
  Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American 
Mathematical Monthly.

http://www.jstor.org

An Elegant Continued Fraction for π 
Author(s): L. J. Lange 
Source:   The American Mathematical Monthly, Vol. 106, No. 5 (May, 1999), pp. 456-458
Published by:  Mathematical Association of America
Stable URL:  http://www.jstor.org/stable/2589152
Accessed: 09-03-2015 18:16 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/
 info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content 
in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. 
For more information about JSTOR, please contact support@jstor.org.

This content downloaded from 158.135.191.86 on Mon, 09 Mar 2015 18:16:37 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org
http://www.jstor.org/action/showPublisher?publisherCode=maa
http://www.jstor.org/stable/2589152
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


An Elegant Continued Fraction for rT 

L. J. Lange 

The regular continued fraction for 7r begins as follows [3, p. 23]: 
1 1 1 1 1 1 1 1 1 1 1 1 
7 + 15 + 1 + 292 + 1 + 1 + I + 2 + I + 3 + 1 + 14+ (1) 

There is no known regularity to the partial denominators in (1) and the only known 
means to obtain them is to compute them one-by-one from a known decimal 
approximation for 7-, Lord Brouncker (1620-1686), the first president of the Royal 
Society of London, gave (without proof around 1659) the first recorded infinite 
continued fraction [3, p. 2]: 

4 12 32 52 72 92 112 132 

1 2 + 2 + 2 + 2 +2 2 + 2 + (2) 
In 1775, according to [1, p. 131], Euler gave a proof of the validity of (2) by showing 
that 

x 12x2 32x2 52x2 
arctan x = - ___3 _ __ _ 

1 + 3 -x2 + 5- 3X2 + 7- 5x2 + 

is equivalent to the power series representation 

CO(-1)x21 x1< <1 arctan x = E 2n + 1 
n=O 2+ 

Brouncker's result can be obtained by setting x = 1 in (3). 
The following continued fraction expansion for the principal branch of the 

analytic function arctan z, valid for all z in the complex plane not on the imaginary 
axis from i to +ioo and from -i to -ioo, is well known [3, p. 202]: 

z 12z2 22z2 32z2 42z2 
arctan z =-1 + 3 + 5 + 7 + 9 +f . (4) 

Setting z = 1 in (4) leads to 

X- 1 12 22 32 42 
=_+3+5+7+9 " _(5) 

4 1 + 3 + 5 + 7 + 9 + 

Although they are not formulas for 7- itself, the classical continued fractions (2) 
and (5) are attractive because of the simple expressions for all of their partial 
numerators and denominators. Our contribution is the following continued frac- 
tion for 7- itself, whose partial numerators and denominators are easily described 
and remembered. Though the tools to derive it have long been available, to our 
knowledge, this formula has not yet appeared in the literature. 

Theorem 1. 

12 32 52 7 2 92 112 132 
3 + ~ ~ ~ 6 6~(6) 

6 + 6 + 6 + 6 + 6 + 6 + 6 + 
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Proof: We think it is of interest to show in several different ways that (6) is valid. 
Perron [5, p. 35] gives the following representation, which he attributes to Stieltjes: 

(x +3 +n( x +3- n 
12-n2 32-n2 52-n2 r 4 J 4 J 

2x + 2x + 2x + (x + 1 + n x + 1 - n) 

(7) 

where x > 0 and 1 > n2 > -oo. Setting n = 0 in (7) gives 

x + 3 x + 3 

12 3 2 52 F(x43F(x+4 
2x + 2x + 2x + =4 (x4+1)( x 1) (8) 

which is a formula also obtained by Ramanujan and Preece according to Perron 
[5, p. 36]. To obtain (6) we have only to substitute x = 3 in (8) and employ the 
properties F(1/2) = ;TW, F(1) = 1, and F(x + 1) = xF(x) of the F-function. It is 
surprising that apparently Ramanujan either was not aware of, or else did not 
choose to record this result. To show how we really arrived at (6) the first time, we 
need the following result [5, Satz 1.13, p. 28] relating to what are known as 
Bauer-Muir transformations of continued fractions; see [4]. 

Theorem 2. (a) If both continued fractions 
al a2 a3 

bo+ b + b+ + and 
1 2 3 

al a2 

b2 + r2 - ro- b3 + r3 -r- b19 + 1 

where 'p, = a, - r_ 1(b, + rn), have positive elements and if both converge, then they 
have the same value. (b) If the first continued fraction has positive elements and it 
converges and if r, 2 0 from a certain v on, then the second continued fraction also 
converges and it has the same value as the first. 

The second continued fraction in Theorem 2 is called the Bauer-Muir transform of 
the first one. On page 35 of [5] is the expansion 

7TZ - 12-z2 32 - z2 52 - z2 72 - z2 
z cot - =1 + 

4 2 + 2 + 2 + 2 + ... (9) 

which is valid for all complex z. If we apply Theorem 2 to this continued fraction 
with z = x E (-1, 1) and 

a, =(2n-1)2-x2, b = 2 rn = 2n-1, (p,1 = 4-x2 

we obtain 

77X 22 -x2 12 -x2 32 2x2 52 -x2 72 -X2 
x cot - = 0 

4 3 + 6 + 6 + 6 + 6 + (1) 
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Taking the limit of both sides of (9) as z -> 0 gives Brounker's result (2), and 
taking the limit of both sides of (10) as x -O 0 leads to (6) upon taking reciprocals. 

It would be nice if the speed of convergence of (6) was in accordance with its 
beauty, but unfortunately this is not the case. In support of this slowness assertion 
the 100th approximant of (6) rounds to 3.14159241, whereas both 7- and the 4th 
approximant of its regular continued fraction expansion (1) round to 3.14159265. If 
the expansions (2) and (5) are used to approximate iT, the 11th approximant of (5) 
gives 3.14159265 as an approximation, but Brouncker's continued fraction (2) 
converges so slowly that its 1000th approximant leads to the poor estimate of 
3.14259165 for iT. As another source of information about i-, we recommend to 
the reader the recent book [2]. 

Addendum:. The formula (6) was used as a logo for the conference on continued 
fractions that was held at the University of Missouri-Columbia in late May 1998. 
At this conference D. Bowman of the University of Illinois mentioned in a 
personal conversation that he had another approach to deriving (6). Bowman starts 
with the result 

____3_ 
0 ( )k-1 1 \0k-1( 1 4 

_ =E ( )=-_E (_k-1( + -__ ) 4 k=1 2k(2k + 1)(2k + 2) 4 k-ik + 1 2k + 

(11) 

and then makes use of the fact that for ak # 0 the series l IY- /ak and the 
continued fraction 

2a a2 a2 (12) 
al + a2 - a, + a3 -a2 + a4 - a3 + 

are equivalent, that is, the nth partial sum of the series and the nth approximant 
of the continued fraction are equal. This connection between series and continued 
fractions can be derived easily from a result of Euler (see [5, p. 17] or [3, p. 37]), or 
it can be proved directly by induction. After replacing ak by 2k(2k + 1)(2k + 2) in 
(12) and calculating ak+l - ak = 24(k + 1)2, we are led to the representation (6) 
through a simple cancellation process that preserves the equivalence of the 
continued fractions involved. Bowman mentioned that his approach to verifying (6) 
gives as a welcome by-product some immediate truncation error information. 
Because of the series-continued fraction equivalence and the alternating nature of 
the first series in (11), we have I 7T-fnI < 1/((n + 1)(n + 2)(2n + 3)), where fn 
is the nth approximant of (6). 
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