205-209, 3.2
Application of the Lambert W Function to the SIR Epidemic Model, Frank Wang, 41:2, 2010, 156-159, C, 5.3.4, 6.3, 9.10
An Exactly Solvable Model for the Spread of Disease, Ronald E. Mickens, 43:2, 2012, 114-120, 9.10
Eradicating a Disease: Lessons from Mathematical Epidemiology, Matthew Glomski and Edward Ohanian, 43:2, 2012, 123-132, 2.2, 9.10

6.5 Numerical methods for differential equations

Newton's Principia and Inverse-Square Orbits, N. Nauenberg, 25:3, 1994, 212-221, 0.5, 2.2, 6.4
Using a Gradient Vector to Find Multiple Periodic Oscillations in Suspension Bridge Models, L. D. Humphreys and P. J. McKenna, 36:1, 2005, 16-26, 6.4
Discretization vs. Rounding Error in Euler’s Method, Carlos F. Borges, 42:5, 2011, 396-398, C

6.6 Other topics in differential equations

An Alternative Approach to the Vibrating String Problem, James Chew, 12:2, 1981, 147-149, C
A New Look at the Airy Equation with Fences and Funnels, John H. Hubbard, Jean Marie McDill, Anne Noonburg, and Beverly H. West, 25:5, 1994, 419-431, 6.2
Distinguished Oscillations of a Forced Harmonic Oscillator, T. G. Proctor, 26:2, 1995, 111-117, 6.2
Zeroing In on the Delta Function, Joan R. Hundhausen, 29:1, 1998, 27-32
Applications of Fourier Series in Classical Guitar Technique, James R. Hughes, 31:4, 2000, 300-303, C
If It’s in the Textbook, It Must Be True, Donald A. Teets, 31:4, 2000, 307-308, F, 4.6
On a Plucked String, Tommaso Toffoli, 34:5, 2003, 390-393, F

6.7 Software for differential equations and dynamical systems

A Mathematics Software Database, R. S. Cunningham and David A. Smith, 17:3, 1986, 255-266, 0.10, 3.4, 4.8, 5.8, 7.4, 9.11
A Mathematics Software Database Update, R. S. Cunningham and David A. Smith, 18:3, 1987, 242-247, 0.10, 3.4, 4.8, 5.8, 7.4, 9.11
The Compleat Mathematics Software Database, R. S. Cunningham and David A. Smith, 19:3, 1988, 268-289, 0.10, 3.4, 4.8, 5.8, 7.4, 9.11
Derive, A Mathematical Assistant, Jeanette R. Palmiter, 23:2, 1992, 158-161
Theorist®, Francis Gulick, 24:2, 1993, 178-182
MicroCalc Version 6, L. Carl Leinbach, 24:3, 1993, 263-270
Maple® V (software review), Eric R. Muller and K. J. Srivastava, 25:1, 1994, 56-63, 5.8
ODE Solvers for the Classroom, Andrew Flint and Ron Wood, 25:5, 1994, 458-461
Derive®, Version 3.0, reviewed by Lawrence G. Gilligan, 26:3, 1995, 238-243, 5.8
Forget Not the Lowly Spreadsheet, Michael G. Henle, 26:4, 1995, 320-328, 3.4
Dfield and Pplane, Alan T. Zehnder, 27:2, 1996, 144-148
Interactive Differential Equations, James P. Fink, 28:1, 1997, 63-66
VisualDSolve, Michael Frame, 28:5, 1997, 398-405

7 Probability and Statistics

7.1 Games of chance (also see 9.2)

A Program for Keno, Karl J. Smith, 3:2, 1972, 16-20, 9.10
An Interesting Penny Game, Keith J. Craswell, 4:1, 1973, 18-25, 7.2
An Application from Combinatorics to Dice-Sum Frequencies, David L. Pugh, 11:5, 1980, 331-333, C, 3.2
Dice Tossing and Pascal's Triangle, John D. Neff, 13:5, 1982, 311-314, 7.2
Blackjack with n Decks, Philip G. Buckhiester, 14:4, 1983, 345-346, C, 7.2
Equalizing a Two-Person Alternation Game, Robert K. Tamaki, 18:2, 1987, 134-135, C, 7.2
How Many Bridge Actions?, Douglas S. Jungreis and Erich Friedman, 19:2, 1988, 171-172, C, 3.2
Maybe the Price Doesn't Have to be Right: Analysis of a Popular TV Game Show, Danny W. Turner and Dean M. Young and Virgil R. Marco, 19:5, 1988, 419-421, C, 7.2
Runs With No Winner in a Lottery, Richard Ilits, 31:5, 2000, 356-361, 7.2
The Case of the Missing Lottery Number, W. D. Kaigh, 32:1, 2001, 15-19
A New Look at the Probabilities in Bingo, David B. Agard and Michael W. Shackleford, 33:4, 2002, 301-305, 7.2
Winning at Rock-Paper-Scissors, Derek Eyler, Zachary Shalla, Andrew Doumaux, and Tim McDevitt, 40:2, 2009, 125-128, C, 7.2, 9.2
An Empirical Approach to the St. Petersburg Paradox, Dominic Klyve and Anna Lauren, 42:4, 2011, 260-263, 5.4.2, 7.2, 9.10

7.2 Probability

An Interesting Penny Game, Keith J. Craswell, 4:1, 1973, 18-25, 7.1
How to Find a Needle in a Haystack, Keith J. Craswell, 4:3, 1973, 18-21
Why Isn't Penny Flipping Fairer?, Keith J. Craswell, 5:3, 1974, 18-19
<table>
<thead>
<tr>
<th>Title</th>
<th>Issue</th>
<th>Year</th>
<th>Pages</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory, Simulation and Reality, Peter Flusser</td>
<td>19:3</td>
<td>1988</td>
<td>210-222</td>
<td>7.3, 9.10</td>
</tr>
<tr>
<td>Musical Notes, Angela B. Shiflet</td>
<td>19:4</td>
<td>1988</td>
<td>345-347</td>
<td>C, 3.2, 9.2</td>
</tr>
<tr>
<td>Maybe the Price Doesn't Have to be Right: Analysis of a Popular TV Game Show, Danny W. Turner and Dean M. Young and Virgil R. Marco</td>
<td>19:5</td>
<td>1988</td>
<td>419-421</td>
<td>7.1, 9.10</td>
</tr>
<tr>
<td>Lewis Carroll, Ed Barbeau</td>
<td>23:4</td>
<td>1992</td>
<td>305,</td>
<td>F</td>
</tr>
<tr>
<td>The Paradox of the Nontransitive Dice, Richard P. Savage, Jr.</td>
<td>26:1</td>
<td>1995</td>
<td>38, F</td>
<td></td>
</tr>
<tr>
<td>Pair Them Up! A Visual Approach to the Chung-Feller Theorem, David Callan</td>
<td>26:3</td>
<td>1995</td>
<td>196-198</td>
<td></td>
</tr>
<tr>
<td>Getting Black Balls, Ed Barbeau</td>
<td>27:2</td>
<td>1996</td>
<td>117, F</td>
<td>(see also 27:3, 1996, 205)</td>
</tr>
<tr>
<td>Three Coins in the Fountain, Francis Galton</td>
<td>27:3</td>
<td>1996</td>
<td>204, F</td>
<td></td>
</tr>
<tr>
<td>The Game of Dreidel Made Fair, Felicia Moss Trachtenberg</td>
<td>27:4</td>
<td>1996</td>
<td>278-281</td>
<td></td>
</tr>
<tr>
<td>Your Lucky Number is in Pi, Ed Barbeau</td>
<td>27:5</td>
<td>1996</td>
<td>370, F</td>
<td></td>
</tr>
<tr>
<td>A Nod to Bertrand Russell, Anthony Lo Bello</td>
<td>28:2</td>
<td>1997</td>
<td>133, C</td>
<td></td>
</tr>
<tr>
<td>The Average Distance Between Points in Geometric Figures, Steven R. Dunbar</td>
<td>28:3</td>
<td>1997</td>
<td>187-197, 9.10</td>
<td></td>
</tr>
<tr>
<td>Tying Up Loose Ends with Probability, Cathy Liebars</td>
<td>28:5</td>
<td>1997</td>
<td>386-388, C</td>
<td></td>
</tr>
<tr>
<td>Singles in a Sequence of Coin Tosses, David M. Bloom</td>
<td>29:2</td>
<td>1998</td>
<td>120-127</td>
<td></td>
</tr>
<tr>
<td>A Full House, Eric Chandler</td>
<td>29:2</td>
<td>1998</td>
<td>134-135, F</td>
<td></td>
</tr>
<tr>
<td>Meeting in a Knockout Tournament, Ed Barbeau</td>
<td>29:2</td>
<td>1998</td>
<td>135-136, F</td>
<td></td>
</tr>
<tr>
<td>The Mathematics of Cootie, Min Deng and Mary T. Whalen</td>
<td>29:3</td>
<td>1998</td>
<td>222-224, C</td>
<td></td>
</tr>
<tr>
<td>How Much Money Do You (or Your Parents) Need for Retirement?</td>
<td>29:4</td>
<td>1998</td>
<td>278-283, 0.8</td>
<td></td>
</tr>
<tr>
<td>The Probability of Passing a Multiple-Choice Test, Milton P. Eisner</td>
<td>29:5</td>
<td>1998</td>
<td>421-426, 9.10</td>
<td></td>
</tr>
<tr>
<td>Relabeling Dice, Randall J. Swift and Brian C. Fowler</td>
<td>30:3</td>
<td>1999</td>
<td>204-208</td>
<td></td>
</tr>
<tr>
<td>Casino Gambling: The Ultimate Strategy, Dennis Connolly</td>
<td>30:4</td>
<td>1999</td>
<td>276-278</td>
<td></td>
</tr>
<tr>
<td>Do Most Cubic Graphs Have Two Turning Points?, Robert Fakler</td>
<td>30:5</td>
<td>1999</td>
<td>367-369, 0.7, 5.2.6</td>
<td></td>
</tr>
<tr>
<td>A Rational Solution to Cootie, Arthur Benjamin and Matthew Fluet</td>
<td>31:2</td>
<td>2000</td>
<td>124-125, C, 3.2</td>
<td></td>
</tr>
<tr>
<td>More on Cootie, Michael Hirschhorn</td>
<td>31:2</td>
<td>2000</td>
<td>126-128, C, 3.2</td>
<td></td>
</tr>
<tr>
<td>Runs With No Winner in a Lottery, Richard Iltis</td>
<td>31:5</td>
<td>2000</td>
<td>356-361, 7.1</td>
<td></td>
</tr>
<tr>
<td>A wrong route to a right answer, Yongzhi Yang</td>
<td>31:5</td>
<td>2000</td>
<td>395-396, F</td>
<td></td>
</tr>
<tr>
<td>Chance of meeting, the editor, 32:1, 2001, 49-50, F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfecting the Analog of a Deck of Cards or Why Evolution Can't Be Left to Chance, J. G. Simmonds</td>
<td>33:1</td>
<td>2002</td>
<td>17-20, 9.10</td>
<td></td>
</tr>
<tr>
<td>A Tale of Two Series, Thomas J. Osler and Marcus Wright</td>
<td>33:2</td>
<td>2002</td>
<td>99-106, 5.4.2</td>
<td></td>
</tr>
<tr>
<td>The Undying Novena, Christopher M. Rump</td>
<td>33:2</td>
<td>2002</td>
<td>140-142, C</td>
<td></td>
</tr>
<tr>
<td>Sums of Uniformly Distributed Variables: A Combinatorial Approach, Jeanne Albert</td>
<td>33:3</td>
<td>2002</td>
<td>201-206, 3.2</td>
<td></td>
</tr>
<tr>
<td>A New Look at the Probabilities in Bingo, David B. Agard and Michael W. Shackleford</td>
<td>33:4</td>
<td>2002</td>
<td>301-</td>
<td></td>
</tr>
</tbody>
</table>

