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But perhaps we will attain more surely the end that we propose, if we add here
an evaluation of the ravage of natural smallpox, & of that which one can gain in
procuring it artificially. —Daniel Bernoulli, 1760 [2, p. 4].

May 8, 1980, smallpox was declared dead. Over its brutal run this scourge took hun-
dreds of millions of lives—mostly children—and left billions more sickened, scarred,
or blinded. The global eradication of smallpox was a stunning achievement, a won-
drous, chilling, solemn triumph for medicine, mathematics, and the will of a world to
look after its own.

Three decades later, smallpox remains, however, the only human infectious disease
eradicated. How can we repeat this success? The science of mathematical epidemiol-
ogy has evolved into a rich discipline committed to this question. New mathematical
models are promisingly agile and robust, while twenty-first century computational fire-
power provides the leverage for their analysis. Moreover, the ranks of those working
in the field of mathematical epidemiology have swelled in the post-smallpox years.
Compartmental models, like the classic susceptible–infected–removed (SIR) model,
for example, are now a key component of many undergraduate differential equations
classes; articles written to help integrate the field into collegiate mathematics have ap-
peared in this JOURNAL [17, 18, 19], and elsewhere. (See also the article by Ronald
Mickens in this issue.)

How then can we best use new resources, interest, and commitment to address the
fundamental questions of mathematical epidemiology? In the classroom, perhaps the
place to begin is with a re-examination of the central ideas of the field through the lens
of some of their earliest incarnations.
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Daniel Bernoulli and variolation
Daniel Bernoulli (1700–1782) was not the first mathematical epidemiologist, but few
would dispute the magnitude of his contribution to the science. In his fifties, already
established as a respected physician, professor of anatomy, physiology, botany, physics
and mathematics, Bernoulli turned his attention to the problem of smallpox.

Smallpox (Variola major and its less virulent cousin, Variola minor) is a viral dis-
ease spread from person to person by face-to-face or direct contact with bodily fluids
or contaminated objects. Following a one- to two-week incubation period, infected
persons generally develop fevers, rashes, and eventually the pustules which give the
disease its name. Bernoulli estimated that approximately three quarters of all persons
alive in the eighteenth century had been infected with smallpox [5, p. 275]. It has been
subsequently noted in [1, p. 458] that “at times, in certain cities, the smallpox mortality
was not less than one-sixth of the birth rate.” Those infected either die, or recover with
immunity to the disease.

It is this immunity that made the idea of eradication feasible. “Artificial immunity”
against smallpox could be induced via inoculation—a process in Bernoulli’s time that
was achieved by variolation. Variolation involved deliberately infecting a patient with
the less deadly Variola minor strain of smallpox when he or she was in good health. In
eighteenth-century Europe this was typically done by rubbing material from a small-
pox pustule into a scratch on the patient’s hand or arm. As a result, the patient would
develop a localized, less deadly form of the virus. Under the best circumstances, he or
she would recover with acquired immunity to smallpox.

In [3] Bernoulli attempted to quantify the rewards of universal inoculation against
smallpox. He cited expected survival rates from an actuarial “life table” constructed
by Edmund Halley (discoverer of the eponymous comet). With this data as a baseline
survival curve for a population subject to smallpox mortality, Bernoulli calculated,
for each age from birth to twenty-five years, the fraction of each population never
before infected by smallpox (and hence susceptible to it). In his calculations, Bernoulli
assumed that the risk of contracting smallpox for any susceptible individual at any age
was constant: 12.5%. Further, he assumed an age-independent case fatality rate, also
12.5%. Tracking a hypothetical cohort of 1,300 newborns inoculated at birth, Bernoulli
was able to compare Halley’s baseline survival table with one for a population in which
smallpox had been completely eradicated. Table 1 shows that in the absence of death
due to smallpox, seventy-nine more newborns of Bernoulli’s hypothetical cohort of
1,300 would survive to see their twenty-fifth birthday. This calculation, he stated, could
also be viewed as an increase in life expectancy: from twenty-six years, seven months,
to twenty-nine years, nine months.

