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Why are prime numbers popular?

For both mathematicians and the general public:

1. They are easy to define, familiar, fundamental, and seem
innocent enough.

2. You can easily and cheaply do your own experiments on them.

3. There are many old famous unsolved problems concerning
primes including

a) The twin prime conjecture

b) The Goldbach conjecture

c) The Riemann Hypothesis - Also includes a $ 1,000,000 reward.
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What do Prime Numbers Give Back to Those Who Study
Them

For mathematicians:

1. Lots of hard problems, amazing proofs, and no danger that the
field will ever get killed off.

2. A large literature, long history, interesting personalities to enjoy.

3. Applications to many areas.

4. Maybe not achieve humility but get to experience plenty of
humiliation.

5. A job
Often for teaching calculus or math service courses.
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What do Prime Numbers Give Back to Those Who Study
Them

For the Amateur trying to prove the Twin Prime Conjecture or
other Famous Problems:

Typical progression:

1. Pursue fame and fail to achieve it – (with a few exceptions
which aren’t really exceptions.)

2. Discover patterns that may be interesting but prove nothing.

3. Waste their time and the time of innocent bystanders.

4. Learn nothing and become crackpots.
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What do Prime Numbers Give Back to Those Who Study
Them

For the Amateur interested in studying primes without expecting
proofs or fame:

1. They can have fun and provide useful ideas, computations,
questions, conjectures

2. But they have a hard time publishing their work.
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Why do Primes Make Fools Out of All of Us?

1. Primes often exhibit their properties beyond any doubt
empirically but we have no way to prove these properies hold.

2. Primes often hide their properties so that you need to find one
needle in a universe of haystacks.

Example: Does pn+1 − pn sometimes get > log2 pn?

3. Unbelievably hard properties of primes are sometimes not that
hard to prove.

Example: Can you find 1000 consecutive primes which end with
the digits 876543211111 ? Yes (Daniel Shiu 2000)

4. Sometimes no calculation helps answer a simple question about
primes. Example: Jumping Champion Problem
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1. Primes Often Do Not Hide Their True Nature

The 25 prime numbers less than 100:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,

71, 73, 79, 83, 89, 97

The first 10 primes starting at a billion:

1000000007, 1000000009, 1000000021, 1000000033, 1000000087,

1000000093, 1000000097, 1000000103, 1000000123, 1000000181

You never run out because if p1, p2, p3, . . . pk are k primes, then let

N = P + 1, P = p1p2p3 · · · pk

and N will have all new prime factors since

N

p1
= p2p3 · · · pk +

1

p1
is not an integer.
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Let
π(x) = the number of primes ≤ x =

∑
p≤x

1,

where p always denotes a prime.

20 40 60 80 100

5

10

15

20

25

Figure: π(x) = the number of primes ≤ x for 0 ≤ x ≤ 100
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Figure: π(x) for 0 ≤ x ≤ 1000
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200 000 400 000 600 000 800 000 1 ´ 106
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Figure: π(x) for 0 ≤ x ≤ 106
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This suggests the Prime Number Theorem:

π(x) ∼ x

log x
, i. e. lim

x→∞

π(x)
x

log x

= 1, log x = loge x = ln x .

200 000 400 000 600 000 800 000 1 ´ 106

20 000

40 000

60 000

80 000

Figure: π(x) and x
log x for 1 ≤ x ≤ 106
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A better approximation for π(x) is the Cramér Model:

Probability( n is a prime) = 1
log n

Thus

π(x) ∼
∑
n≤x

1

log n
∼ li(x),

where

li(x) =

∫ x

2

1

log t
dt

is called the logarithmic integral.
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1.02 ´ 106 1.04 ´ 106 1.06 ´ 106 1.08 ´ 106 1.10 ´ 106

80 000

81 000

82 000

83 000

84 000

85 000

Figure: π(x) and li(x) for 106 ≤ x ≤ 106 + 105
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Twin Primes

Now consider the sequence

3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, 59, 61, 71, 73, 101, 103, . . . .

These are pairs of primes that are two apart: the sequence of twin
primes.
Here are the twin primes starting at a billion:

1000000007, 1000000009, 1000000409, 1000000411, 1000000931,

1000000933, 1000001447, 1000001449, 1000001789, 1000001791,

1000001801, 1000001803.
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Let
π2(x) = the number of pairs of twin primes ≤ x .

20 40 60 80 100

2

4
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8

Figure: π2(x) for 0 ≤ x ≤ 100
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Figure: π2(x) for 0 ≤ x ≤ 1000
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Figure: π2(x) for 0 ≤ x ≤ 105
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As for the Prime Number Theorem, we conjecture

π2(x) ∼ (1.3203 . . .)