9.10
Winning a Racquetball Match, Tom Brown and Brian Pasko, 43:5, 2012, 395-400, 9.10

7.3 Statistics (also see 9.10)

Cauchy's Inequality and the Least Squares Line, William Stenger, 6:1, 1975, 2-4
Random Charity: A Stochastic Sieving Problem and its Connection with the Euclidean Algorithm, Roland Engdahl and Karl Greger, 6:4, 1975, 4-9
Statistical Inference for the General Education Student—It Can Be Done, Allen H. Holmes, Walter Sanders and John LeDuc, 8:4, 1977, 223-230
The Use of Sports Data for Integrating Topics in Introductory Statistics, Robert L. Heiny, 9:1, 1978, 28-33
Classroom Demonstration of a Confidence Interval, Wayne Andrepont and Peter Dickinson, 9:1, 1978, 28-33
The Range of the Standard Deviation, Lawrence Sher, 10:1, 1979, 33, C
How Close are the Mean and the Median?, Stephen A. Book, 10:3, 1979, 202-204, C
An Expected Value Problem, Harris S. Schultz, 10:4, 1979, 277-278, C
Bounds for the Sum of Absolute Standard Scores, Lawrence Sher, 10:5, 1979, 351-353, C
An Expected Value Problem Revisited, W. J. Hall, 11:3, 1980, 204-205
A Bound for Standard Scores, Lawrence Sher, 11:2, 1980, 334-335, C
Another Look at the Mean, Median, and Standard Deviation, Ruma Falk, 12:3, 1981, 207-208, C
Bounds for the Ratio of the Arithmetic Mean to the Geometric Mean, M. Perisastry and V. N. Murty, 13:2, 1982, 160-161, C
Nearness Relations Among Measures of Central Tendency and Dispersion: Part 2, Warren Page and V. N. Murty, 14:1, 1983, 8-17
Another Proof of the Inequality (n^2)(sigma)^2 < (n^2/4)(R^2), V. N. Murty and M. Perisastry, 14:1, 1983, 61-63, C
Interfractile Ranges, Warren Page, 14:2, 1983, 170-172, C
Computer Simulations to Clarify Key Ideas of Statistics, Thomas Kersten, 14:5, 1983, 416-420
Some Breakthroughs in Statistical Methodology, Herbert Robbins, 15:1, 1984, 25-29
On the Mean and Standard Deviation of a Random Sample, Vedula N. Murty, 15:1, 1984, 60-62
A Geometrical Interpretation of the Weighted Mean, Larry Hoehn, 15:2, 1984, 135-139, 0.2, 0.4
The Electronic Spreadsheet and Mathematical Algorithms, Deane E. Arganbright, 15:2, 1984, 148-157, 4.1, 5.4.1, 9.6
Accurate Computation of Variance, Jerry A. Roberts, 16:2, 1985, 149-150
Instances of Simpson's Paradox, Thomas R. Knapp, 16:3, 1985, 209-211, C, 0.2
The Probability that the "Sum of the Rounds" Equals the "Round of the Sum", Roger B. Nelsen and James E. Schultz, 18:5, 1987, 390-396, 7.2, 9.10
Should Mathematicians Teach Statistics?, David S. Moore, 19:1, 1988, 3-7, 1.2
Should Mathematicians Teach Statistics? (Response), A. Blanton Godfrey, 19:1, 1988, 8-32, 1.2
No! But Who Should Teach Statistics?, Judith Tanur, 19:1, 1988, 8-32, 1.2
Statistics Teachers need Experience With Data, R. Gnanadesikan and J. R. Kettenring, 19:1, 1988, 8-32, 1.2
The Mathematicians' Statistics Has a Subsidiary Role, Barbara A. Bailar, 19:1, 1988, 8-32, 1.2
Growth and Advances in Statistics, Frederick Mosteller, 19:1, 1988, 8-32, 1.2
Statistician, Examine Thyself, Gudmund R. Iversen, 19:1, 1988, 8-32, 1.2
It's Not "By Whom" But Rather "How", John E. Freund, 19:1, 1988, 8-32, 1.2
The Need for Good Teaching of Statistics, Henry L. Alder, 19:1, 1988, 8-32, 1.2
Let the Experts Teach and Judge, David L. Hanson, 19:1, 1988, 8-32, 1.2
Who Teaches What to Whom?, Michael Reed, 19:1, 1988, 8-32, 1.2
What Should the Introductory Statistics Course Contain?, Gerald J. Hahn, 19:1, 1988, 8-32, 1.2
Mathematics is Only One Tool that Statisticians Use, Ronald D. Snee, 19:1, 1988, 8-32, 1.2
Reaction to Responses to "Should Mathematicians Teach Statistics?", David S. Moore, 19:1, 1988, 32-34, 1.2
Theory, Simulation and Reality, Peter Flusser, 19:3, 1988, 210-222, 9.10, 7.2
Using Leverage and Influence to Introduce Regression Diagnostics, David C. Hoaglin, 19:5, 1988, 387-401
Conditional Expectations and the Correlation Function, Barthel W. Huff, 20:1, 1989, 55-57, C
A Note on Pascal's Triangle and Simple Random Sampling, Tommy Wright, 20:1, 1989, 59-66
Using Median Splits to Motivate Learning, David P. Doane, 20:3, 1989, 228-229, C
The Longest Run of Heads, Mark F. Schilling, 21:3, 1990, 196-207
Bernoulli Trials and the Central Limit Theorem, David P. Kraines and Vivian Y. Kraines and David A. Smith, 21:5, 1990, 415-416, C
Using Simulation to Study Linear Regression, LeRoy A. Franklin, 23:4, 1992, 290-295, 9,10
Least Squares and Quadratic Surfaces, Donald Teets, 24:3, 1993, 243-244, C, 5.7.1, 5.6.2
Determining Sample Sizes for Monte Carlo Integration, David Neal, 24:3, 1993, 254-262, C, 5.2.2, 9.10
Chebyshev's Theorem: A Geometric Approach, Pat Touhey, 26:2, 1995, 139-141, C
MAD Property of Medians: An Induction Proof, Eugene F. Schuster, 26:5, 1995, 387-389, C, 0.9
Will the Real Best Fit Curve Please Stand Up?, Helen Skala, 27:3, 1996, 220-223, C, 5.7.1
What is the Margin of Error of a Poll?, Bennett Eisenberg, 28:3, 1997, 201-203, C
Student's t and Crackers, Paul M. Sommers, 30:1, 1999, 32-34
Recommendations for Teaching the Reasoning of Statistical Inference, Allan Rossman and Beth Chance, 30:4, 1999, 297-305, 1.1
Getting Normal Probability Approximations Without Using Normal Tables, Peter Thompson and Lorrie Lendvoy, 31:1, 2000, 51-54, C
The Geometry of Statistics, David Farnsworth, 31:3, 2000, 200-204
t-Probabilities as Finite Sums, Neil Eklund, 31:3, 2000, 217-218, C
The Lognormal Distribution, Brian E. Smith and Francis Merceret, 31:4, 2000, 259-261
Well-Rounded Figures, Yves Nievergelt, 32:1, 2001, 30-32, 9.6
Is Presidential Greatness Related to Height?, Paul M. Sommers, 33:1, 2002, 14-16
Symmetric or Skewed?, Joseph G. Eisenhauer, 33:1, 2002, 48-51, C
Baseball’s All-Stars: Birthplace and Distribution, Paul M. Sommers, 34:1, 2003, 24-30
A Calculus Theorem Motivated by a Statistics Problem, David L. Farnsworth, 35:2, 2004, 126-129, C
FFF. Teenagers, Sex and Accidents, Joseph G. Eisenhauer, 35:3, 2004, 213-214, F
A Quick Proof that the Least Squares Formulas Give a Local Minimum, W. M. Dunn III, 36:1, 2005, 64-65, C, 5.7.1
A Recursive Formula for Moments of a Binomial Distribution, Arpad Benyi and Saverio M. Manago, 36:1, 2005, 68-72, C
The Sample Correlation Coefficient from a Linear Algebra Perspective, C. Ray Rosentrater, 37:1, 2006, 47-50, C, 4.3
An Elegant Mode for Determining the Mode, D. S. Broca, 37:2, 2006, 134-137, C
FFF #252. A snafu, Kenneth Schilling, 37:4, 2006, 290, F
Distortion of average class size: The Lake Wobegon effect, Allen Schwenk, 37:4, 2006, 293-296, C
The Pearson and Cauchy-Schwarz Inequalities, David Rose, 39:1, 2008, 64, C, 5.5, 9.5
Average Perceived Class Size and Average Perceived Population Density, Clifford H. Wagner, 40:4, 2009, 284-287, C
Teaching Tip: The Median is a Balance Point, Mark Lynch, 40:4, 2009, 292, C
Correlation of the Union of Two Bivariate Data Sets, Robert A. Fontenot, 40:5, 2009, 370-373, C
An Upper Bound for the Expected Range of a Random Sample, Manuel Lopez and James Marengo, 41:1, 2010, 42-48
The Distribution of the Sum of Signed Ranks, Brian Albright, 43:3, 2012, 232-236

7.4 Software for probability and statistics

A Mathematics Software Database, R. S. Cunningham and David A. Smith, 17:3, 1986, 255-266, 0.10, 3.4, 4.8, 5.8, 6.7, 9.11
A Mathematics Software Database Update, R. S. Cunningham and David A. Smith, 18:3, 1987, 242-247, 0.10, 3.4, 4.8, 5.8, 6.7, 9.11
The Compleat Mathematics Software Database, R. S. Cunningham and David A. Smith, 19:3, 1988, 268-289, 0.10, 3.4, 4.8, 5.8, 6.7, 9.11
Software Reviews: Activstats, Norman Preston, 32:2, 2001, 138-140

8 Computer Science

8.1 Programming and algorithms

Drawing the Line Segment Connecting Two Points, Harley Flanders, 18:1, 1987, 53-57, 0.4, 3.3
Enhancing the Value of Graphics Programs, Clifford H. Wagner, 18:2, 1987, 142-152, 8.3
Controlling Roundoff Errors in Sums, Harley Flanders, 18:2, 1987, 153-156, 9.6
Computing Pi, Harley Flanders, 18:3, 1987, 230-235, 5.2.3, 5.4.2
Computing mth Roots, Keith Mathews, 19:2, 1988, 174-176
FFF #234. Multiplication algorithms, Yves Nievergelt, 39:2, 2008, 137-138, F, 0.1
The Tower and Glass Marbles Problem, Richard Denman, David Hailey, and Michael Rothenberg, 41:5, 2010, 350-356, 3.2

8.2 Data structures

Generating Posets, Harley Flanders, 18:4, 1987, 323-327, 9.4
The Flowering of String Rewriting Systems, Anne M. Burns, 23:3, 1992, 225-235, 8.3

8.3 Computer graphics

Enhancing the Value of Graphics Programs, Clifford H. Wagner, 18:2, 1987, 142-152, 8.1
Drawing a Circle, Harley Flanders, 19:1, 1988, 72-78
Parametric Surfaces, Harley Flanders, 19:5, 1988, 444-447, 5.6.1
The Curious Fate of an Applied Problem, Alan H. Schoenfeld, 20:2, 1989, 115-123, 5.1.5, 9.5
Calculus and Computer Vision, Mark Bridger, 23:2, 1992, 132-141, 5.7.1
The Flowering of String Rewriting Systems, Anne M. Burns, 23:3, 1992, 225-236, 8.2
Complex Vectors and Image Identification, Lyndell Kerley and Jeff Knisley, 24:2, 1993, 166-174, 9.6
A Computer Lab for Multivariate Calculus, Casper R. Curjel, 24:2, 1993, 175-177, C, 1.2, 5.7.1
Making Mountains from a Sum of Molehills, Anne M. Burns, 26:1, 1995, 51-57
Modeling Trees with a Stochastic Matrix, Anne M. Burns, 29:3, 1998, 230-236, 3.1
Breaking the Holiday Inn Priority Club CAPTCHA, Edward Aboufadel, Julia Olsen, and Jesse Windle, 36:2, 2005, 101-108, 4.7, 9.10

8.4 Other topics in computer science

Of Memories, Neurons, and Rank-One Corrections, Kevin G. Kirby, 28:1, 1997, 2-19, 4.6

9 Other Topics

9.1 Set theory and logic (also see 0.9)

If...Some Suggestions on Presenting the Connector "if...then", Aaron Seligman, 1:2, 1970, 22-26, 0.9
Factoring Functions, J. C. Bodenrader, 2:1, 1971, 23-26, 0.6, 5.1.2, 3.2
Some Applications of the Law of the Contrapositive, Morton J. Hellman, 4:3, 1973, 86-88, C, 0.9
The Equivalence of the Well-Ordering Principle and Dirichlet's Box Principle, Aron Pinker, 5:1, 1974, 76-77, C
Godel's Theorem (Part I), Richard Wiebe, 6:2, 1975, 13-17
Godel's Theorem (Part II), Richard Wiebe, 6:3, 1975, 4-7
Mathematics—Is It Any of Your Business?, Ralph Mansfield, 6:3, 1975, 20-26, 3.1, 1.2
Solving Whodunits by Symbolic Logic, Lawrence Sher, 6:4, 1975, 36-38
On the Definition of Implication: Classroom Discussion and Justification, Ray F. Snipes, 8:4, 1977, 247-252, C
Types of Relations, Kenneth Slonneger, 8:5, 1977, 267-269
Boolean Algebra as a Proof Paradigm, Lawrence Sher, 9:3, 1978, 186-190
Analogies and Metaphors to Explain Godel's Theorem, Douglas R. Hofstadter, 13:2, 1982, 98-114
A Machine as Smart as God, Rudy Rucker, 13:2, 1982, 115-121, 2.2
The Asylum of Doctor Tarr and Professor Fether, Raymond Smullyan, 13:2, 1982, 142-146
Probabilistic Dependence Between Events, Ruma Falk and Maya Bar-Hillel, 14:3, 1983, 240-247, 7.2
Is the Venn Diagram Good Enough?, Mou-Liang Kung and George C. Harrison, 15:1, 1984, 48-50, 0.2
The Construction of Venn Diagrams, Branko Grunbaum, 15:3, 1984, 238-247
An Odd Induction Proof, Karl David, 15:3, 1984, 251, C
How to Live to be 100, Robert Geist, 15:4, 1984, 256-263
On Venn Diagrams and the Counting of Regions, Branko Grunbaum, 15:5, 1984, 433-435, C
Satan, Cantor, and Infinity, Raymond M. Smullyan, 16:2, 1985, 118-121
The Linear Transformation Associated with a Graph: Student Research Project, Irl C. Bivens, 24:1, 1993, 76-78, 3.1, 4.3
FFF #93. An Invalid Argument, Annie Selden and John Selden, 27:1, 1996, 43-44, F
A New Theorem on Cardinality, Charles J. Kicey, 30:1, 1999, 66, C
FFF. There are no contradictions, Theodore G. Ammon, 31:1, 2000, 48-49, F
A Game-Like Activity for Learning Cantor's Theorem, Shay Gueron, 32:2, 2001, 122-125, C
Comment on There are no contradictions, Calvin Jongma, 32:3, 2001, 199-200, F
Sets of Sets: A Cognitive Obstacle, Lawrence Brenton, 34:1, 2003, 31-38, 9.4
What Did Lincoln Really Mean?, Paul K. Stockmeyer, 35:2, 2004, 103-104
An Elementary Resolution of the Liar Paradox, James S. Walker, 35:2, 2004, 105-111
Mind Your ∀’s and ∃’ s, Stephen M. Walk, 35:5, 2004, 362-369, 4.3
Mathematics in War and Peace, Arthur Neuman, 39:3, 2008, 202, C
Dependent Probability Spaces, William F. Edwards, Ray C. Shiflett, and Harris S. Shultz, 39:3, 2008, 221-226, 7.2
Two Applications of a Hamming Code, Andy Liu, 40:1, 2009, 2-5, 9.2, 9.3
Flaws, Fallacies, and Flimflam: The Limits of Reason, Andrea Rothbart, 42:4, 2011, 264, F
Is Parallelism an Equivalence Relation?, Andy Liu, 42:5, 2011, 372, C, 0.3

