The Yueh-Gin Gung and Charles Y. Hu Award for Distinguished Service to Mathematics (first presented in 1990) consists of a cash prize of $4000, a citation, and the recognition of the American mathematical community. As the endowed successor to the MAA Award for Distinguished Service to Mathematics (first presented in 1962), this award is intended to be the most prestigious award for service offered by the Association. It honors distinguished contributions to mathematics and mathematical education—in one particular aspect or many, and in a short period or over a career.

The endowment that makes the award possible was initiated by a contribution from the late Dr. Charles Y. Hu and his wife Yueh-Gin Gung. It is worth noting that Charles Y. Hu and Yueh-Gin Gung were not mathematicians. Hu was a professor of geography at the University of Maryland; Gung, a librarian at the University of Chicago. In making their generous contribution they said, “We always have high regard and great respect for the intellectual agility and high quality of mind of mathematicians and consider mathematics as the most vital field of study in the technological age we are living in.”

The MAA presents the Gung-Hu Award for 2007 to Dr. Lee Lorch, professor emeritus at York University in Canada. Dr. Lorch has been a remarkable teacher of mathematics over the years, recruiting and inspiring many students to enter the field of mathematics. He has been especially able at guiding women and minority students through the Ph.D. Among those he guided were Etta Falconer, Gloria Hewitt, Vivienne Malone Mayes, and Charles Costley.

During the organizational meeting of the Association for Women in Mathematics, Dr. Lorch gave sage advice about the value of inclusiveness in supporting effective advocacy. He is responsible for the appearance of the preposition “for” in place of the initially proposed “of” in the name of the AWM. According to the January 1992 issue of the AWM Newsletter, “Lee has been a thorn in the side of the mathematical establishment. But then, to its credit, so has AWM. Lorch pushed tirelessly on issues of special concern to women and minority mathematicians. That mathematics has been more receptive to women and minorities owes much to Lee.”

Throughout his career, Dr. Lorch has been a vocal advocate and energetic worker for human rights and educational opportunities. He advocated policies to ensure access by all mathematicians to official activities at meetings of the AMS and MAA. His advocacy has led to greater participation by women and minorities in these organizations. Dr. Lorch’s contributions in this area were cited by the City College, City University of New York, when it awarded him an honorary Doctorate of Humane Letters for his

“The distinguished contributions in the field of mathematics and...lifelong dedication to human rights, justice, and equality...[for his] major contributions to the fields of Fourier analysis and real analysis...[and for his] equally profound impact on the lives of minority and women mathematicians who have benefited from [his] efforts to expand opportunities within the American mathematical community.”
Dr. Lorch’s mathematical research has been in the area of analysis, differential equations, and special functions. His research, service, and teaching have been recognized in many ways, including a fellowship in the Royal Society of Canada, appointments to committees of the Research Council of Canada, and election to the Council of the American Mathematical Society and to similar offices in the Canadian Mathematical Society and the Royal Society of Canada.

BIOGRAPHICAL NOTE. Lee Lorch was born in New York in 1915. He graduated from Cornell University in 1935 and earned his Ph.D. from the University of Cincinnati in 1941. His teaching positions have included the City College of New York, Pennsylvania State University, Fisk University, Philander Smith College, the University of Alberta, and York University. He was at York University from 1968 until his retirement in 1985. He remains active in the mathematical community.

Infinite Nested Radicals: A Mathematical Poem

\[
\sqrt{2 \times 1 + \sqrt{2 \times 1 + \cdots}} = \sqrt{2 + 1 \times \sqrt{2 + 1 \times \cdots}} \\
\sqrt[3]{3 \times 8 + \sqrt[3]{3 \times 8 + \cdots}} = \sqrt[3]{3 + 8 \times \sqrt[3]{3 + 8 \times \cdots}} \\
\sqrt[4]{4 \times 63 + \sqrt[4]{4 \times 63 + \cdots}} = \sqrt[4]{4 + 63 \times \sqrt[4]{4 + 63 \times \cdots}} \\
\sqrt[5]{5 \times 624 + \sqrt[5]{5 \times 624 + \cdots}} = \sqrt[5]{5 + 624 \times \sqrt[5]{5 + 624 \times \cdots}} \\
\sqrt[6]{6 \times 7775 + \sqrt[6]{6 \times 7775 + \cdots}} = \sqrt[6]{6 + 7775 \times \sqrt[6]{6 + 7775 \times \cdots}} \\
\sqrt[7]{7 \times 117648 + \sqrt[7]{7 \times 117648 + \cdots}} = \sqrt[7]{7 + 117648 \times \sqrt[7]{7 + 117648 \times \cdots}} \\
\sqrt[8]{8 \times 2097151 + \sqrt[8]{8 \times 2097151 + \cdots}} = \sqrt[8]{8 + 2097151 \times \sqrt[8]{8 + 2097151 \times \cdots}} \\
\sqrt[9]{9 \times 43046720 + \sqrt[9]{9 \times 43046720 + \cdots}} = \sqrt[9]{9 + 43046720 \times \sqrt[9]{9 + 43046720 \times \cdots}} \\
\sqrt[10]{10 \times 99999999 + \sqrt[10]{10 \times 99999999 + \cdots}} = \sqrt[10]{10 + 99999999 \times \sqrt[10]{10 + 99999999 \times \cdots}}

—Submitted by Teik-Cheng Lim,
National University of Singapore, Singapore

© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 114