∫ x

2

dt

(log t)2
.

200000 400000 600000 800000
1·10

6

2000

4000

6000

8000

Figure: For 0 ≤ x ≤ 106
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Why 1.3203 . . .?

What is the probability that n and n + 2 are both prime? The
Cramér model would suggest that:

The chance that n is prime is 1/ log n.

The chance that n + 2 is prime is 1/ log(n + 2) ∼ 1/ log n.

Therefore by independence the probability of both being prime is
1/(log n)2. Thus

π2(x) ∼
∫ x

2

1

(log t)2
dt
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The problem with the Cramér’s model is that it fails to take into
account divisibility. Thus, for the primes p > 2, the probability
that p + 1 is prime is not 1/ log(p + 1) as suggested by the Cramér
model but rather 0 since p + 1 is even.

Further p + 2 is necessarily odd; therefore it is twice as likely to be
prime as a random number. The conclusion is that n and n + 2
being primes are not independent events.
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Correction: We need both n and n + 2 to not be divisible by
2, 3, 5, 7, 11, · · · .

The chance that two random numbers are both odd is
(1/2)(1/2) = 1/4, but, since n being odd forces n + 2 to be odd,
the chance that n and n + 2 are both odd is 1/2, and thus twice as
large as random.

The chance that two random numbers are both not divisible by 3 is
(2/3)(2/3) = 4/9, but the chance that n and n + 2 are not both
divisible by 3 is 1/3 since this occurs if and only if n is congruent
to 2 modulo 3.
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In general, the probability that two random numbers are not
divisible by p > 2 is (1− 1/p)2, while the probability that both n
and n + 2 are not divisible by p is the slightly smaller 1− 2/p since
n must miss the two residue classes 0 and −2 modulo p.

Therefore, the correction factor to the Cramér model for lack of
independence is 2 if p = 2, and for p ≥ 3 is(

1− 2

p

)(
1− 1

p

)−2

=

((
1− 1

p

)2

− 1

p2

)(
1− 1

p

)−2

=

(
1− 1

(p − 1)2

)
.

We conclude that the correct approximation for twin primes should
be

π2(x) ∼ 2
∏
p>2

(
1− 1

(p − 1)2

)
x

(log x)2
.
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Hardy-Littlewood Conjecture

Let H = {h1, h2, . . . , hk} be a set of k distinct integers, and
denote by π(x ;H) the number of positive integers n ≤ x for which
n + h1, n + h2, . . . , n + hk are all primes.

In 1923, Hardy and Littlewood conjectured for x →∞

π(x ;H) ∼ S(H)lik(x),

where

lik(x) =

∫ x

2

dt

(log t)k
,

and S(H) is the singular series defined by the product over all
primes p

S(H) =
∏
p

(
1− 1

p

)−k (
1− νH(p)

p

)
,

where νH(p) is the number of distinct residue classes occupied by
the elements of H. We assume S(H) 6= 0 here.
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The Jumping Champion Problem

In the 1977-1978 volume of Journal of Recreational Mathematics,
H. Nelson proposed Problem 654:

“Find the most probable difference between consecutive
primes.”

Editor’s Comment in the 1978-1979 volume:

“No solution has been received, though there has
been a good deal of evidence presented pointing to the
reasonable conjecture that there is no most probable
difference between consecutive primes. On the other
hand, there is also some evidence that 6 is the most
probable such difference . . . However, there seems to be
good reason to expect that 30 will eventually replace 6 as
the most probable difference and still later 210, 2310,
30030, etc. will have their day.”
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Nelson was motivated to ask his question by a statement in
Popular Computing Magazine that 6 appears to be the most
common distance between primes.

In 1980 P. Erdős and E. G. Straus showed, on the assumption of
the truth of the Hardy-Littlewood prime pair conjecture that there
is no most likely difference because the most likely difference grows
as one considers larger and larger numbers.

Odlyzko started talking about the problem in the early 90’s. In
1993 J. H. Conway invented the term jumping champion to refer
to the most frequently occurring difference between consecutive
primes less than or equal to x .
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N(x , d) and N∗(x)

Let pn denote the nth prime. Let

N(x , d) :=
∑
pn≤x

pn−pn−1=d

1

N∗(x) := max
d

N(x , d).

The set D∗(x) of jumping champions for primes ≤ x is given by

D∗(x) := {d∗ : N(x , d∗) = N∗(x)}.
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Example

x = 100

Primes ≤ x

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,

61, 67, 71, 73, 79, 83, 89, 97

Difference:

1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8

N(100, 1) = 1,N(100, 2) = 8,N(100, 4) = 7,

N(100, 6) = 7,N(100, 8) = 1.