9.2 Recreational mathematics (also see 7.1)
The Game of Sprouts, Gordon D. Pritchett, 7:4, 1976, 21-25, 3.1
Connect-It Games, Frank Harry and Robert W. Robinson, 15:5, 1984, 411-419, 3.1
Pascal's Triangle, Karl J. Smith, 4:1, 1973, 1-13, 0.6, 3.2
Fibonacci Numbers and Pineapple Phyllotaxy, Judithlynne Carson, 9:3, 1978, 132-136, 5.4.1
Computer-Generated Knight Tours, Michael Gilpin, 13:4, 1982, 252-259, 3.1, 3.3
Isomorphisms on Magic Squares, Ali R. Amir-Moez, 14:1, 1983, 48-51, 0.2, 9.3, 9.4
Paths and Pascal Numbers, John F. Lucas, 14:4, 1983, 329-341, 3.2
A Tiling of the Plane with Triangles, Paul T. Mielke, 14:5, 1983, 377-381, 0.3, 9.3
Pascal's Triangle, Difference Tables and Arithmetic Sequences of Order N, Calvin Long, 15:4, 1984, 290-298, 3.2, 5.4.1, 6.3
The Pascal Polytope: An Extension of Pascal's Triangle to N Dimensions, John F. Putz, 17:2, 1986, 144-155, 3.2, 5.4.1, 6.3
Pascal Triangles and Combinations Where Repetitions Are Allowed, Kendell Hyde, 19:1, 1988, 60-62, C, 3.2
Musical Notes, Angela B. Shiflet, 19:4, 1988, 345-347, C, 7.2, 3.2
Permutation Puzzles: Student Research Project, John H. Wilson, 24:2, 1993, 163-165, 3.2
FFF. A Centennial Tribute to Sam Loyd, Dean Clark, 23:5, 1992, 402-404, F
Digits in Triangular Squares, Dipendra Sengupta, 30:1, 1999, 31, C
Modeling Mathematics With Playing Cards, Martin Gardner, 31:3, 2000, 173-177
On Lunda-Designs and the Construction of Associated Magic Squares of Order 4p, Paulus Gerdes, 31:3, 2000, 182-188, 0.3
Numerology Marches On, David Singmaster, Lawrence Braden, Peter Y. Woo and Brian Stewart Watts, 31:3, 2000, 236-237, C
Some New Results on Magic Hexagrams, Martin Gardner, 31:4, 2000, 274-280, 3.2
Analyzing Games of Information, Randall McCutcheon, 32:2, 2001, 82-90
The Lord Over Better and Worse Births, John Fossa and Glenn Erickson, 32:3, 2001, 185-193, 9.3
Miscellanea: Clock Arithmetic, Carlton A. Lane, 32:4, 2001, 317, C
A Visit With Six, Monte J. Zerger, 33:2, 2002, 74-87, 9.3
A Poem: A Meeting with Sunya, V. V. Dixit, 33:2, 2002, 166-167, C
The “Origin” of Geometry, Reuben Hersh, 33:3, 2002, 207-211, 0.3, 2.1
Alice in Numberland: An Informal Dramatic Presentation in 8 fits, Robin Wilson, 33:5, 2002, 354-377
Lewis Carroll’s Amazing Number-Guessing Game, Richard F. McCoart, 33:5, 2002, 378-383, 0.2
A 51-star U. S. Flag, Gary Kennedy, 34:2, 2003, 170-171, C
FFF #233. Measuring humour, Timandra Harkness and Helen Pilcher, 36:1, 2005, 50-51, F
How to Ensure That Level Heads Prevail, Shmuel Zamir and Ruma Falk, 36:5, 2005, 396, 418, C
Graeco-Latin Squares and a Mistaken Conjecture of Euler, Dominic Klyve and Lee Stemkoski, 37:1, 2006, 2-15, 3.2, 9.4
A Card Trick and the Mathematics Behind It, Gabriela R. Sanchis, 37:2, 2006, 103-109, 9.5
The Non-Attacking Queens Game, Hassan Noon and Glen Van Brummelen, 37:3, 2006, 223-227, C
We Didn’t Start Mathematics (song lyrics), Brian Beasley, 38:3, 2007, 204, 209, C
The Number-Pad Game, Alex Fink and Richard Guy, 38:4, 2007, 260-264
Hermit Points on a Box, Richard Hess, Charles Grinstead, Marshall Grinstead, and Deborah Bergstrand, 39:1, 2008, 12-23, 0.4, 5.7.1
Finding All Solutions to the Magic Hexagram, Alexander Karabegov and Jason Holland, 39:2, 2008, 102-106, 3.2
They Say Mathematics is Beautiful (poem), Kung-Ming Tiong, 39:2, 2008, 128, C
Tuning with Triangles, Leon Harkleroad, 39:5, 2008, 367-373, 2.2
Sam Loyd’s Courier Problem with Diophantus, Pythagoras, and Martin Gardner, Owen O’Shea, 39:5, 2008, 387-391, C, 0.2, 0.7
Two Applications of a Hamming Code, Andy Liu, 40:1, 2009, 2-5, 9.1, 9.3
Solomon’s Sea and Pi, Andrew J. Simoson, 40:1, 2009, 22-32, 0.4, 2.1
Winning at Rock-Paper-Scissors, Derek Eyler, Zachary Shalla, Andrew Doumaux, and Tim McDevitt, 40:2, 2009, 125-128, C, 7.1, 7.2
L-Tromino Tiling of Mutilated Chessboards, Martin Gardner, 40:3, 2009, 162-168, 9.7
Set of Mutually Orthogonal Sudoku Latin Squares, Ryan M. Pedersen and Timothy L. Vis, 40:3, 2009, 174-180, 9.4
Jeeps Penetrating a Hostile Desert, Herb Bailey, 40:3, 2009, 182-188, 9.9, 9.10
Three Poems, Caleb Emmons, 40:3, 2009, 188, 0.1
Flipping Triangles!, Marc Zucker, 40:3, 2009, 189-193, 3.1
n-Card Tricks, Hang Chen and Curtis Cooper 40:3, 2009, 196-201, 3.2
Reflections on the N + k Queens Problem, R. Douglas Chatham, 40:3, 2009, 204-210, 3.2, 4.1
Crossword Puzzle: \(\pi_1 \cong \mathbb{Z} \oplus \mathbb{Z} \), Gary Kennedy, 40:3, 2009, 212
We shall find the Cube of the Rainbow (poem), Emily Dickinson, 40:5, 2009, 336, C
MoonPi, Bathsheba Grossman, 40:5, 2009, 344, C
To Divine Proportion (poem), Rafael Alberti, 40:5, 2009, 375, C
Brown Sharpie: Advanced Frisbee Calculus, Courtney ??, 41:1, 2010, 16, C
Grobner Basis Representations of Sudoku, Elizabeth Arnold, Stephen Lucas, and Laura Taalman, 41:2, 2010, 101-111, 9.4
Sonnet (poem), Susan Colley, 41:2, 2010, 144, C
Three Poems, Nicole Yunger Halpern, 41:3, 2010, 233-234, C
How Bound Tetrahedron Wraps a Real Tetrahedron, Roger Berry, 41:5, 2010, 356, C, 0.3
Poem: A Little Love Story, Bonnie Shulman, 41:5, 2010, C
How Iterated Mobius was constructed, Anne Burns, 42:1, 2011, 14, C
Mathematical Jeopardy?, Andy Liu, 42:1, 2011, 24, C
Boundary Conditions (poem), Ursula Whitcher, 42:1, 2011, 56, C
Mathematics at the Movies, Martin J. Erickson, 42:3, 2011, 228, C
Folding Polyominoes from One Level to Two, Greg N. Frederickson, 42:4, 2011, 265-274, 0.3, 9.7
The Easiest Lights Out Games, Bruce Torrence, 42:5, 2011, 361-371, 4.1, 4.3
Student Research Project: One-dimensional Czedli-type Islands, Eszter K. Horvath, Attila Mader, and Andreja Tepavecic, 42:5, 2011, 374-378, C, 0.9, 3.2, 9.3
Hexaflexagons, Martin Gardner, 43:1, 2012, 2-5, 0.3, 3.2, 9.4, 9.8
The V-flex, Triangle Orientation, and Catalan Numbers in Hexaflexagons, Ionut E. Iacob, Bruce McLean, and Hua Wang, 43:1, 2012, 6-10, 0.3, 3.1, 3.2, 5.4.1, 9.8
From Hexaflexagons to Edge Flexagons to Point Flexagons, Les Pook, 43:1, 2012, 11-14, 0.3, 3.1, 9.4, 9.8
Cups and Downs, Ian Stewart, 43:1, 2012, 15-19, 0.3, 3.2, 4.1
A Platonic Sextet for Strings, Karl Schaffer, 3:1, 2012, 64-69, 0.3, 3.1
Magic Knight's Tours, Iain T. Adamson, 11:4, 1980, 272-273, C, 3.2
Pythagorean Triples by Geometry, Steven L. Kleiman, 3:1, 1972, 39-41
Anomalous Cancellation, R. P. Boas, Jr., 3:2, 1972, 21-24
ab=c, Sidney Penner, 4:2, 1973, 86-87, C
Fermat Numbers, W. G. Leavitt, 4:3, 1973, 7-10
Random Sieving and the Prime Number Theorem, Karl Greger, 5:1, 1974, 41-46, 5.3.2
The Computer as an Aid to Discovery, Frederick H. Young, 5:3, 1974, 55-57
On Generalized h-Base, Norman Woo, 6:3, 1975, 16-17
Quasi-Pythagorean Triples for an Oblique Triangle, Kay Dundas, 8:3, 1977, 152-155, 0.6
Methods of Random Number Generation, Edwin G. Landauer, 8:5, 1977, 296-303
A Note on Angle Construction, Richard L. Francis, 9:2, 1978, 73-75
The Pigeonhole Principle, Kenneth R. Reisman, 10:1, 1979, 3-13, 3.1
Triangular Squares, Bill Leonard and Harris S. Schultz, 10:3, 1979, 169-171
Two Distinguished Integers, Ross Honsberger, 10:3, 1979, 195-197
Billiard Balls and a Number Theory Result, Charles H. Jepsen, 10:5, 1979, 306-312
The Use of Generating Functions to Discover and Prove Partition Identities, Henry L. Alder, 10:5, 1979, 318-329
On Sets of Points in the Plane and a Property of the Binomial Coefficients, Ross Honsberger, 11:2, 1980, 116-119, 0.3
Another Derivation of a Double Inequality, Norman Schaumberger, 11:4, 1980, 273, C
An Elementary Gem Concerning p(n), the Number of Primes less than or equal to n, Ross Honsberger, 11:5, 1980, 305-312

9.3 Number theory (also see 0.1)
Factoring Factorials, Richard J. Friedlander, 12:1, 1981, 12-20
Short Stories in Number Theory, Ross Honsberger, 12:1, 1981, 34-40
Some Conjectures on Fermat's Last Conjecture, Lawrence Sher and David Sher, 12:1, 1981, 51-52
Applying Complex Arithmetic, Herbert L. Holden, 12:3, 1981, 190-194
Forward and Backward with Euclid, Gary E. Stevens, 12:5, 1981, 302-306
A Classroom Approach to x^2 + y^2 + z^2 = w^2, Norman Schaumberger, 12:5, 1981, 331-332
Applying Complex Arithmetic, Herbert L. Holden, 12:3, 1981, 190-194, 0.6, 5.3.1, 9.5
Synthetic Division Shortened, Warren Page and Leo Chosid, 12:5, 1981, 334-336, C, 0.7
Smith Numbers, A. Wilansky, 13:1, 1982, 21, 0.1
Semi-Regular Lattice Polygons, Ross Honsberger, 13:1, 1982, 36-44, 3.1
A Simple Divisibility Algorithm, David Y. Hsu, 13:1, 1982, 58-59, C, 0.2
The Alluring Lore of Cyclic Numbers, Michael W. Ecker, 14:2, 1983, 105-109
License Numbers and Divisibility Rules, Harry Hutchins, 14:2, 1983, 122-125
Repeating Decimals, W. G. Leavitt, 15:4, 1984, 299-308
On the Natural Density of the Niven Numbers, Robert E. Kennedy and Curtis N. Cooper, 15:4, 1984, 309-312, 7.3
Pythagorean Systems of Numbers, Joseph Wiener, 15:4, 1984, 324-326, C, 0.2, 0.4
An Approach to Problem-Solving Using Equivalence Classes Modulo n, James E. Schultz and William F. Burger, 15:5, 1984, 401-405, 0.2
What Do I Know? A Study of Mathematical Self-Awareness, Philip J. Davis, 16:1, 1985, 22-41, 0.2
Generalized Pythagorean Triples, W. J. Hildebrand, 16:1, 1985, 48-52, 0.6, 5.5
Medical Cozenage on Fermat's Last Theorem, Lee Whitt, 16:1, 1985, 55-56, C
The House Number Problem and its Variations, Joey Paul, 16:2, 1985, 108-117
A New Divisibility Algorithm, Joseph Whittaker, 16:4, 1985, 268-276, 0.2
The International Mathematical Olympiad Training Session, Cecil Rousseau and Gregg Patruno, 16:5, 1985, 362-365, 0.3, 2.2
Computing Large Factorials, Gerard Kiernan, 16:5, 1985, 403-412, 9.6
From None to Infinity: Challenging Problems in Cardinality Classification, Richard L. Francis, 17:3, 1986, 226-230
Cryptology: From Caesar Ciphers to Public-Key Cryptosystems, Dennis Luciano and Gordon Prichett, 18:1, 1987, 2-17, 7.2, 0.1

Generating Functions, William Watkins, 18:3, 1987, 195-211, 6.3, 5.4.2

On Partitioning a Real Number, William Staton, 19:1, 1988, 53-54, C, 5.1.4

Mathematical Haystacks: Another Look at Repunit Numbers, Richard L. Francis, 19:3, 1988, 240-246

Involutions and Problems Involving Perimeters and Area, Joseph Wiener and Henjin Chi and Hushang Poorkarimi, 19:3, 1988, 250-252, C, 9.5

Sieving Primes on a Micro, Harley Flanders and Alan F. Tomala, 19:4, 1988, 364-367, 8.1

Amalgamation fo Formulae for Sequences, N. S. Mendelsohn, 19:5, 1988, 421-424, C

Finding Rational Roots of Polynomials, Don Redmond, 20:2, 1989, 139-141, C, 0.7

Strings of Strongly Composite Integers and Invisible Lattice Points, Peter Schumer, 21:1, 1990, 37-40, C

Computer-Aided or Analytic Proof?, Herve Lehning, 21:3, 1990, 228-239

Triangles with Integer Sides and Sharing Barrels, David Singmaster, 21:4, 1990, 278-285, 0.4

The Birth of the Eotvos Competition, Agnes Arvai Wieschenberg, 21:4, 1990, 286-293, 2.2

Polar Summation, Loretta McCarty, 21:5, 1990, 397-398, C

Secrets of the Faro: Student Research Project, Irl C. Bivens, 22:2, 1991, 144-147, 9.4

Summation by Parts, Gregory Fredricks and Roger B. Nelsen, 23:1, 1992, 39-44, C, 5.1.2, 5.4.1, 5.4.2

The Probability that (a, b)=1, Aaron D. Abrams and Matteo J. Paris, 23:1, 1992, 47, C

Number Theory and Linear Algebra: Exact Solutions of Integer Systems, George Mackiw, 23:1, 1992, 52-58, 4.1

A Serendipitous Application of the Pythagorean Triples, Susan Forman, 23:4, 1992, 312-314, C, 0.2

Sums of Triangular Numbers, Roger B. Nelsen, 23:5, 1992, 417, C

Geometry: A Gateway to Understanding, Peter Hilton and Jean Pedersen, 24:4, 1993, 298-317, 0.3

Towers of Powers Modulo m, Robert J. MacG. Dawson, 25:1, 1994, 22-28

Eisenstein's Misunderstood Geometric Proof of the Quadratic Reciprocity Theorem, Reinhard C. Laubenbacher and David J. Pengelley, 25:1, 1994, 29-34

Frequencies of Digits in Factorials: An Experimental Approach, Michael L. Treuden, 25:1, 1994, 48-55

Euclid's (Gaussian) Algorithm: A Lattice Approach, Steve Benson, 25:2, 1994, 118-124

Approaches to the Formula for the nth Fibonacci Number, Russell Jay Hendel, 25:2, 1994, 139-142, C, 0.2, 4.5, 5.4.2, 9.5