Bernoulli’s paper was first presented at the Royal Academy of Science in Paris in
1760, and published in 1766. In crafting his argument for universal inoculation against
smallpox, Bernoulli made a tremendous contribution to mathematical epidemiology;
he created what is thought to be the very first compartmental model of an infectious
disease. The definitive source on his mathematical approach is Dietz and Heesterbeek
[8]. Within their rich treatment, they translate Bernoulli’s model into the language of
modern mathematics, and express the dynamics between two disjoint, age-dependent
classes, the susceptible and the immune.

Bernoulli’s paper is notable for its decidedly political and economic tone; he argued
that a “Civil Life” begins at seventeen, “the age at which one is beginning to be useful
to the State” [5, p. 287], and points to an additional 25,000 civil lives produced by
the end of smallpox mortality. This is perhaps why, in contrast to more modern com-
partmental models, Bernoulli chose to use age, rather than time, as the independent
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Table 1. This Table enables us to see at a glance how many out of 1,300 children,
supposed born at the same time, would remain alive from year to year up to the age
of twenty-five, supposing them liable to smallpox; and how many would remain if
they were all free from this disease; with the comparison and the difference of the
two states—D.B. [5, pp. 276–278].

Ages by Natural state State without Difference
years with smallpox smallpox or gain

0 1,300 1,300 0
1 1,000 1,017.1 17.1
2 855 881.8 26.8
3 798 833.3 35.3
4 760 802.0 42.0
5 732 779.8 47.8
6 710 762.8 52.8
7 692 749.1 57.2
8 680 740.9 60.9
9 670 734.4 64.4
10 661 728.4 67.4
11 653 722.9 69.9
12 646 718.2 72.2
13 640 714.1 74.1
14 634 709.7 75.7
15 628 705.0 77.0
16 622 700.1 78.1
17 616 695.0 79.0
18 610 689.6 79.6
19 604 684.0 80.0
20 598 678.2 80.2
21 592 672.3 80.3
22 586 666.3 80.3
23 579 659.0 80.0
24 572 651.7 79.7
25 565 644.3 79.3

variable in his model. From [8, pp. 5–6], let u(a) represent the proportion of newborns
who will remain alive and susceptible (i.e., never infected) at age a, and w(a) the pro-
portion of those at age a, who are alive with immunity to smallpox acquired through
recovery from infection. In this model, the proportion of those actively infected is dis-
counted due to the relatively brief duration of the illness with respect to the length of
the average life.

At any age a, let λ(a) be the rate of infection of susceptibles; s(a) the rate of
recovery among the infected; and µ(a) the rate of death unrelated to smallpox. One
arrives at the differential equations:

du

da
= − [λ(a)+ µ(a)] u(a), (1)

and

dw

da
= λ(a)s(a)u(a)− µ(a)w(a). (2)

VOL. 43, NO. 2, MARCH 2012 THE COLLEGE MATHEMATICS JOURNAL 125



Since all newborns begin life in the susceptible class, we can take as initial conditions
u(0) = 1 and w(0) = 0. Equation (1) can be solved via an integrating factor δu(a):

δu(a) = exp

[∫ a

0
λ(τ)+ µ(τ) dτ

]
,

to give

u(a) = exp [−(3(a)+ M(a))], (3)

where

3(a) =
∫ a

0
λ(τ) dτ,

and

M(a) =
∫ a

0
µ(τ) dτ.

Substituting (3) into (2) with integrating factor

δw(a) = exp

[∫ a

0
µ(τ) dτ

]
gives

w(a) = exp [−M(a)]
∫ a

0
s(τ )λ(τ ) e−3(τ) dτ.

The probability of survival through age a is given then by the survival function l(a):

l(a) = u(a)+ w(a). (4)

Notice that we can model a population without smallpox via λ(a) = 0; the quantities
3(a) and w(a) vanish, returning the survival function l0(a) = exp [−M(a)].