N∗(100) = 8, d∗ = 2
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Table 1 below summarizes everything we presently know about
jumping champions less than or equal to x .

Table: Known jumping champions for small x .

D∗(x) Smallest Prime Largest Known Prime
Occurrence of x Occurrence of x

{1} 3 3
{1, 2} 5 5
{2} 7 433
{2, 4} 101 173
{4} 131 541

{2, 4, 6} 179 487
{2, 6} 379 463
{6} 389 > 1015

{4, 6} 547 941
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In 1999 A. Odlyzko, M. Rubinstein, and M. Wolf made the
following conjecture.

Conjecture The jumping champions greater than 1 are 4 and the
primorials 2, 6, 30, 210, 2310, . . ..

Their concern was finding the transition between 6 and 30, which
they estimated to be at 1.7427 · 1035. (30 transitions to 210 at
about 10425 ?)
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Theorem(Goldston-Ledoan) Assume that the Hardy-Littlewood
prime pair and prime triple conjecture hold. Then the Conjecture
holds for sufficiently large x .

However nothing has actually been proved about Jumping
Champions. For all we know 2 is the jumping champion for all
large x instead of the biggest loser.
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Recent Progress on Bounded Gaps Between Primes

In April 2013 Yitang Zhang stunned the math world by proving for
the first time there were infinitely many consecutive primes
differing by a bound amount, namely 70,000,000.

By August Polymath 8a project reduced this to 4680.

In November 2013 James Maynard found a different method that
obtained 600, and also showed you had bounded differences
between any number of primes. Terry Tao independently
discovered the same method at the same time.

The Polymath 8b project now had obtained obtained 246.
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The GPY Method (2005)

The goal of this method is to show there are two or more primes in
the tuple

(n + h1, n + h2, . . . , n + hk)

for infinitely many n, for some H = {h1, h2, . . . , hk} This is
equivalent to showing

(n + h1)(n + h2) · · · (n + hk)

has < 2k − 1 prime factors for infinitely many n.

Let

an :=
1

(k + `)!

∑
d |(n+h1)···(n+hk )

d≤R

µ(d)(log(R/d))k+`

Then an is usually very small except when (n + h1) · · · (n + hk) has
few prime factors.
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For R < N1/4−ε we can work out asymptotically both

S :=
∑
n≤N

(an)
2

and
Si (P) :=

∑
n≤N

1P(n + hi )(an)
2

Conditionally if primes are well distributed in arithmetic
progressions, then we can take R < N1/2−ε. This then gives that
for k = 7

Si (P) >
1

k
S

which proves there are two primes closer than 20 apart infinitely
often. Unconditionally with R = N1/4−ε you get two primes closer
than ε log pn:

lim inf
n→∞

(
pn+1 − pn

log pn

)
= 0
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The GPY Method in a Nutshell

We consider the weight function

ΛR(n,Hk , `) =
1

(k + `)!

∑
d |(n+h1)(n+h2)···(n+hk )

d≤R

µ(d) log(R/d)k+`

Here the parameter ` gives needed freedom. This weight is large
for n where the numbers in the set or tuple
Hk = {n + h1, n + h2, . . . , n + hk} are primes or only have a few
prime factors, and is small otherwise.

More generally

ΛR(n,Hk ,P) =
∑

d |(n+h1)(n+h2)···(n+hk )
d≤R

µ(d)P(log(R/d)),

where P(x) =
∑

j≥k ajx
j .
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Detection of Primes

To detect primes among the numbers in
Hk = {n + h1, n + h2, . . . , n + hk} for N < n ≤ 2N consider

S(Hk ,m) =
2N∑

n=N+1

(
k∑

i=1

1p(n + hi )−m

)
Λ(n,Hk ,P)2.

If there is a Hk with S(Hk , 1) > 0 then there must exist some n
for which two of the n + hi are both prime.

If there is a Hk with S(Hk ,m) > 0 then there must exist some n
for which m + 1 of the n + hi are all prime.
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This is the GPY method, together with several different techniques

for evaluating S(m) asymptotically when R < N
1
4 (or conditional

R < N
1
2
−ε on the Elliott-Halberstam Conjecture.
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What was needed for the Breakthroughs in 2013-14

1. You have to not get fooled into believing that GPY is nearly
optimal and 1/2 is an impossible barrier to break.

2. You have to work on bounded gaps between primes, not give up
working on bounded gaps between primes.
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What was Mathematically needed for the Breakthroughs
in 2013-14

The GPY method never worked unconditionally to find Bounded
Gaps between Primes. Zhang showed that one could restrict the
GPY method to divisors without large prime divisors, and then
improve the level of distribution results for primes in arithmetic
progressions with modulus these numbers.