Sums of Odd Squares, Roger B. Nelsen, 25:3, 1994, 246, C

The Repeating Integer Paradox, Paul Fjelstad, 26:1, 1995, 11-15
A Taylor-made Plug for Wiles' Proof, Nigel Boston, 26:2, 1995, 100-105
A Surprise Regarding the Equation $\phi(x) = 2(6n+1)$, Joseph B. Dence and Thomas P. Dence, 26:4, 1995, 297-301
The Square of Any Odd Number is the Difference Between Two Triangular Numbers (Proof Without Words), Roger B. Nelsen, 27:2, 1996, 118, C, 0.1
Fractions with Cycling Digit Patterns, Dan Kalman, 27:2, 1996, 109-115, 0.1
Generalizations of a Mathematical Olympiad Problem, Joe Klerlein and Scott Sportsman, 27:4, 1996, 296-297, 3.2
Digital Permutations, Bryan Dawson, 28:1, 1997, 26, C
A Long Sequence of Composite Numbers, Ed Pegg, Jr., 28:2, 1997, 121, C
Two Identities for Triangular Numbers (proof by picture), Roger B. Nelsen, 28:3, 1997, 197, C
On Dividing Coconuts: A Linear Diophantine Problem, Sahib Singh and Dip Bhattacharya, 28:3, 1997, 203-204, C, 5.4.3
Are There Functions That Generate Prime Numbers?, Paulo Ribenboim, 28:5, 1997, 352-359
The Brahmagupta Triangles, Raymond A. Beauregard and E. R. Suryanarayan, 29:1, 1998, 13-17, 0.4
A Class of Pleasing Periodic Designs, Federico Fernandez, 29:1, 1998, 18-26, 4.3, 9.4
Egyptian Fractions and the Inheritance Problem, Premchand Anne, 29:4, 1998, 296-300
More Coconuts, Sidney H. Kung, 29:4, 1998, 312-313, C, 0.1
Square Roots From 1;24,51,10 to Dan Shanks, Ezra Brown, 30:2, 1999, 82-95
From Euler to Fermat, Hidefumi Katsuura, 30:2, 1999, 118-119, 9.5
Palindromic Primes, Harvey Dubner, 30:4, 1999, 292, C
Powers as Uniform Sums of Positive Squares, Robert J. Wisner, 30:4, 1999, 293-296
Progress on the Tarry-Escott-Prouhet Problem, the editor, 31:1, 2000, 68, C
Recursions That Produce Pythagorean Triples, Peter W. Wade and William R. Wade, 31:2, 2000, 98-101
General Arithmetic Triangles and Bhaskara’s Equation, Raymond Beauregard and E. R. Suryanarayan, 31:2, 2000, 111-115
Three Fermat Trails to Elliptic Curves, Ezra Brown, 31:3, 2000, 162-172
Meta-Problems in Mathematics, Al Cuoco, 31:5, 2000, 373-378, 0.7, 5.1.2
A Polynomial with a Root Mod m for Every m, Allen J. Schwenk, 31:5, 2000, 403-405, C, 9.4
The Lord Over Better and Worse Births, John Fossa and Glenn Erickson, 32:3, 2001, 185-193, 9.2
Powers Made Easy, James Kirby, 32:5, 2001, 329, C, 0.1
Close!, Noam Elkies, 33:1, 2002, 16, C
A Visit With Six, Monte J. Zerger, 33:2, 2002, 74-87, 9.2
It's Perfectly Rational, Philip K. Hotchkiss, 33:2, 2002, 113-117, 5.1.4
A Ramanujan Result Viewed From Matrix Algebra, Raymond A. Beauregard and E. R. Suryanarayan, 33:3, 2002, 212-214, 4.1, 9.4
Fermat’s Little Theorem From the Multinomial Theorem, Thomas J. Osler, 33:3, 2002, 239, C
A Numerical Introduction to Partial Fractions, Eric L. McDowell, 33:5, 2002, 400-403, C, 5.2.4
A Magic Trick from Fibonacci, James Smoak and Thomas J. Osler, 34:1, 2003, 58-60, C
Recursive Enumeration of Pythagorean Triples, Darryl McCullough and Elizabeth Wade, 34:2, 2003, 107-111
Rational Boxes, Sidney Kung, 34:3, 2003, 182, C, 5.1.4
Coin ToGa: A Coin-Tossing Game, Osvaldo Marrero and Paul C. Pasles, 34:3, 2003, 183-193, 7.2
Variations on a Theme from Pascal’s Triangle, Thomas J. Osler, 34:3, 2003, 216-223
Partitioning Triangular Numbers, Matthew Haines and Michael Jones, 34:4, 2003, 295, C
On a Diophantine Equation and its Ramifications, Titu Andreescu and Dorin Andrica, 35:1, 2004, 15-21
Midy’s (Nearly) Secret Theorem – An Extension After 165 Years, Brian D. Ginsberg, 35:1, 2004, 26-30
Five Mathematicians, a Bunch of Coconuts, a Monkey, and a Coin, John E. Morrill, 35:4, 2004, 256-257
Discovering Roots: Ancient, Medieval, and Serendipitous, Bryan Dorner, 36:1, 2005, 35-43, 0.2, 2.1, 4.5
Irrational Roots of Integers, Ayshhyah Khazad and Allen J. Schwenk, 36:1, 2005, 56-57, C (see also 36:4, 317)
Exactly When Is \((a+b)^n\) equivalent to \(a^n + b^n \pmod{n}\) ?, Pratibha Ghatage and Brian Scott, 36:4, 2005, 322, C
A Paper-and-Pencil gcd Algorithm for Gaussian Integers, Sandor Szabo, 36:5, 2005, 374-380, 9.4
A Two-Parameter Trigonometry Series, Xiang-Qian Chang, 36:5, 2005, 408-412, C, 9.5
Using Random Tilings to Derive a Fibonacci Congruence, Keith Neu and Paul Deiermann, 37:1, 2006, 44-47, C
Parity and Primality of Catalan Numbers, Thomas Koshy and Mohammad Salmassi, 37:1, 2006, 52-53, C, 3.2
Student Research Project: Integer Points on a Hyperboloid of One Sheet, Margaret Beattie and Chester Weatherby, 37:1, 2006, 54-58, C
No Arithmetic Cyclic Quadrilaterals, Raymond A. Beauregard, 37:2, 2006, 110-113
Searching for Mobius, Al Cuoco, 37:2, 2006, 137-142, C
Where are the zeros of zeta of s? (poem), Tom M. Apostol, 37:2, 2006, 163, C
What Tom Apostol Didn’t Know (poem), Saunders MacLane, 37:2, 2006, 164, C
Fibonacci Identities via the Determinant Sum Property, Michael Z. Spivey, 37:4, 2006, 286-289, 3.2, 4.2
FFF. Sums of 12th powers, Ed Barbeau, 37:4, 2006, 292, F
More Designer Decimals: The Integers and Their Geometric Extensions, O-Yeat Chan and Jim Smoak,
FFF #260. Increasing a square to a square, Chris Fisher, 38:1, 2007, 43, F, 0.2
Freaky fractions, Rick Kreminsky, 38:1, 2007, 46, C, 0.1
Fibonacci-Like Sequences and Pell Equations, Ayoub B. Ayoub, 38:1, 2007, 49-53, C
Sums of Consecutive Integers, Wai Yan Pong, 38:2, 2007, 119-123
Pythagorean Triples with Square and Triangular Sides, Sharon Brueggeman, 38:2, 2007, 138-140, C
Surprising Connections between Partitions and Divisors, Thomas J. Osler, Abdulkadir Hassan, and Tirupathi R. Chandrupatla, 38:4, 2007, 278-287
Summing Up the Euler phi Function, Paul Loomis, Michael Plytage, and John Polhill, 39:1, 2008, 34-42
Freaky fr...
Partitioning Pythagorean Triangles Using Pythagorean Angles, Carl E. Swenson and Andre L. Yandl, 43:3, 2012, 220-225, 0.6, 0.7
Why the Faulhaber Polynomials Are Sums of Even or Odd Powers of (n + ½), Reuben Hersh, 43:4, 2012, 322-324, 0.2
Geometry of Sum-Difference Numbers, Paul Yiu, 43:5, 2012, 408-409, C, 0.4

9.4 Abstract algebra

A Condition Equivalent to Associativity for Finite Groups, Roy Dobyns, 3:1, 1972, 10-13
Sneaking Up On a Group, Jean J. Pedersen, 3:2, 1972, 9-12
Complex Numbers as Residue Classes of Polynomials mod(x^2+1), Rosemary Schmalz, S.P., 3:2, 1972, 78-80, C
Rings, Subrings, Identities and Homomorphisms, Pasquale J. Arpaia, 5:1, 1974, 25-28
An Alternative to Euclidean Algorithm, Sidney H. L. Kung, 5:2, 1974, 8-11
A Finite Field—A Finite Geometry and Triangles, Marc Swadener, 5:3, 1974, 22-26, 0.3
Factoring Functions and Relations, Thomas J. Brieske, 6:3, 1975, 7-12, 1.2
Exploring the Gaussian Integers, Robert G. Stein, 7:4, 1976, 4-10
An Algorithm and Its Connection with Abelian Groups, W. G. Leavitt, 7:2, 1976, 16-21
Counterexamples from the Algebra of Polynomials over a Nonfield, Janet B. Pomeranz, 8:1, 1977, 11-14
Can This Polynomial Be Factored?, Harold L. Dorwart, 8:2, 1977, 67-72, 0.7
An Arithmetic Description of the Dihedral Group, L. N. Somanchi, 11:5, 1980, 327-329, C
Compounding Energy Savings, Leo Chosid, 12:1, 1981, 56-57, C, 0.8
Constructing "Different" Examples for Beginning Abstract Algebra Students, Eddie Boyd, Jr., 12:5, 1981, 333-334, C
Doubling: Real, Complex, Quaternion and Beyond ... Well, Maybe, Robert C. Moore, 17:4, 1986, 342-343, C
Generating Posets, Harley Flanders, 18:4, 1987, 323-327, 8.2
Rencontres Reencountered, Karl David, 19:2, 1988, 133-148, 3.2
Codes that Detect and Correct Errors, Chester J. Salwach, 19:5, 1988, 402-416, 9.5
Simple Groups (poem), Anonymous, 20:1, 1989, 26
A Complete Solution to the Magic Hexagram Problem, Harold Reiter and David Ritchie, 20:4, 1989, 307-316, 9.2
Minimum Dimension for a Square Matrix of Order n, Robert Hanson, 21:1, 1990, 28-34, 4.1
A Zero-Row Reduction Algorithm for Obtaining the gcd of Polynomials, Sidney H. Kung and Yap S. Chua, 21:2, 1990, 138-141, 0.7, 4.1
Secrets of the Faro: Student Research Project, Irl C. Bivens, 22:2, 1991, 144-147, 9.3
FFF #43. The Number of Conjugates of a Group Element, Ed Barbeau, 22:3, 1991, 222, F
FFF #48. All Groups are Simple, Ed Barbeau, 22:5, 1991, 404, F
A Number-Theoretic Approach to Counting Subgroups of Dihedral Groups: Student Research Project,
David W. Jensen and Eric R. Bussian, 23:2, 1992, 150-152
FFF #55. Even and Odd Permutations, Ed Barbeau, 23:3, 1992, 204, F, 4.2 (also 23:4, 1992, 305 and 24:4,
A Sliding Block Problem: Student Research Project, George T. Gilbert and Loren C. Larson, 23:4, 1992,
315-319
FFF #80. Factoring Homogeneous Polynomials, John Webb and Graeme West, 25:5, 1994, 433, F
Visualizing the Group Homomorphism Theorem, Robert C. Moore, 26:2, 1995, 143, C
FFF #90. The Impossibility of Angle Bisection, Eric Chandler, 26:4, 1995, 302, F
Pythagorean Triples: The Hyperbolic View, Raymond A. Beauregard and E. R. Suryanarayanan, 27:3, 1996,
170-181, 9.3
FFF #105. The Remainder Theorem, Richard Laatsch, 27:4, 1996, 282, F, 0.2
Adventure Games, Permutations, and Spreadsheets, Paul Vodola, 28:4, 1997, 301-309
An Attempt to Foster Students’ Construction of Knowledge During a Semester Course in Abstract
Algebra, Thomas G. Edwards and Lawrence Brenton, 30:2, 1999, 120-128, 1.1
Group Operation Tables and Normalizers, Colonel Johnson Jr., 31:1, 2000, 50-51, C
A Project for Discovery, Extension, and Generalization in Abstract Algebra, Bo Green, 31:4, 2000, 329-332
FFF #159. Reciprocals in finite rings, Michelle Manes, 31:5, 2000, 393, F
A Polynomial with a Root Mod m for Every m, Allen J. Schwenk, 31:5, 2000, 403-405, C, 9.3
On a Theorem of Clay, Hassan Azad and A. Laradji, 31:5, 2000, 405-406, C
Another Look at Factoring Polynomials, Scott J. Beslin and Douglas J. Baney, 32:4, 2001, 273-275, 0.2
Elementary Linear Algebra and the Division Algorithm, Airton von Sohsten de Medeiros, 33:1, 2002, 51-52, C, 4.3
A Ramanujan Result Viewed From Matrix Algebra, Raymond A. Beauregard and E. R. Suryanarayanan,
33:3, 2002, 212-214, 4.1, 9.3
Extensions of a Logarithmic Equation, Bill Frederick and N. S. K. Hellerstein, 33:4, 2002, 348, C
Sets of Sets: A Cognitive Obstacle, Lawrence Brenton, 34:1, 2003, 31-38, 9.1
Another Exercise, Monte Zerger, 34:3, 2003, 204, C
The Band Around a (non)Convex Set, Jack Stewart and Annalisa Crannell, 34:5, 2003, 377-379, 0.2, 0.7
A Rational Root Theorem for Imaginary Roots, Sharon Barrs, James Braselton, and Lorraine Braselton,
34:5, 2003, 380-382, 0.2, 0.7
When Does a Quadratic Extension Field Contain the Square Root of –1?, Walden Freedman, 35:1, 2004,
52-54, C
To a Z (poem), Jeff Suzuki, 35:2, 2004, 124, C
The Platonic Solids from their Rotation Groups, Larry Grove, 36:4, 2005, 278-283
Graeco-Latin Squares and a Mistaken Conjecture of Euler, Dominic Klyve and Lee Stemkoski, 37:1, 2006,
2-15, 3.2, 9.2
The Existence of Multiplicative Inverses, Ricardo Alfaro and Steven C. Althoen, 37:3, 2006, 227-228, C
Names in Boxes Puzzle, Peter Winkler, 37:4, 2006, 260, 285, 289, C, 3.2
Remainder Wheels and Group Theory, Lawrence Brenton, 39:2, 2008, 129-135, 0.1, 9.3
The Probability that Two Semigroup Elements Commute Can Be Almost Anything, Berit Givens, 39:5, 2008, 399-400
An Independent Axiom System for the Real Numbers, Gregory Oman, 40:2, 2009, 78-86
Student Research Projects: Goursat’s Other Theorem, Joseph Petrillo, 40:2, 2009, 119-124
Set of Mutually Orthogonal Sudoku Latin Squares, Ryan M. Pedersen and Timothy L. Vis, 40:3, 2009, 174-180, 9.2
How to Differentiate an Integer Modulo n, Caleb Emmons, Mike Krebs, and Anthony Shaheen, 40:5, 2009, 345-353, 5.1.2
Emmy Noether?, Michael Henle, 41:1, 2010, 27, C, 2.2
The Other Reason Why Not Unique Factorization, Andrea Rothbart, 41:1, 2010, 76, C
Taking Turns, Brian Hopkins, 41:4, 2010, 289-297, 3.2, 3.3
Finding Rational Parametric Curves of Relative Degree One or Two, Dave Boyles, 41:5, 2010, 371-382, 5.6.1, 9.3
Student Research Project: Graphs and Zero-Divisors, M. Axtell and J. Stickle, 41:5, 2010, 396-399, 3.1
The Symmetry Group of the Permutahedron, Karl-Dieter Cristman, 42:2, 2011, 135-138
Student Research Project: Golden Matrix Families, Anne Fontaine and Susan Hurley, 42:2, 2011, 140-147, 4.1, 4.5
Counting Subgroups in a Direct Product of Finite Cyclic Groups, Joseph Petrillo, 42:3, 2011, 215-222
An Application of Group Theory to Change Ringing, Michele Interrmont and Aileen Murphy, 42:3, 2011, 223-228, 3.2
Uncountably Generated Ideals of Functions, B. Sury, 42:5, 2011, 404-406, C, 9.5
Hexaflexagons, Martin Gardner, 43:1, 2012, 2-5, 0.3, 9.2, 9.8
From Hexaflexagons to Edge Flexagons to Point Flexagons, Les Pook, 43:1, 2012, 11-14, 0.3, 3.1, 9.2, 9.8
Carryless Arithmetic Mod 10, David Applegate, Marc LeBrun, and N. J. A. Sloane, 43:1, 2012, 43-50, 0.1, 5.4.1, 9.2
The Finite Lamplighter Groups: A Guided Tour, Jacob A. Siehler, 43:3, 2012, 203-211
When Abelian = Hausdorff, Timothy Kohl, 43:3, 2012, 213-215, 9.8
Student Research Project: Idempotents a la Mod, Thomas Q. Sibley, 43:5, 2012, 401-404