In practice, of course, it is impossible to eliminate smallpox infectivity among the
susceptible class. Bernoulli’s analysis led him to propose, in effect, the opposite: uni-
versal inoculation of all susceptibles. Yet variolation was not without risk—this ‘arti-
ficial smallpox’ could be (unintentionally) contagious or fatal. In adjusting his model
to include the dangers of variolation, Bernoulli began with the following philosophical
question:

It is, then, only the risk which is attributed to inoculation which should keep
us undecided. . . ‘What would be the state of the human race if, at the price
of a certain number of victims, we could procure for it freedom from natural
smallpox?’ [5, p. 284]

This question was a difficult one for many, as the risks of inoculation were poorly
quantified at that time; variolation was alternately advocated and scorned in Bernoulli’s
day. In the American colonies, for example, George Washington’s troops were inocu-
lated before the siege of Boston in 1775, yet after the Revolutionary War, many Amer-
ican cities prohibited the practice entirely [1, p. 466]. Additional scientific advances
would be required to forward the cause of smallpox eradication.
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Milkmaids, cowpox and the birth of vaccine
Some thirty years after Bernoulli’s paper, an English doctor named Edward Jenner
became the first to document vaccination, a significant medical improvement to var-
iolation, scientifically. “Country lore” had long suggested that milkmaids were dis-
proportionately spared the scourge of smallpox, having gained immunity via exposure
to cowpox among the herd. In 1796, Jenner inoculated his gardener’s eight-year-old
son James Phipps, with material from a cowpox lesion on the hand of local milkmaid
Sarah Nelmes. Seven weeks later, Jenner “challenged” Phipps by injecting him with
variolated smallpox material; the injection site showed no immunological response,
demonstrating the boy’s newly acquired immunity. The experiment was repeated some
twenty times throughout Phipps’s life, again with no response [1]. While Jenner’s treat-
ment did not mark the first human cowpox inoculation, he was the first to document its
success scientifically. Jenner coined the term “vaccination” to describe the procedure,
from the Latin vacca for cow. The safer practice of vaccination eventually replaced
variolation, and its role is central in the discussion of the eradication of smallpox.

Modern compartmental models
Much has been written about compartmental epidemiological models. Those proposed
by Kermack and McKendrick in 1927 [14] are often credited as the first modern mod-
els of disease dynamics; their approach has proven both flexible and robust. Here we
describe briefly some of the features of these models insofar as they shed light on erad-
ication. For greater depth, consider the treatments found in [6, 9, 15] and elsewhere.

The path of many viral epidemics, including smallpox, can be described by count-
ing the fraction of a population in each of four disjoint subsets, or compartments:
susceptible, exposed (infected, but not yet infectious), infectious, and removed (that
is, vaccinated, recovered with immunity, or dead from the disease). Together, the four
compartments comprise the modern SEIR model; combining the exposed and infec-
tious compartments into a single infected compartment, we arrive at the even better
known SIR model (see Figure 1).

S E I R

S I R

Figure 1. The Susceptible–Exposed–Infectious–Removed (SEIR) model and the simpler Sus-
ceptible–Infected–Removed (SIR) model.

The SEIR and SIR models share much in terms of qualitative behavior, and for
ease of discussion we focus here on the SIR model. This model incorporates four
basic assumptions. While certainly not exact in describing any real epidemic, these
assumptions offer a mathematically useful, if naive, simplification of epidemiological
behavior. These assumptions are:

• The population in question is uniformly mixed; that is, every pair of individuals is
equally likely to interact;
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• with respect to a transmission rate β, the law of mass action holds: in a population
of size N , an average infected I makes contact sufficient to transmit infection to βN
susceptibles S per unit time;

• the length of the infectious period is exponentially distributed with a mean of α−1:∫
∞

0
αse−αs ds =

∫
∞

0
e−αs ds =

1

α
; and

• there is no entry into or out of the population with the possible exception of death
through disease.

This final assumption restricts the SIR model to the analysis of outbreaks which
occur over a short timespan so that births, and deaths unrelated to the disease, may be
disregarded. Fortunately for our analysis, smallpox is one such virus. Combining these
assumptions leads to the following differential system [14]:

d S

dt
= −βSI,

d I

dt
= βSI − α I, (5)

d R

dt
= α I.