In late 2013 and 2014 James Maynard and independently Terry
Tao found that using more general weights of the form

ΛR(n,Hk ,F ) =
∑

di |(n+hi ),1≤i≤k
d1d2...dk≤R

µ(d1)µ(d2) · · ·µ(dk)Λd1,d2,...,dk

where the Λ’s are complicated smooth weights in the GPY Method
proves not just Bounded Gaps Between Primes exist, but also
Bound Gaps between any fixed number of primes!
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Gaps between Primes. Zhang showed that one could restrict the
GPY method to divisors without large prime divisors, and then
improve the level of distribution results for primes in arithmetic
progressions with modulus these numbers.

In late 2013 and 2014 James Maynard and independently Terry
Tao found that using more general weights of the form

ΛR(n,Hk ,F ) =
∑

di |(n+hi ),1≤i≤k
d1d2...dk≤R

µ(d1)µ(d2) · · ·µ(dk)Λd1,d2,...,dk
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proves not just Bounded Gaps Between Primes exist, but also
Bound Gaps between any fixed number of primes!

Dan Goldston Prime Numbers: Progress and Pitfalls



What was Mathematically needed for the Breakthroughs
in 2013-14

The GPY method never worked unconditionally to find Bounded
Gaps between Primes. Zhang showed that one could restrict the
GPY method to divisors without large prime divisors, and then
improve the level of distribution results for primes in arithmetic
progressions with modulus these numbers.

In late 2013 and 2014 James Maynard and independently Terry
Tao found that using more general weights of the form

ΛR(n,Hk ,F ) =
∑

di |(n+hi ),1≤i≤k
d1d2...dk≤R

µ(d1)µ(d2) · · ·µ(dk)Λd1,d2,...,dk

where the Λ’s are complicated smooth weights in the GPY Method
proves not just Bounded Gaps Between Primes exist, but also
Bound Gaps between any fixed number of primes!

Dan Goldston Prime Numbers: Progress and Pitfalls



The Sieve of Eratosthenes: It’s Bad for Proving Anything

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30

Get prime 2, remove multiples of 2

1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29

Get prime 3, remove multiples of 3

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29

Get prime 5, remove multiples

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Dan Goldston Prime Numbers: Progress and Pitfalls



How much is left by the sieve?

bxc −
⌊x

2

⌋
−
⌊x

3

⌋
+
⌊x

6

⌋
. . .

The proportion is actually(
1− 1

2

)(
1− 1

3

)(
1− 1

5

)
· · ·
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The Sieve of Eratosthenes: It’s Bad for Proving Anything

Here is how we do this in equations: Let µ(1) = 1, µ(p) = −1,
µ(p2) = 0 and extend µ(n) multiplicatively, so that
µ(p1p2p3 · · · pr ) = (−1)r . Then you can check that

∑
d |n

µ(d) =

{
1, if n = 1,

0, if n 6= 1.

Now, let P(y) =
∏

p≤y p, Then

π(x)− π(
√

x) + 1 =
∑
n≤x

(n,P(
√

x))=1

1.

Next ∑
n≤x

(n,P(
√

x))=1

1 =
∑
n≤x

 ∑
d |(n,P(

√
x))

µ(d)


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Since d |(n,P(
√

x)) is equivalent to d |n and d |P(
√

x), this is

=
∑

d |P(
√

x)

µ(d)
∑
n≤x
d |n

1 =
∑

d |P(
√

x)

µ(d)
⌊ x

d

⌋

= x
∑

d |P(
√

x)

µ(d)

d
−

∑
d |P(

√
x)

µ(d)
{ x

d

}

= x
∏

p≤
√

x

(
1− 1

p

)
−

∑
d |P(

√
x)

µ(d)
{ x

d

}
.

By Merten’s theorem the first term is ∼ 2e−γ x
log x , Hence

π(x)− π(
√

x) + 1 ∼ 2e−γ x

log x
−

∑
d |P(

√
x)

µ(d)
{ x

d

}
.

Thus we get prime number theorem wrong!
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Modern Sieve Methods

The number of d |P(
√

x) is ∼ e2
√

x/ log x which is huge. To keep
this from swamping the main term we would need to replace

√
x

by ≤ c(log x) which is tiny.

Solution: Try to get upper and lower bounds only:∑
d |n

αd ≤
∑
d |n

µ(d) ≤
∑
d |n

βd

Brun chose αd and βd to be µ(d) or 0 depending on if d has ≤ r
distinct prime factors, and whether r is odd or even. In 1947
Selberg made a brillant choose for βd : Let λ1 = 1, λd arbitrary
real, then ∑

d |n

µ(d) ≤

∑
d |n

λd

2

.

Now choose λd = 0 for d > z , and optimize.
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