9.5 Analysis

On the Sum of Two Periodic Functions, John M. H. Olmsted and Carl G. Townsend, 3:1, 1972, 33-38
The Quadratic Polynomial and Its Zeros, C. A. Long, 3:2, 1972, 23-29, 5.1.5
On the Use of Functions, William E. Hartnett, 3:2, 1972, 25-28, 9.8
A Geometric Approach to the Orders of Infinity, Harold L. Schoen, 3:2, 1972, 74-76, C, 0.2
A Construction of the Real Numbers, E. A. Maier and David Maier, 4:1, 1973, 31-35
Riemann Integration in Ordered Fields, John M. Olmsted, 4:2, 1973, 34-40
Equivalent Inequalities, Jim Howard and Joe Howard, 19:4, 1988, 350-352, C
Looking at the Mandelbrot Set, Mark Bridger, 19:4, 1988, 353-363, 9.8
Codes that Detect and Correct Errors, Chester J. Salwach, 19:5, 1988, 402-416, 9.4
The Fundamental Periods of Sums of Periodic Functions, James Caveny and Warren Page, 20:1, 1989, 32-41, 0.6
Another Proof of Jensen's Inequality, Norman Schaumberger and Bert Kabak, 20:1, 1989, 57-58, C
Graphing the Complex Zeros of Polynomials Using Modulus Surfaces, Cliff Long and Thomas Hern, 20:2, 1989, 98-105, 0.7, 5.1.5
The Curious Fate of an Applied Problem, Alan H. Schoenfeld, 20:2, 1989, 115-123, 5.1.5, 8.3
Another Proof of Chebyshev's Inequality, Norman Schaumberger, 20:2, 1989, 141-142, C
Subharmonic Series, Arthul C. Sogal, 20:3, 1989, 194-200, 5.4.2
Two Elementary Proofs of an Inequality (and 1 1/2 Better Ones), William C. Waterhouse, 20:3, 1989, 201-205
The Root Mean Square—Arithmetic Mean—Geometric Mean—Harmonic Mean Inequality, Roger B. Nelsen, 20:3, 1989, 231, C, 0.4
The AM-GM Inequality via x^n(1/x), Norman Schaumberger, 20:4, 1989, 320, C
A Generalization of the limit of [(n!)^n/(n^n)]/n = e^(n/-1), Norman Schaumberger, 20:5, 1989, 416-418, C, 5.1.1
FFF #15. Another Proof that 1 = 0, Ed Barbeau, 21:1, 1990, 36, F (also 21:2, 1990, 128)
Ways of Looking at n!, Diane Johnson and Roy Dowling, 21:3, 1990, 219-220, C
Harmonic, Geometric, Arithmetic, Root Mean Inequality, Sidney Kung, 21:3, 1990, 227, C, 0.4
Tabular Integration by Parts, David Horowitz, 21:4, 1990, 307-313, C, 5.2.5, 5.4.2
A Chaotic Search for i, Gilbert Strang, 22:1, 1991, 3-12, 6.3, 5.1.3
Fractals Illustrate the Mathematical Way of Thinking, Yves Nievergelt, 22:1, 1991, 60-64, C
Another Proof of a Familiar Inequality, Norman Schaumberger, 22:3, 1991, 229-230, C
FFF #52. An Application of the Cauchy-Schwartz Inequality, Ed Barbeau, 23:2, 1992, 142, F, 0.2
FFF #53. Opening the Floodgates, Ed Barbeau, 23:2, 1992, 142-143, F
FFF. Surjective Functions, Ed Barbeau, 23:4, 1992, 305, F
Inverse Problems and Torricelli's Law, C. W. Groetsch, 24:3, 1993, 210-217, 9.10
Local Conditions for Convexity and Upward Concavity, Donald Francis Young, 24:3, 1993, 224-228
Six Ways to Sum a Series, Dan Kalman, 24:5, 1993, 402-421, 5.4.3
Strictly Increasing Differentiable Functions, Massimo Furi and Mario Martelli, 25:2, 1994, 125-127
Approaches to the Formula for the nth Fibonacci Number, Russell Jay Hendel, 25:2, 1994, 139-142, C, 0.2, 4.5, 5.4.2, 9.3
The Chebyshev Inequality for Positive Monotone Sequences, Roger B. Nelsen, 25:3, 1994, 192, C
Extending Bernoulli's Inequality, Ronald L. Persky, 25:3, 1994, 230, C, 0.2
Cutting Corners: A Four-gon Conclusion, S. C. Althoen and K. E. Schilling and M. F. Wyneken, 25:4, 1994, 266-279, 0.4, 0.5
Leibniz and the Spell of the Continuous, Hardy Grant, 25:4, 1994, 291-294, 2.2
A New Look at an Old Function, e to the i theta, J. G. Simmonds, 26:1, 1995, 6-10
Continuity on a Set, R. Bruce Crofoot, 26:1, 1995, 29-30
Can We See the Mandelbrot Set?, John Ewing, 26:2, 1995, 90-99, 6.3
The Hyperbolic Number Plane, Garret Sobczyk, 26:4, 1995, 268-280, 0.7
The Mean of the Squares Exceeds the Square of the Means (Proof Without Words), Roger B. Nelsen, 26:5, 1995, 368, C
Recursive Formulas for zeta(2k) and the Dirichlet function L(2k-1), Xuming Chen, 26:5, 1995, 372-376
A Complex Approach to the Laws of Sines and Cosines, William V. Grounds, 27:2, 1996, 108, C, 0.6
Why Polynomials Have Roots, Javier Gomez-Calderon and David M. Wells, 27:2, 1996, 90-94, 5.1.2, 5.7.1
FFF #107. All Complex Numbers Are Real, Walter Reno, 27:4, 1996, 283, F
Dynamic Function Visualization, Mark Bridger, 27:5, 1996, 361-369, 5.1.5, 5.8
Countability via Bases Other Than 10, Pat Touhey, 27:5, 1996, 382-384, C
An Application of Elementary Geometry in Functional Analysis, Ji Gao, 28:1, 1997, 39-42, 0.4
A Proof that Polynomials Have Roots, Uwe F. Mayer, 28:1, 1997, 58, C
FFF #116. Life at Infinity and Beyond, Albert Eagle, 28:3, 1997, 198-199, F
The World's Biggest Taco, David D. Bleecker and Lawrence J. Wallen, 29:1, 1998, 2-12, 5.2.7, 5.3.4
Galileo’s Ratios (Proof Without Words), Alfinio Flores, 29:4, 1998, 300, C
Interval Arithmetic and Analysis, James Case, 30:2, 1999, 118-119, 9.3
Continuous Versions of the (Dirichlet) Drawer Principle, Pawel Strzelecki, 30:3, 1999, 195-196
Computers and Advanced Mathematics in the Calculus Classroom, Kurt Cogswell, 30:3, 1999, 213-216, C, 5.2.9
FFF #154. How the factorial works, Norton Starr, 30:5, 1999, 385, F (see also Seymour Haber, 35:1, 2004, 42
FFF #155. Floored by an Olympiad problem, the editor, 30:5, 1999, 386, F
Partially Differentiable, Yes; Continuous, No, David Calvis, 31:1, 2000, 42-47
AM ≥ GM (Mathematics Without Words), Norman Schaumberger, 31:1, 2000, 68, C
A Child’s Garden of Fractional Derivatives, Thomas Osler and Marcia Kleinz, 31:2, 2000, 82-88
π is the Minimum Value for Pi, C. L. Adler and James Tanton, 31:2, 2000, 102-106
Linear Functions and Rounding, Jack E. Graver and Lawrence J. Lardy, 31:2, 2000, 132-136
FFF #157. Fourier Analysis is Trivial, Peter M. Jarvis, 31:3, 2000, 207, F
Sequences of Chords and of Parabolic Segments Enclosing Proportional Areas, Timothy Feeman and Osvaldo Marrero, 31:5, 2000, 379-382, 5.2.6, 5.2.8
Tension in Generalized Geometric Sequences, Bill Goldbloom-Block, 32:1, 2001, 44-47
FFF #170. Strange dependence, Ollie Nanyes, 32:1, 2001, 49, F
The Cantor Set Contains ¼? Really?, sarah-marie belcastro and Michael Green, 32:1, 2001, 55-56, C
A Proof That Proves, A Proof That Explains, and A Proof That Works, Seannie Dar, Shay Gueron, and Oran Lang, 32:2, 2001, 115-117, F, 0.9
Algebraic Cantor Numbers?, Edwin Rosenberg, 32:3, 2001, 200, C
Rational Approximations to Power Expansions, Maria Cecilia K. Aguilera-Navarro, Valdir C. Aguilera-Navarro, Ricardo C. Ferreira and Neuzia Teramon, 32:4, 2001, 276-278, 5.4.3
FFF #179. A Wrong Version of Stirling’s Formula, Keith Brandt, 32:5, 2001, 363-365, F, 5.1.1
Cantor, 1/4, and its Family and Friends, Ioana Mihaila, 33:1, 2002, 21-23
FFF #184. Spreading the continuity, Russ Euler, 33:1, 2002, 39, F
FFF #185. Integrating around a closed contour, Dale Buske, 33:1, 2002, 39-40, F
Mixed Partial Derivatives and Fubini’s Theorem, Asuman Aksoy and Mario Martelli, 33:2, 2002, 126-130
Moving a Couch Around a Corner, Christopher Moretti, 33:3, 2002, 196-200, 5.1.4
FFF #195. Infectious continuity, Russ Euler and Jawad Sadek, 33:3, 2002, 227, F
Applications of Differentials, Li Feng, 33:4, 2002, 295, C, 5.1.3
When is 1/(a-b) = 1/a + 1/b, Anyway?, Eugene Boman and Frank Uhlig, 33:4, 2002, 296-300, 4.1
Cartoon: Justice Scores, John Schommer and Steve Campbell, 33:4, 2002, 331, C
Irrationals in the Cantor Set, Edwin Rosenberg, 33:5, 2002, 394, C
Investigating Possible Boundaries Between Convergence and Divergence, Frederick Hartmann and David Sprows, 33:5, 2002, 405-406, C, 5.4.2
Off on a Tangent, Russell A. Gordon and Brian C. Dietel, 34:1, 2003, 62-63, C, 5.1.3
Odd-like (Even-like) Functions on (a, b), Zhibo Chen, Peter Hammond and Lisa Hazinski, 34:1, 2003, 64-67, C, 5.2.9
Keyboard Inequalities, Monte Zerger, 34:1, 2003, 67, C, 0.2
FFF #204. An inequality, Ed Barbeau, 34:2, 2003, 134, F
FFF #205. Another inequality, Michel Bataille, 34:2, 2003, 134-135, F
On the Monotonicity of (1+1/n)^n and (1+1/n)^(n+1), Peter R. Mercer, 34:3, 2003, 236-238, C
Generalizations of the Arithmetic-Geometric Mean Inequality and a Three Dimensional Puzzle, Hidefumi Katsuura, 34:4, 2003, 280-282
The Tangent Lines of a Conic Section, Daniel Wilkins, 34:4, 2003, 296-303, 0.5
For What Functions Is f'^1(x) = 1/f(x)?, Sharon MacKendrick, 34:4, 2003, 304-311, 0.2
FFF #217. A Riemann sum, Holly M. Hoover, 34:4, 2003, 314, F, 5.4.2
The Rationals are Countable – Euclid’s Proof, Jerzy Czyz and William Self, 34:5, 2003, 367-369
The HM-GM-AM-QM Inequalities, Philip Wagala Gwanyama, 35:1, 2004, 47-50, C, 5.7.1
Cauchy’s Mean Value Theorem Involving n Functions, Jingcheng Tong, 35:1, 2004, 50-51, C (see also Richard Beck, 35:5, 2004, 384)
On the Values of Pi for Norms on R^2, J. Duncan, Daniel H. Luecking, and C. M. McGregor, 35:2, 2004,
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Volume:Page, Year</th>
<th>Page Range</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Generalized Magic Trick from Fibonacci: Designer Decimals</td>
<td>Mrjorie Bicknell-Johnson</td>
<td>35:2, 2004</td>
<td>125-126</td>
<td>C, 0.1</td>
</tr>
<tr>
<td>Periodic Points for the Tent Function</td>
<td>David Sprows</td>
<td>35:2, 2004</td>
<td>133-135</td>
<td>C</td>
</tr>
<tr>
<td>Almost Alternating Harmonic Series</td>
<td>Curtis Feist and Ramin Naimi</td>
<td>35:3, 2004</td>
<td>183-191</td>
<td>5.4.2</td>
</tr>
<tr>
<td>The Rationals of the Cantor Set</td>
<td>Ioana Mihaila</td>
<td>35:4, 2004</td>
<td>251-255</td>
<td></td>
</tr>
<tr>
<td>Tangent Lines and the Inverse Function Differentiation Rule</td>
<td>Maurizio Trombetta</td>
<td>35:4, 2004</td>
<td>258-261</td>
<td></td>
</tr>
<tr>
<td>The Taxicab distance is a metric</td>
<td>(Proof Without Words)</td>
<td>35:4, 2004</td>
<td>261</td>
<td>C</td>
</tr>
<tr>
<td>An Elementary Proof of the Monotonicity of (1+1/n)^n and (1+1/n)^{(n+1)}</td>
<td>Duane W. DeTemple</td>
<td>36:2, 2005</td>
<td>146-147</td>
<td>C, 5.3.2</td>
</tr>
<tr>
<td>Approaching ln x</td>
<td>James V. Peters</td>
<td>36:2, 2005</td>
<td>146-147</td>
<td>C, 5.3.2</td>
</tr>
<tr>
<td>An Area Approach to the Second Derivative</td>
<td>Vania Mascioni</td>
<td>38:5, 2007</td>
<td>385-387</td>
<td>C, 5.1.1, 5.3.2</td>
</tr>
<tr>
<td>The Pearson and Cauchy-Schwarz Inequalities</td>
<td>David Rose</td>
<td>39:1, 2008</td>
<td>64</td>
<td>C, 5.5, 7.3</td>
</tr>
<tr>
<td>FFF #279. A plausible inequality</td>
<td>Ed Barbeau</td>
<td>39:3, 2008</td>
<td>228</td>
<td>F</td>
</tr>
<tr>
<td>FFF #283. A counterexample to Liouville’s Theorem</td>
<td>Mark Lynch</td>
<td>39:4, 2008</td>
<td>300</td>
<td>F</td>
</tr>
<tr>
<td>Report from the Ambassador to Cida-2</td>
<td>Clifton Cunningham</td>
<td>39:5, 2008</td>
<td>337-345</td>
<td>9.3</td>
</tr>
<tr>
<td>FFF #288. Maximizing a rational function</td>
<td>Ed Barbeau</td>
<td>39:5, 2008</td>
<td>385-386</td>
<td>F, 5.1.4</td>
</tr>
<tr>
<td>Eighty-eight Thousand, Four Hundred and Eighteen (More) Ways to Fill Space</td>
<td>Anderson Norton</td>
<td>40:2, 2009</td>
<td>108-112</td>
<td></td>
</tr>
<tr>
<td>Ways to Fill Space #76,142: Rabbits (cartoon)</td>
<td>Courtney Gibbars</td>
<td>40:2, 2009</td>
<td>112</td>
<td>C</td>
</tr>
</tbody>
</table>
The Fresnel Integrals Revisited, Hongwei Chen, 40:4, 2009, 259-262, 5.2.9
Proof Without Words: An Inequality, Guanshen Ren, 40:4, 2009, 274, C
Dynamics of Exponential Functions, Jiuling and Zizhong Wang, 40:5, 2009, 361-368, 6.3
Dogs Don’t Need Calculus, Michael Bolt and Daniel C. Isaksen, 41:1, 2010, 10-16, 0.2, 5.1.4
The Hardest Straight-In Pool Shot, Rick Mabry, 41:1, 2010, 49-56, 0.6, 5.1.4
Proof Without Words: Harmonic Mean < Geometric Mean < Arithmetic Mean < Root Mean Square < Contraharmonic Mean, Sidney Kuang, 41:2, 2010, 112, C, 0.3
What’s My Domain?, Dan Curtis, 41:2, 2010, 113-121, 6.1
Four Ways to Skin a Definite Integral, Joseph B. Dence and Thomas P. Dence, 41:2, 2010, 134-144, 5.2.3, 5.2.4
Taylor’s Theorem: The Elusive c is Not So Elusive, Rick Kreminski, 41:3, 2010, 186-192, 5.4.3
Cutting Cakes Carefully, Theodore P. Hill and Kent E. Morrison, 41:4, 2010, 281-288, 7.2
Gerrymandering and Convexity, Jonathan K. Hodge, Emily Marshall, and Geoff Patterson, 41:4, 2010, 312-324, 7.2
Sprinkler Bifurcations and Stability, Jody Sorensen and Elyn Ryken, 41:5, 2010, 383-391, 6.3
The Band Around a Convex Body, David Swanson, 42:1, 2011, 15-24, 5.7.3
Cantor Groups, Ben Mathes, 42:1, 2011, 60-61, C
An Arithmetic Metric, Diego Dominici, 42:3, 2011, 207-214
Using Continuity Induction, Dan Hathaway, 42:3, 2011, 229-231, C
Series with Inverse Function Terms, Sergei Ovchinnikov, 42:4, 2011, 283-288, 5.3.1, 5.3.3, 5.4.2
Derivative Sign Patterns, Jeffrey Clark, 42:5, 2011, 379-381, C, 5.1.2, 5.4.3
The Cobb-Douglas Function and Holder’s Inequality, Thomas E. Goebeler, Jr., 42:5, 2011, 387-388, C, 5.2.9
Uncountably Generated Ideals of Functions, B. Sury, 42:5, 2011, 404-406, C, 9.4
Harmonic Series Meets Fibonacci Sequence, Hongwei Chen and Chris Kennedy, 43:3, 2012, 237-243, 5.4.2
Extending the Alternating Series Test, Hidefumi Katsuura, 43:4, 2012, 325-330, 5.4.2
Series that Converge Absolutely but Don’t Converge, Robert Kantrowitz and Michael Schramm, 43:4, 2012, 331-333, C, 5.4.2
Euler’s Identity, Leibniz Tables, and the Irrationality of Pi, Timothy W. Jones, 43:5, 2012, 361-364
9.6 Numerical analysis