Notice from the first two equations in (5) that the growth of the susceptible and
infected classes is independent of the size of the removed class R. We can therefore
simplify the system:

d S

dt
= −βSI, (6a)

d I

dt
= (βS − α) I, (6b)

and recover an expression for R once S and I are known. Dividing (6b) by (6a) gives

d I

d S
= −1+

α

βS
,

which we can integrate with respect to S:

I = −S +
α

β
ln S + C, (7)

obtaining a family of curves in S, I -solution space defined up to a constant of integra-
tion.

Equation (7) is special in that it observes its own type of conservation law, yielding
another way to describe the orbits of the epidemic curve. The quantity H(S, I ):

H(S(t), I (t)) = S(t)+ I (t)−
α

β
ln S(t)

is conserved in the sense that d
dt H(S, I ) is identically zero. From this it follows that

the solution curves to equation (7) always lie on the level curves H(S, I ) = k, for
some real k.
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Substituting S(0) = S0 and I (0) = I0 into equation (7) and eliminating the constant
of integration, we attain a final expression for the epidemic curve:

I (t) = −S(t)+ S0 + I0 +
α

β
ln

S(t)

S0
. (8)

Observe that the derivative d I
d S in equation (6b) vanishes at S = α/β; substituting

this into equation (8) immediately gives the peak of an epidemic at

Imax = S0 + I0 +
α

β

(
ln
α

β
− ln S0 − 1

)
.

Typical epidemic trajectories are given in Figures 2(a) and 2(b). The vertical line
S = α/β in Figure 2(a) is one component of the I -nullcline—the set of points (S, I ) at
which d I

dt = 0. To the right of this line, d I
dt > 0, as in the beginning of an outbreak. To

the left of S = α/β, d I
dt < 0; this downward pressure on the proportion of infected indi-

viduals is typical in a population which has already outlasted the worst of an epidemic.

.20

.40

.60

0 / 0.5 1.0

I

S

.20

.40

.60

0 0.5 1.0

I

S

(a) fixed paramter value α/β (b) fixed initial value (S0, I0)

Figure 2. Typical epidemic curves.

Control strategies, geometrically interpreted

The expression α

β
ln S(t)

S0
in equation (8) is nonpositive for all time. One strategy then

to control the size of an epidemic might be to increase α/β, either by reducing the
transmission parameter β, or increasing the infectious constant α. Each tactic makes
real-world sense. Reducing β, in effect, makes a disease less easily transmitted. Pre-
vention and education measures are pointed to directly by this as they attempt to make
the susceptible less susceptible. Increasing the α parameter, on the other hand, is equiv-
alent to reducing the mean infectious period α−1, corresponding to finding a treatment
that makes the infectious infectious for a shorter period of time.

Geometrically, any epidemiological tactic that leads to an increase in α/β can be
described as a rightward translation of the line S = α/β. See curves (a) and (b) in Fig-
ure 3. Any such rightward translation reduces the expected maximum number of new
infections. But while any increase in the parameter α/β is worth pursuing, epidemio-
logical realities make eradication via adjustments to α and β alone too great a hurdle.
Successful eradication requires simultaneously the reduction of the number of initially
susceptible individuals through immunization. This is the most effective strategy. See
curve (c) in Figure 3.

VOL. 43, NO. 2, MARCH 2012 THE COLLEGE MATHEMATICS JOURNAL 129



Imax (c)

Imax (b)

Imax (a)
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Figure 3. (a) epidemic curve in the absence of control strategies; (b) increase in α/β leads
to a reduction in the epidemic peak Imax; (c) further reduction in Imax by reducing the initial
susceptible population through immunization.