The Delta Method Approximates the Roots of Polynomial Equations, Joseph J. Ettl, 5:2, 1974, 19-20, 0.7
The Interpolating Polynomial, Roger G. Lindley, 5:2, 1974, 21-31, 0.7
Computer Computation of Integrals, Arne Broman, 5:4, 1974, 4-11
An Integral Approximation Exact for Fifth-Degree Polynomials, Burt M. Rosenbaum, 7:3, 1976, 10-14, 5.2.2
Finding Super Accurate Integers, Pasquale Scopelliti and Herbert Peebles, 7:3, 1976, 52-54, 0.2
Interpolation and Square Roots, James E. McKenna, 7:4, 1976, 49-50, C
Salvaging a Broken Line, Glenn D. Allinger, 8:1, 1977, 47-50
A New Look at Some Old Problems in Light of the Hand Calculator, J. E. Schultz and B. K. Waits, 10:1, 1979, 20-27, 0.8
Calculator-Demonstrated Math Instruction, George McCarty, 11:1, 1980, 42-48, 5.1.1, 5.2.2, 5.4.2
Fixed Point Iteration—An Interesting Way to Begin a Calculus Course, Thomas Butts, 12:1, 1981, 2-7, 1.2, 5.1.1

The Electronic Spreadsheet and Mathematical Algorithms, Deane E. Arganbright, 15:2, 1984, 148-157, 4.1, 5.4.1, 7.3

An Almost Correct Series, R. A. Mureika and R. D. Small, 15:4, 1984, 334-338, C, 5.4.2

The Bisection Algorithm is Not Linearly Convergent, Sui-Sun Cheng and Tzon-Tzer Lu, 16:1, 1985, 56-57, C, 0.7

Nested Polynomials and Efficient Exponential Algorithms for Calculators, Dan Kalman and Warren Page, 16:1, 1985, 57-60, C, 0.2

Rediscovering Taylor’s Theorem, Dan Kalman, 16:2, 1985, 103-107

Computing Large Factorials, Gerard Kiernan, 16:5, 1985, 403-412, 9.3

An Interview with George B. Dantzig: The Father of Linear Programming, Donald J. Albers and Constance Reid, 17:4, 1986, 292-304, 2.3

Controlling Roundoff Errors in Sums, Harley Flanders, 18:2, 1987, 153-156, 8.1

A Clamped Simpson’s Rule, James A. Uetrecht, 19:1, 1988, 43-52, 5.2.2

An Efficient Logarithm Algorithm for Calculators, James C. Kirby, 19:3, 1988, 257-260, C, 5.3.2

What’s Significant about a Digit?, David A. Smith, 20:2, 1989, 136-139, C, 0.1

Connecting the Dots Parametrically: An Alternative to Cubic Splines, Wilbur J. Hildebrand, 21:3, 1990, 208-215, 4.6, 5.6.1

Some Examples Illustrating Richardson’s Improvement, Stephen Schonefeld, 21:4, 1990, 314-322

Interpolating Polynomials and Their Coordinates Relative to a Basis, David R. Hill, 23:4, 1992, 329-333, C

Iterative Methods in Introductory Linear Algebra, Donald R. LaTorre, 24:1, 1993, 79-88, 4.1, 4.5

Complex Vectors and Image Identification, Lyndell Kerley and Jeff Knisley, 24:2, 1993, 166-174, 8.3

Fitting a Logistic Curve to Data, Fabio Cavallini, 24:3, 1993, 247-253, 9.10

Angle Trisection by Fixed Point Iteration, L. F. Martins and I. W. Rodrigues, 26:3, 1995, 205-208, 0.3

Numerical Methods for Improper Integrals, Gerald Flynn, 26:4, 1995, 284-291, 5.2.10

Cubic Splines from Simpson’s Rule, Nishan Krikorian and Mark Ramras, 27:2, 1996, 124-126, C, 5.2.2

Gaussian Elimination and Dynamical Systems, Kathie Yerion, 28:2, 1997, 89-97, 4.6

Pictures Suggest How to Improve Elementary Numerical Integration, Keith Kendig, 30:1, 1999, 45-50, C

From Square Roots to n-th Roots: Newton’s Method in Disguise, W. M. Priestley, 30:5, 1999, 387-388, C, 5.1.2

Second Order Iterations, Joseph J. Roseman and Gideon Zwas, 30:5, 1999, 393-396, C

Well-Rounded Figures, Yves Nievergelt, 32:1, 2001, 30-32, 7.3

Speeding Up a Numerical Algorithm, Shay Gueron, 32:1, 2001, 33-38

Simpson’s Rule with Constant Weights, R. S. Pinkham, 32:2, 2001, 91-93, 5.2.2

Estimating Large Integrals: The Bigger They Are, The Harder They Fall, Ira Rosenholtz, 32:5, 2001, 322-329, 5.2.2

How (Not) to Solve Quadratic Equations, Yves Nievergelt, 34:2, 2003, 90-104, 0.2

Calculus, Pi, and the Machine Age, Susan Jane Colley, 34:4, 2003, 264-269, 5.2.4, 5.4.2
An Improved Remainder Estimate for Use With the Integral Test, Roger B. Nelsen, 34:5, 2003, 397-399, C, 5.4.2
Phoebe Floats!, Ezra Brown, 36:2, 2005, 114-122, 2.2, 6.3
Integrals of Fitted Polynomials and an Application to Simpson’s Rule, Allen D. Rogers, 38:2, 2007, 124-130, 5.2.2
Fibonacci’s Forgotten Number, Ezra Brown and Jason C. Brunson, 39:2, 2008, 112-120, 0.7, 2.1
Squaring a Circular Segment, Russell A. Gordon, 39:3, 2008, 212-220, 0.4, 5.4.2
CORDIC: How Hand Calculators Calculate, Alan Sultan, 40:2, 2009, 87-92, 0.6
Fibonacci’s Forgotten Number Revisited, Richard Maruszewski, 40:4, 2009, 248-251, 0.7, 2.1, 5.1.3
A Pi Curiosity, David W. Hoffman, 40:5, 2009, 399, C, 0.4

9.7 Modern and non-Euclidean geometry

Finite Euclidean Geometries of Order p, Hilda Duncan and David Emery, 8:1, 1977, 4-10
On the Radial Packing of Circles in the Plane, P. D. Weidman and K. Pfendt, 21:2, 1990, 112-120, 0.4
Two Trisectrices for the Price of One Rolling Coin, Jack Eidswick, 24:5, 1993, 422-430, 0.3, 0.4
Kepler, the Taxicab Metric, and Beyond: An Isoperimetric Primer, Lawrence J. Wallen, 26:3, 1995, 178-190
The Moise Plane, James R. Boone, 27:3, 1996, 182-185, 0.3
Capturing the Origin with Random Points: Generalizations of a Putnam Problem, Raph Howard and Paul Sisson, 27:3, 1996, 186-192, 7.2
Polishing the Star, Cheng-Syong Lee, 29:2, 1998, 144-145, C
Prelude to Musical Geometry, Brian J. McCartin, 29:5, 1998, 354-370, 0.3, 9.4
The Asymmetric Propeller, Martin Gardner, 30:1, 1999, 18-22
Several Sets of n+1 Shapes, Each the Similitude Union of the Other n, Allen J. Schwenk, 30:2, 1999, 112-117
Relating Geometry and Algebra in the Pascal Triangle, Hexagon, and Cuboctahedron II, Peter Hilton and Jean Pedersen, 30:4, 1999, 279-292, 3.2
Folding Stars, Yuanqian Chen and Charles Waiveris, 30:5, 1999, 370-378, 0.4
Contumacious Spheres, Larry Grove and Olga Yiparaki, 31:1, 2000, 35-41
A Picture for Real Arithmetic, Paul Fjelstad and Peter Hammer, 31:1, 2000, 56-60, C
Introducing Hyperbolicity via Piecewise Euclidean Complexes, Jessica Benashaski, John Meier, Kevin O’Brien, Paige Reinheimer and Margaret Skarbek, 31:3, 2000, 213-217, C
The Asymmetric Propeller Revisited, Gillian Saenz and Chris Jackson and Ryan Crumley, 31:5, 2000, 347-349, 0.4
Straightedge Constructions: Given a Parabola, Peter Y. Woo, 31:5, 2000, 362-372
Conformality, the Exponential Function, and World Map Projections, Timothy G. Feeman, 32:5, 2001, 334-342, 9.8
Mathematics in Music: Mobius Strip, Sally Picciotto, 33:3, 2002, 214
Constructing a Poincare Line with Straightedge and Compass, David Hecker, 34:5, 2003, 362-366, 0.3
On Determining the Non-Circularity of a Plane Curve, Lane F. Burgette and Russell A. Gordon, 35:2, 2004, 74-83, 5.1.3, 5.2.8
Heron’s Area Formula: What About a Tetrahedron?, Reuben Hersh, 35:2, 2004, 112-114, 0.2, 0.4
When Is Euler’s Line Parallel to a Side of a Triangle?, Wladimir G. Boskoff and Bogdan D. Suceava, 35:4, 2004, 292-296, 0.3
Revisiting Spherical Trigonometry with Orthogonal Projectors, Sudipto Banerjee, 35:5, 2004, 375-381, 9.8
How To View A Flatland Painting, Mark Schlatter, 37:2, 2006, 114-120, 0.4
Folding Beauties, Leah Wrenn Berman, 37:3, 2006, 176-186, 0.5, 5.6.1
The Normals to a Parabola and the Real Roots of a Cubic, Manjinder S. Bains and J. B. Thoo, 38:4, 2007, 272-277, 0.4, 0.5
Student Research Project: From Cyclic Sums to Projective Planes, Roger Zarnowski, 38:4, 2007, 304-308, 9.3
Commensurable Triangles, Richard Parris, 38:5, 2007, 345-355 (see also correction 39:5, 2008, 386)
The Right Right Triangle on the Sphere, William Dickinson and Mohammad Salmassi, 39:1, 2008, 24-33, 0.3
Universal Stoppers Are Rupert, Richard P. Jerrard and John E. Wetzel, 39:2, 2008, 90-94, 0.3
Proof Without Words: Carnot’s Theorem for Acute Triangles, Claudi Alsina and Roger B. Nelsen, 39:2, 2008, 111, C, 0.3
The Perimeter of a Polyomino and the Surface Area of a Polycube, Wiley Williams and Charles Thompson, 39:3, 2008, 233-237, C, 0.3
Designing a Table Both Swinging and Stable, Greg N. Frederickson, 39:4, 2008, 258-266, 0.3
Sets That Contain Their Circle Centers, Greg Martin, 39:5, 2008, 357-366, 9.8
Proving that Three Lines Are Concurrent, Daniel Maxim, 40:2, 2009, 128-130, C, 0.3
L-Tromino Tiling of Mutilated Chessboards, Martin Gardner, 40:3, 2009, 162-168, 9.2
Polyomino Problems to Confuse Computers, Stewart Coffin, 40:3, 2009, 169-172, 9.2
Mechanical Circle-Squaring, Barry Cox and Stan Wagon, 40:4, 2009, 238-247, 0.4, 5.6.1, 9.10
Pompeiu’s Theorem Revisited, Arpad Benyi and Ioan Casu, 40:4, 2009, 252-258, 0.3
Biangular Coordinates Redux: Discovering a New Kind of Geometry, Michael Naylor and Brian Winkel, 41:1, 2010, 29-41, 2.2
When Are Two Figures Congruent?, John E. Wetzel, 41:3, 2010, 193-196, 0.3
Viviani’s Theorem and Its Extension, Elias Abboud, 41:3, 2010, 203-211, 0.3
The FedEx Problem, Kent E. Morrison, 41:3, 2010, 222-232, 9.5, 9.10
The Symmedian Point: Constructed and Applied, Robert K. Smither, 42:2, 2011, 115-117, 0.3, 0.4
Folding Polyominoes from One Level to Two, Greg N. Frederickson, 42:4, 2011, 265-274, 0.3, 9.2
Rediscovering Pascal’s Mystic Hexagon, Michael Augros, 43:3, 2012, 194-202, 0.3
9.8 Topology and differential geometry

One-Sided Surfaces and Orientability, John W. Woll, Jr., 2:1, 1971, 5-18
Approximations of Square Roots, Leon Wejntrub, 14:5, 1983, 427-430, 0.2, 0.7
The Fractal Geometry of Mandelbrot, Anthony Barcellos, 15:2, 1984, 98-114, 0.4
Antoine's Necklace or How to Keep a Necklace From Falling Apart, Beverly L. Brechner and John C. Mayer, 19:4, 1988, 306-320
Looking at the Mandelbrot Set, Mark Bridger, 19:4, 1988, 353-363, 9.5
Zorn's Llama (cartoon), David Egley, 22:3, 1991, 234, C
Independence of Path and All That, Robert E. Terrell, 27:4, 1996, 272-276, 5.7.3
Mobius or Almost Mobius, Cliff Long, 27:4, 1996, 277, C
Visualizing the Geometry of Lissajous Knots, John Meier and Jessica Wolfson, 28:3, 1997, 211-216, 5.6.1
Numerically Parametrizing Curves, Steven Wilkinson, 29:2, 1998, 104-119, 5.6.1, 5.6.2
Looking at Order of Integration and a Minimal Surface, Thomas Herr and Cliff Long and Andy Long, 29:2, 1998, 128-133, 5.7.2
Normal Lines and Curvature, Kirby C. Smith, 31:1, 2000, 54-56, C, 5.1.3
Conformality, the Exponential Function, and World Map Projections, Timothy G. Feeman, 32:5, 2001, 334-342, 9.7
Lissajous Figures and Chebyshev Polynomials, Julio Castineira Merino, 34:2, 2003, 122-127, 5.6.1
An Illuminating Example of the Gauss Map, David Richeson, 35:1, 2004, 14, C
The Growth of Trees (Student Research Projects), Philip K. Hotchkiss and John Meier, 35:2, 2004, 143-151, 3.1
A Non-Smooth Band Around a Non-Convex Region, J. Aarao, A. Cox, C. Jones, M. Martelli, and A. Westfahl, 37:4, 2006, 269-278, 5.1.1, 5.7.3
Pairs of Equal Surface Functions, Daniel Cass and Gerald Wildenberg, 30:1, 2008, 51-54, C, 5.2.6, 5.6.2
Topology Explains Why Automobile Sunshades Fold Oddly, Curtis Feist and Ramin Naimi, 40:2, 2009, 93-98
Generalized Parabolas, Dan Joseph, Gregory Hartman, and Caleb Gibson, 42:4, 2011, 275-282, 0.3, 0.5, 5.6.1, 5.7.3
Hexaflexagons, Martin Gardner, 43:1, 2012, 2-5, 0.3, 3.2, 9.2, 9.4
The V-flex, Triangle Orientation, and Catalan Numbers in Hexaflexagons, Ionut E. Iacob, Bruce McLean, and Hua Wang, 43:1, 2012, 6-10, 0.3, 3.1, 3.2, 5.4.1, 9.2
From Hexaflexagons to Edge Flexagons to Point Flexagons, Les Pook, 43:1, 2012, 11-14, 0.3, 3.1, 9.2, 9.4
About Iterated Trefoil Knot, R. Fathauer, 43:2, 2012, 134, C
When Abelian = Hausdorff, Timothy Kohl, 43:3, 2012, 213-215, 9.4

9.9 Operations research, including linear programming

A Strategy for a Class of Games, R. S. Pierce, 2:2, 1971, 55-62
A Coin Game, Thomas P. Dence, 8:4, 1977, 244-246, 5.4.2, 9.10
Three Person Winner-Take-All Games with McCarthy’s Revenge Rule, Philip D. Straffin, Jr., 16:5, 1985, 386-394
A Division Game: How Far Can You Stretch Mathematical Induction?, William H. Ruckle, 18:3, 1987, 212-218, 0.9, 3.2
The Simplex Method of Linear Programming on Microcomputer Spreadsheets, Frank S. T. Hsiao, 20:2, 1989, 153-160, 1.2
A Tool for Teaching Linear Programming within MATLAB, David R. Hill, 21:1, 1990, 55-56, C, 4.1
Optimal Locations, Bennett Eisenberg and Samir Khabbaz, 23:4, 1992, 282-289, 0.4, 3.1
How to Pump a Swing, Stephen Wirkus and Richard Rand and Andy Ruina, 29:4, 1998, 266-275, 6.6
The Bus Driver’s Sanity Problem, Todd G. Will, 30:3, 1999, 187-194
An Introduction to Simulated Annealing, Brian Albright, 38:1, 2007, 37-42, 5.1.4
Student Research Project: Making Change Efficiently, Jack E. Graver, 42:4, 2011, 317-322, 0.1, 3.2, 5.1.4
Lake Wobegon Dice, Jorge Moraleda and David G. Stork, 43:2, 2012, 152-159, 3.3, 7.2, 9.2

9.10 Mathematical modelling and simulation

A Program for Keno, Karl J. Smith, 3:2, 1972, 16-20, 7.1
Dividing Inheritances, Howard E. Reinhardt, 4:2, 1973, 30-33
A Geometric Approach to Linear Programming in the Two-Year College, Pat Semmes, 5:1, 1974, 37-40, 0.2
Some Applications of Modeling in Mathematics for Two-Year Colleges, Robert S. Fisk, 6:4, 1975, 10-13
What is an Application of Mathematics?, Clifford Sloyer, 7:3, 1976, 19-26, 5.1.4
Some Effects of Rationing, James A. Burns, 8:4, 1977, 203-206
A Coin Game, Thomas P. Dence, 8:4, 1977, 244-246, 5.4.2, 9.9
An Environmental Problem, Roland H. Lamberston, 8:4, 1977, 252-253
Foresight-Insight-Hindsight, James C. Frauenthal and Thomas L. Saaty, 10:4, 1979, 245-254
Binomial Baseball, Eugene M. Levin, 12:4, 1981, 260-266, 7.2
Minimally Favorable Games, Michael W. Chamberlain, 14:2, 1983, 159-164, 7.2
A Monte Carlo Simulation Related to the St. Petersburg Paradox, Allan J. Cesar, 15:4, 1984, 339-342, 5.4.2, 7.2
Differential Equations and the Battle of Trafalgar, 16:2, 1985, 98-102, 6.1, 6.2
Harvesting a Grizzly Bear Population, Michael Caulfield and John Kent and Daniel McCaffery, 17:1, 1986, 34-46, 4.1, 4.6
The Problem of Managing a Strategic Reserve, David Cole and Loren Haarsma and Jack Snoeyink, 17:1, 1986, 48-60, 5.1.4, 6.1
How to Balance a Yardstick on an Apple, Herbert R. Bailey, 17:3, 1986, 220-225, 6.5
Facility Location Problems, Fred Buckley, 18:1, 1987, 24-32, 3.1
Positioning of Emergency Facilities in an Obstructed Traffic Grid, Jeff Cronk and Duff Howell and Keith...
Saints, 18:1, 1987, 34-43, 7.2
Transitions, Jeanne L. Agnew and James R. Choike, 18:2, 1987, 124-133, 0.7, 5.1.3, 5.6.1
The Probability that the "Sum of the Rounds" Equals the "Round of the Sum", Roger B. Nelsen and James E. Schultz, 18:5, 1987, 390-396, 7.2, 7.3
Constructing a Map from a Table of Intercity Distances, Richard J. Pulskamp, 19:2, 1988, 154-163, 3.1, 4.5
Theory, Simulation and Reality, Peter Flusser, 19:3, 1988, 210-222, 7.2, 7.3
Ties at Rotation, Howard Lewis Penn, 19:3, 1988, 230-239, 3.2
Using Simulation to Study Linear Regression, LeRoy A. Franklin, 23:4, 1992, 290-295, 7.3
Inverse Problems and Torricelli’s Law, C. W. Groetsch, 24:3, 1993, 210-217, 9.5
The Best Shape for a Tin Can, P. L. Roe, 24:3, 1993, 233-236, C, 5.1.4
Fitting a Logistic Curve to Data, Fabio Cavallini, 24:3, 1993, 247-253, 9.6
Determining Sample Sizes for Monte Carlo Integration, David Neal, 24:3, 1993, 254-262, C, 5.2.2, 7.3
Quenching a Thirst with Differential Equations, Martin Ehrismann, 25:5, 1994, 413-418, 6.4
A Balloon Experiment in the Classroom, Thomas Gruszka, 25:5, 1994, 442-444, C, 6.1, 6.4
Projectile Motion with Arbitrary Resistance, Tilak de Alwis, 26:5, 1995, 361-367, 6.2
The Meeting of the Plows: A Simulation, Jerome L. Lewis, 26:5, 1995, 395-400
The Average Distance Between Points in Geometric Figures, Steven R. Dunbar, 28:3, 1997, 187-197, 7.2
The Long Arm of Calculus, Ethan Berkove and Rich Marchand, 29:5, 1998, 376-386, 5.7.1
The Probability of Passing a Multiple-Choice Test, Milton P. Eising, 29:5, 1998, 421-426, 7.2
Spirals and Conchospirals in the Flight of Insects, Khristo N. Boyadzhiev, 30:1, 1999, 23-31, 5.6.1
Minimizing Aroma Loss, Robert Barrington Leigh and Richard Travis Ng, 30:5, 1999, 356-358, 3.2
Perfecting the Analog of a Deck of Cards or Why Evolution Can’t Be Left to Chance, J. G. Simmonds, 33:1, 2002, 17-20, 7.2
Why cars in the next lane seem to go faster, Sung Soo Kim, 33:3, 2002, 228-229, C
Can a Bicycle Create a Unicycle Track?, David L. Finn, 33:4, 2002, 283-292, 5.6.1
Application of the Lambert W Function to the SIR Epidemic Model, Frank Wang, 41:2, 2010, 156-159, C, 5.3.4, 6.3, 6.4

Newton’s Radii, Maupertuis’ Arc Length, and Voltaire’s Giant, Andrew J. Simoson, 42:3, 2011, 183-190, 5.2.8, 5.6.1

Random Breakage of a Rod into Unit Lengths, Joe Gani and Randall Swift, 42:3, 2011, 201-205, 7.2

An Empirical Approach to the St. Petersburg Paradox, Dominic Klyve and Anna Lauren, 42:4, 2011, 260-263, 5.4.2, 7.1, 7.2

Do Dogs Know the Trammel of Archimedes?, Mark Schwartz, 42:4, 2011, 299-308, 0.3, 0.5, 5.1.4, 5.6.1

The Center of Mass of a Soft Spring, Juan D. Serna and Amitabh Joshi, 43:2, 2012, 389-393, C, 5.2.5, 5.2.9

Just Take the Limit!, Jody Picoult, 42:5, 2011, 431, C, 0.1, 0.8

An Exactly Solvable Model for the Spread of Disease, Ronald E. Mickens, 43:2, 2012, 114-120, 6.4

Eradicating a Disease: Lessons from Mathematical Epidemiology, Matthew Glomski and Edward Ohanian, 43:2, 2012, 123-132, 2.2, 6.4

Retrolife and the Pawns Neighbors, Yossi Elran, 43:2, 2012, 147-151, 3.3, 9.2

Student Research Project: The optimal level of insulation in a home attic, Paul Martin and Kirthi Premadasa, 43:2, 2012, 165-168, 5.1.4

Designing Medical Tests: The Other Side of Bayes’ Theorem, Andrew M. Ross, 43:3, 2012, 251-253, C, 7.2

An Optimal Basketball Free Throw, D. N. Seppala-Holtzman, 43:5, 2012, 387-394

Winning a Racquetball Match, Tom Brown and Brian Pasko, 43:5, 2012, 395-400, 7.2

Software for advanced topics

A Mathematics Software Database, R. S. Cunningham and David A. Smith, 17:3, 1986, 255-266, 0.10, 3.4, 4.8, 5.8, 6.7, 7.4

A Mathematics Software Database Update, R. S. Cunningham and David A. Smith, 18:3, 1987, 242-247, 0.10, 3.4, 4.8, 5.8, 6.7, 7.4

The Compleat Mathematics Software Database, R. S. Cunningham and David A. Smith, 19:3, 1988, 268-289, 0.10, 3.4, 4.8, 5.8, 6.7, 7.4

EXP, Version 3.02 for Windows, Jon Wilkin, 27:1, 1996, 68-73, 0.10

Scientific WorkPlace, Jerry Thornhill, 27:4, 1996, 305-311

Cyclone the Implicit 3D Plotter, Jon Wilkin, 30:1, 1999, 54-59, 5.8

Book Reviews

The History of the Calculus, Carl Boyer, 1:1, 1970, 60-86, summarized by Carl Boyer

Intermediate Algebra, Joseph Newmyer and Gus Klentes, 5:1, 1974, 60-61, reviewed by Edward B. Wright

Elementary Linear Algebra, Paul C. Shields, 5:1, 1974, 61-62, reviewed by Frank Hacker