Herd immunity leads to eradication
Recall equation (6b):

d I

dt
= (βS − α) I,

and notice that d I
dt is strictly negative if βS

α
< 1. From equation (6a) we have that d S

dt is
strictly negative for all positive S and I , so that any initial condition satisfying βS0

α
< 1

will continue to satisfy βS
α
< 1, and hence, d I

dt < 0 for all forward time. The quantity
βS0
α

is called the basic reproduction number of the disease, and is typically denoted
R0. It determines, for a given disease and population, whether the introduction of a
small number of infected individuals will lead to an epidemic or not. When R0 > 1,
there is an epidemic. When R0 < 1, we say herd immunity has been attained, and the
outbreak quickly dies out. Smallpox is believed to have an R0 of about five [13, p.
612], although estimates vary wildly. In [10, p. 748], a search of the literature found
values for R0 in smallpox cited from as low as 1.5 to greater than 20. Such uncertainty
is part of the very fabric of mathematical biology.

Can a reproductive number be reduced five fold via immunization? For each
vaccine-preventable virus we can compute the required immunized population propor-
tion based on no more than the basic reproductive number of the disease. We denote
this required proportion p, the herd immunity threshold, and replace the basic repro-
ductive number R0 with an effective reproductive number R̃0 = (1− p) R0. Note that
at the herd immunity threshold (1− p) R0 < 1, or equivalently, p > 1− 1

R0
.

So, in order to eradicate a vaccine-preventable infectious disease, greater than
((1− 1

R0
) ∗ 100) percent of the population must be immunized. A simple calculation

shows that the smallpox virus has a herd immunity threshold near p = 0.8.
In 1967, the World Health Organization launched the Intensified Global Smallpox

Eradication Programme, undertaking exactly this lofty goal: vaccination of at least
eighty percent of the world’s at-risk population [7]. Millions were vaccinated over the
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subsequent decade. In 1977, a twenty-three-year-old cook and volunteer vaccinator,
Ali Maow Maalin, was diagnosed with Variola minor at the hospital in the town of
Merca, Somalia—the very last case of naturally occurring smallpox [16]. Maalin sub-
sequently recovered.

The next eradication?
With the lessons learned from the eradication of smallpox, surely it should be possible
to eradicate other human infectious diseases. Which? Most bacterial infections confer
at best limited immunity, and a standard SIR-type control strategy is inappropriate.
The simplest models have also proved inadequate to capture the complicated hetero-
geneity at work behind most sexually transmitted diseases. In addition, viruses with a
non-human reservoir or with a non-human transmission vector, operate with dynamic
complexities that makes eradication a tremendous challenge. Yet while every disease
folds its own complications into modeling efforts, several viral diseases may still prove
viable candidates for eradication. Table 2 gives the basic reproductive numbers R0 and
corresponding herd immunity thresholds p for several diseases [13, p. 612]. These per-
mit only very rough comparisons as precise methods for calculating R0 differ among
diseases and approximations for any one disease vary by region and/or time period.

Table 2. Approximate values for R0 and p for five viral infectious diseases.

Approximate Basic Approximate Herd
Disease Reproductive Number R0 Immunity Threshold p

Polio 5 .80

Rubella (German measles) 7 .86

Chicken pox 11 .91

Mumps 12 .92

Measles 16 .94

With a basic reproduction number similar to that of smallpox—roughly five—polio
is the most attractive target for eradication. Following the eradication of smallpox, the
Global Polio Eradication Initiative was launched in 1988 with the goal of greater than
eighty percent immunization. So far, the effort has made huge strides; the number of
paralytic cases of wild poliovirus worldwide has fallen by greater than ninety-nine per-
cent throughout the world [11]. Today polio remains endemic in only four countries:
Afghanistan, Pakistan, India and Nigeria, and, despite poverty, war and natural disas-
ter, the end may be in sight. In the calendar year 2010, the number of wild poliovirus
cases fell to 1,349 worldwide [12].
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Summary. Smallpox remains the only human disease ever eradicated. In this paper, we con-
sider the mathematics behind control strategies used in the effort to eradicate smallpox, from
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the life tables of Daniel Bernoulli, to the more modern susceptible-infected-removed (SIR)-
type compartmental models. In addition, we examine the mathematical feasibility of the erad-
ication of polio and certain other infectious diseases.
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