Elementary Functions with Coordinate Geometry, Earl Swokowski, 5:1, 1974, 62, reviewed by Harry L.
Hancock
Gersting
Programmed Mathematics for Nurses, George Sackheim and Lewis Robins, 5:1, 1974, 63-64, reviewed by
Allen P. Angel
Lawrence Clar
Algebra Programmed, R. H. Alwin and R. D. Hackworth and J. Howland, 5:2, 1974, 56-57, reviewed by
Gerald M. Smith
Mathematical Ideas, 2nd ed., Charles D. Miller and Vern E. Heeren, 5:2, 1974, 57, reviewed by Peter A.
Lindstrom
reviewed by Arthur P. Dull
Essentials of College Algebra, 2nd ed., E. F. Beckenbach and I. Drooyer and William Wooten, 5:2, 1974,
58-59, reviewed by Olene C. Zacher
Elementary Statistics, Robert R. Johnson, 5:2, 1974, 59, reviewed by Philip F. Reichmeider
Basic Algebra Techniques: Concepts and Manipulations, W. Burryl McWaters and Anita McWaters and
Robert L. Drennen, 5:3, 1974, 41-42, reviewed by Eugene P. Cooper
Mathematics with Applications in the Management, Natural, and Social Sciences, Margaret L. Lial and
Charles D. Miller, 5:3, 1974, 42, reviewed by H. Eugene Hall
Applied Mathematics for Technical Programs (Trigonometry), Robert G. Moon, 5:3, 1974, 42-43,
reviewed by Amogene F. DeVaney
Ziebur, 5:3, 1974, 43-44, reviewed by S. C. Tefeltler
Introduction to Probability and Statistics, 5th ed., Henry L. Alder and Edward B. Roessler, 5:3, 1974, 44-
45, reviewed by Alan C. Tucker
Mathematics and Liberal Arts, Jack C. Gill, 5:4, 1974, 31-32, reviewed by Cameron Douthitt
Analytic Geometry with Vectors, Douglas F. Riddle, 5:4, 1974, 32, reviewed by Don Gallagher
Linear Algebra, Paul J. Knopp, 5:4, 1974, 32-33, reviewed by Shelba Morman
Linear Mathematics, Philip Gillett, 5:4, 1974, 34, reviewed by Peter A. Lindstrom
reviewed by Ara B. Sullenberger
Precalculus Mathematics: A Functional Approach, James Connelly and Robert Fratanglo, 6:1, 1975, 28-
29, reviewed by Lawrence Gillagan
Elementary Algebra, 1st ed., Robert G. Moon and Robert D. Davis, 6:1, 1975, 29, reviewed by Thomas L.
Alexander
Conceptions of Space, Beginning Geometries for College, William Hemmer, 6:3, 1975, 27-28, reviewed
by Jean B. Smith
Basic Mathematics for Management and Economics, Lyman C. Peck, 6:3, 1975, 28, reviewed by Cherry
Mauk
Fundamental Math—A Mixed Media Program, Units I-IV, 6:3, 1975, 28-29, reviewed by R. DeJean
The Slide Rule, Electric Hand Calculators, and Metrification in Problem Solving, 3rd ed., George C.
Beakly and H. W. Leach, 6:3, 1975, 29-30, reviewed by Terral McKellips
Lawrence A. Trivieri
Mathematics—A Human Endeavor, Harold R. Jacobs, 6:4, 1975, 19, reviewed by Gerald M. Smith
Introduction to Finite Mathematics, 3rd ed., John G. Kemeny and J. Laurie Snell and Gerald L. Thompson,
6:4, 1975, 19-20, reviewed by Bruce King
Plane Trigonometry, A New Approach, C. L. Johnson, 7:1, 1976, 24-25, reviewed by Nancy Holder
Contemporary Mathematics, Bruce E. Meserve and Max A. Sobel, 7:1, 1976, 25-26, reviewed by James G.
Troutman
Elementary Algebra: A Worktext, Vivian Shai Groza, 7:1, 1976, 25, reviewed by Ken Seydel
Introductory Algebra, Alphonse Gobran, 7:2, 1976, 40-41, reviewed by John P. Pace
Developing Skills in Algebra: A Lecture Work-text, J. Louis Nanny and John L. Cable, 7:2, 1976, 41-42, reviewed by Wesley W. Tom
Elementary Functions and Analytic Geometry, Flanders and Price, 7:3, 1976, 39-40, reviewed by Mary Ann DeVincenzo
Carl Friedrich Gauss, A Biography, Tord Hall, 7:3, 1976, 40, reviewed by Ralph Mansfield
Ingenuity in Mathematics, Ross Honsberger, 7:4, 1976, 26-27, reviewed by Peter A. Lindstrom
Mathematical Gems, Ross Honsberger, 8:1, 1977, 35-36, reviewed by Peter A. Lindstrom
Fortran IV Programming and Applications, C. Joseph Sass, 8:1, 1977, 36-37, reviewed by Mary Ann DeVincenzo
Statistics, Norma Gilbert, 8:2, 1977, 88-89, reviewed by Leland D. Graber
Calculus, A Practical Approach, Kenneth Kalman and Patricia C. Kenschaft, 8:2, 1977, 89, reviewed by Dennis M. Rodriguez
Fundamental Mathematics (filmstrips), James Streeter and Gerald Alexander, 8:3, 1977, 165-166, reviewed by John McGregor
Differential Equations and Their Applications: An Introduction to Applied Mathematics, Martin Braun, 8:4, 1977, 231-232, reviewed by David Farnsworth
The Mathematics of the Elementary School, Edward G. Begle, 8:5, 1977, 281-282, reviewed by David E. Moxness
The Power of Relevant Mathematics: Basic Concepts, Kenneth L. Whipkey and Mary Nell Whipkey and Joanne Jarocki, 8:5, 1977, 282, reviewed by Jean B. Smith
Essentials of Precalculus Mathematics, Dennis T. Christy, 9:3, 1978, 167-168, reviewed by Jean Lane
The Ages of Mathematics(4 volumes), Michael Moffatt and Charles Flinn and Cynthia Conwell Cook and Peter D. Cook, 9:4, 1978, 222-224, reviewed by Frank Swetz
Understanding and Programming Computers, Samiha Mourad, 9:5, 1978, 288-289, reviewed by Mary Ann DeVincenzo
The Psychology of Learning Mathematics, Richard R. Skemp, 10:1, 1979, 44-45, reviewed by Shelba Jean Mormon
Analytic Trigonometry with Applications, Raymond A. Barnett, 10:1, 1979, 45-46, James C. Kropa
Analytic Geometry and the Calculus, 3rd ed., A. W. Goodman, 10:2, 1979, 123-124, reviewed by Donald C. Fuller
Why the Professor Can't Teach: Mathematics and the Dilemma of University Education, Morris Kline,10:3, 1979, 205-206, reviewed by Elaine Johnson Tatham
Mathematical Recreations and Essays, W. W. Rouse Ball and H. S. M. Coxeter, 10:4, 1979, 283-286,
reviewed by G. L. Alexanderson
Elementary Number Theory, David M. Burton, 10:4, 1979, 287-288, reviewed by Henry J. Ricardo
The Historical Roots of Elementary Mathematics, Lucas N. H. Bunt, 10:4, 1979, 288-289, reviewed by Barnabas Hughes
An Introduction to Mathematical Models in the Life and Social Sciences, Michael Olinick, 10:5, 1979, 355-356, reviewed by Kenneth E. Martin
What is the Name of This Book?, Raymond M. Smullyan, 11:1, 1980, 56-58, reviewed by Klaus Galda
Mathematical Morsels, Ross Honsberger, 11:2, 1980, 127-128, reviewed by Leon Bankoff
Mathematically Speaking, Morton Davis, 12:1, 1981, 58-59, reviewed by Marilyn Mays Gilchrist
Overcoming Math Anxiety, Sheila Tobias, 12:1, 1981, 59-61, reviewed by Henry Africk
Mind Over Math, Stanley Kogelman and Joseph Warren, 12:1, 5-61, reviewed by Henry Africk
Mathematics: The Loss of Certainty, Morris Kline, 12:2, 1981, 141-142, reviewed by R. P. Boas
The Mathematical Experience, Philip J. Davis and Reuben Hersh, 13:1, 1982, 72-73, reviewed by Henry S. Tropp
The Real World and Mathematics, Hugh Burkhardt, 14:1, 1983, 81-82, reviewed by H. O. Pollak
Great Moments in Mathematics (Before 1650 and After 1650), Howard Eves, 14:3, 1983, reviewed by R. P. Boas
Infinite Processes/Background to Analysis, A. Gardner, 14:4, 1983, 365-366, reviewed by G. L. Alexanderson
Maxima and Minima Without Calculus, Ivan Niven, 14:5, 1983, 415, reviewed by Lester H. Lange
Neyman—from life, Constance Reid, 15:1, 1984, 82-84, reviewed by Robert V. Hogg
The Fractal Geometry of Nature, Benoit B. Mandelbrot, 15:2, 1984, 175-177, reviewed by Don Chakerian
Mir Publishers' Series (Moscow), 15:3, 1984, 281-282, reviewed by Peter J. Hilton
Lectures in Geometry: Analytic Geometry, M. M. Postnikov, 15:3, 1984, 282-283, reviewed by Peter J. Hilton
The Future of College Mathematics, Anthony Ralston and Gail S. Young, eds., 15:5, 1984, 458-460, reviewed by Stephen B. Maurer
Geometry and Algebra in Ancient Civilizations, B. L. Van der Waerden, 16:2, 185, 169-170, reviewed by H. S. M. Coxeter
Selecta: Expository Writing, P. R. Halmos, 16:2, 1985, 171, reviewed by R. P. Boas
New Directions in Two-Year College Mathematics, Donald J. Albers, ed., 16:3, 1985, 242-247, reviewed by Philip Cheifetz
Superior Beings. If The Exist, How Would We Know?: Game-Theoretic Implications of Omniscience,
Omnipotence, Immortality, and Incomprehensibility, Steven J. Brams, 16:5, 1985, 430-431, reviewed by Thomas P. Faase
Problem-Solving Through Problems, Loren C. Larson, 16:5, 1985, 432, reviewed by G. L. Alexanderson
Mathematics: People, Problems, Results, Douglas M. Campbell and John C. Higgins, eds., 17:1, 1986, 108-109, reviewed by Philip J. Davis
Mathematical People—Profiles and Interviews, Donald J. Albers and G. L. Alexanderson, eds., 17:3, 1986, 275, reviewed by Ivan Niven
Mathematics and Optimal Form, Stefan Hildebrandt and Anthony Tromba, 18:1, 1987, 84-85, reviewed by Ross Honsberger
Mathematical Applications of Electronic Spreadsheets, Dean E. Arganbright, 18:2, 1987, 175, reviewed by Edward Page
Cross-Cultural Studies in Cognition and Mathematics, David F. Lancy, 18:3, 1987, 259-261, reviewed by John W. Berry
The Mathematical Description of Shape and Form, E. A. Lord and C. B. Wilson, 19:2, 1988, 201, reviewed by Thomas F. Banchoff
The Shape of Space, Jeffrey R. Weeks, 19:2, 1988, 202, reviewed by Thomas Banchoff
A Budget of Trisections, Underwood Dudley, 20:2, 1989, 180-181, reviewed by Doris Schattschneider
For All Practical Purposes: Introduction to Contemporary Mathematics, COMAP, 21:1, 1990, 78-80, reviewed by Martin E. Flashman
For All Practical Purposes: Introduction to Contemporary Mathematics, Module 1: Management Science, COMAP, 21:2, 1990, 164-165, reviewed by Martin E. Flashman
For All Practical Purposes: Introduction to Contemporary Mathematics, Modules 4 and 5: On Size and Shape and Computer Science, COMAP, 21:5, 1990, 436-437, reviewed by Martin E. Flashman
Chaos, Fractals, and Dynamics: Computer Experiments in Mathematics, Robert L. Devaney, 22:1, 1991, 82-84, reviewed by Thomas Scavo
Advanced Mathematical Thinking, Tommy Dreyfus, et al., 22:3, 1991, 268, reviewed by Annie Selden
Escalante, the Best Teacher in America, Jay Matheus, 23:2, 1992, 173-175, reviewed by Peter Ross
Ethnomathematics: A Multicultural View of Mathematical Ideas, Marcia Asher, 23:4, 1992, 353-355, reviewed by Frank Swetz
Not Knot (video), Geometry Center of the University of Minnesota, 24:2, 1993, 197-198, reviewed by Mark Kidwell
Solid Shape, Jan J. Koenderink, 24:3, 1993, 282-284, reviewed by Les Lange
The Search for E. T. Bell, Constance Reid, 25:3, 1994, 253-254, reviewed by Underwood Dudley
Essays in Humanistic Mathematics, Alvin White, ed., 26:2, 1995, 170, reviewed by Keith Devlin
Visual Mathematics, Michele Emmer, guest editor, 26:4, 1995, 341-342, reviewed by Harry Bixler
The Mathematical Traveler: Exploring the Grand History of Numbers, Calvin C. Clawson, 26:5, 1995, 417-418, reviewed by Frank Swetz
Shadows of the Mind, Roger Penrose, 27:2, 1996, 162-163, reviewed by Peter Hilton
How to Teach Mathematics: A Personal Perspective, Sten G. Krantz, 27:4, 1996, 324, reviewed by John A. Dossey
Crossroads in Mathematics: Standards for Introductory College Mathematics before Calculus, American Mathematical Association of Two-Year Colleges, 27:5, 1996, 416-417, reviewed by Donald W. Bushaw
Learn from the Masters, Frank Swetz; et al; editors, 28:3, 1997, 245-246, reviewed by William Dunham
Mathematics and Politics, Alan D. Taylor, 28:4, 1997, 328-329, reviewed by Philip D. Straffin
Indiscrete Thoughts, Gian-Carlo Rota, 29:1, 1998, 80, reviewed by Reuben Hersh
The Emergence of the American Mathematical Research Community; 1876-1900: J. J. Sylvester; Felix Klein and E. H. Moore, Karen Hunger Pashall and David E. Rowe, 29:3, 1998, 254-256, reviewed by Daniel E. Otero
Geometry Turned On, James King and Doris Schattschneider: Editors, 29:4, 1998, 343-344, reviewed by Jean Pedersen
The Queen of Mathematics, Jay R. Goldman, 29:5, 1998, 448, reviewed by Bruce Berndt
Women in Mathematics: The Addition of Difference, Claudia Henrion, 30:1, 1999, 77-80, reviewed by Anita E. Solow
Mathematics of the 19th Century, Edited by A. N. Kolmogorov and A. P. Yushkevich, 30:2, 1999, 159-161, reviewed by John Ewing
Keys to Infinity, Clifford A. Pickover, 30:3, 1999, 244-247, reviewed by Stan Kelly-Bootle
State Mathematics Standards, Ralph A. Raimi and Lawrence S. Braden, 30:5, 1999, 425-428, reviewed by Mark Saul
Calculus Made Easy, Silvanus P. Thompson and revised by Martin Gardner, 31:1, 2000, 77-79, reviewed by Carl Linderholm
Research in Collegiate Mathematics Education, Edited by Jim Kaput and Alan H. Schoenfeld and Ed Dubinsky, 31:2, 2000, 157-159, reviewed by Michael McDonald
A Beautiful Mind, Sylvia Nasar, 31:3, 2000, 240-244, reviewed by Peter Ross
Six books on numbers, Petr Beckmann, David Blatner, Robert Kaplan, Eli Maor, Paul Nahin, and Charles Seife, 32:2, 2001, 155-160, reviewed by Brian Blank
Two biographies of Erdos, Paul Hoffman and Bruce Schechter, 32:3, 2001, 232-237, reviewed by Steven G. Krantz
The Education of a Mathematician, Philip J. Davis, 32:4, 2001, 314-316, reviewed by Patricia Clark Kenschaft
The Shape of the Great Pyramid, Roger Herz-Fischler, 33:1, 2002, 69-70, reviewed by Frank Swetz
Stephen Smale: The Mathematician Who Broke the Dimension Barrier, Steve Batterson, 33:3, 2002, 256-259, reviewed by Peter Ross
Philolaus of Croton: Pythagorean and Presocratic, Carl A. Huffman, 34:4, 2003, 343-348, reviewed by Hardy Grant
Math Through the Ages: A Gentle History for Teachers and Others, William P. Berlinghoff and Fernando Q. Gouvea, 34:5, 2003, 423, reviewed by Frank Swetz
A Mathematician at the Ballpark, Ken Ross, 36:3, 2005, 255-256, reviewed by Keith Devlin
Count Down: Six Kids Vie for Glory at the World’s Toughest Math Competition, Steve Olson, 37:4, 2006, 328-331, reviewed by Peter Ross
PopCo by Scarlett Thomas, 38:3, 2007, 241-242, reviewed by Martin Gardner
King of Infinite Space/Donald Coxeter, the Man Who Saved Geometry, Siobhan Roberts, 38:5, 2007, 405-408, reviewed by Gerald L. Alexanderson
Beyond Crossroads-Implementing Mathematics Standards in the First Two Years of College, Richelle Blair, Ed., 39:4, 2008, 324-326, reviewed by Gregory S. Goodhart
Lewis Carroll in Numberland, Robin Wilson, 39:5, 2008, 419-421, reviewed by Gerald L. Alexanderson
The Pythagorean Theorem: A 4,000-Year History, Eli Maor, 40:1, 2009, 65-66, reviewed by Cecil Rousseau
Pythagoras: His Life, Teaching, and Influence, Christoph Riedweg, 40:1, 2009, 66-67, reviewed by Brigitte Servatius
Random Curves, Neal Koblitz, 40:2, 2009, 142-143, reviewed by Reuben Hersh
Pythagorean Crimes, Tefcros Michaelides, 40:3, 2009, 222-223, reviewed by Susan Jane Colley
Professor Stewart’s Cabinet of Mathematical Curiosities, Ian Stewart, 40:3, 2009, 223-225, reviewed by Mark Bollman
Julia Robinson and Hilbert’s Tenth Problem, produced and directed by George Csicsery, 40:4, 2009, 306-310, reviewed by Margaret A. M. Murray
Poincare’s Prize, George G. Szpiro, 40:4, 2009, 310-312, reviewed by Reuben Hersh
Strange Attractors, Poems of Love and Mathematics, edited by Sarah Glaz and JoAnne Growney, 40:5, 2009, 384-386, reviewed by Deborah Bacharach
Emmy Noether: The Mother of Modern Algebra, M. B. W. Tent, 41:1, 2010, 72-73, reviewed by Bhama Srinivasan
The Calculus of Friendship, Steven Strogatz, 41:1, 2010, 74-76, reviewed by Jeffrey Nunemacher
Pythagoras’ Revenge, by Arturo Sangalli, and The Housekeeper and the Professor, by Yoko Ogawa, 41:2, 2010, 170-172, reviewed by Susan Jane Colley

Present at the Creation. Pioneering Women in American Mathematics: The Pre-1940 PhD’s, by Judy Green and Jeanne LaDuke, 41:3, 2010, 248-251, reviewed by Margaret A. M. Murray

Gaming the Vote: Why Elections Aren’t Fair (and What We Can Do About It), William Poundstone, 41:4, 2010, 339-340, reviewed by Samuel Goldberg

The Unimaginable Mathematics of Borges’ Library of Babel, William Goldbloom Bloch, 41:5, 2010, 416-418, reviewed by Dan King

The Monty Hall Problem: The Remarkable Story of Math’s Most Contentious Brain Teaser, Jason Rosenhouse, 42:1, 2011, 71-74, reviewed by Edward J. Barbeau

Logical Labyrinths, Raymond M. Smullyan, 42:2, 2011, 159-160, reviewed by Kenneth Schilling

Crossing the Equal Sign, Marion Deutsche Cohen, 42:3, 2011, 241-243, reviewed by Annalisa Crannell

The Shape of Inner Space, Shing-Tung Yau and Steve Nadis, 43:2, 2012, 181-183, reviewed by David A. Cox