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Stanley Rabinowitz and Stan Wagon 
- Dl I DW - 1| .11 1 _ . 111 | .. 1. . I 1 1 .. 11111111 __ 

Digits 1 2 3 4 5 6 7 8 9 10 11 12 
of X 3 s 7 9 11 13 15 17 19 21 23 2s 

hitiMim 2 2 2 2 2 2 2 2 2 2 2 2 2 

x 10 20 20 20 20 20 t20 20 20 20 N 20 20 20 
Carry 3 F;s < s *So i;2- s t- *s +,at*'s .+> H -s ¢* * . +9- X 83 s .* i s e >* = 

*30>3 liS\> t gi iX8 ..MQ>.\\2RN42QN/320. Remainders o X -,.2 4: < i lo Ni } S 1 

x 10 0 2Q 20 40 30 100 10 130 120 10 200 200 2 
Cawy 1x+12+20+33 +40+65+48 +98+ ;72+150+132. - 

)13 40 53 80 9S 148 108 218 192 160 332 296626.* 
Remainders 3 1 3 3 5 5 4 8 5 8 17 20 > (yt 
x 10 30 10 30 30 S0 S0 40 80 S0 80 170 200 0 
Carry 4Fk +11 +24 +30 +40 +40 +4X +43 + 64 +0+12Q + 88 

)41 34 60 70 90 92 103 144 140 2 258 200 0 
ltemainders 81 1 0 0 0 4 12 9 4 10 6 16 0 

x 10 10 10 0 0 0 40 120 90 40 100 60 160 0 
Carry 1S+4 +2 +9 +24 +E +B4 +63 +48 +72 +60 +66 S _ 

14 12 9 24 SS 124 183 138 1 12 160 126 16Q o 

It is remarkable that the algorithm illustrated in Table 1, which uses no floating- 
point arithmetic, produces the digits of 77. The algorithm starts with some 2sS in 
columns headed by the fractions shown. Each entry is multiplied by 10. Then, 
starting from the rightS the entries are reduced modulo den, where the head of the 
column is num/den7 producing a quotient q and remainder r. The remainder is 
left in place and q X num is carried one column left. This reduce-and-carry is 
continued all the way leX. The tens digit of the lehmost result is the next digit of 
7r. The process continues with the multiplication of the remainders by 10 the 
reductions modulo the denominators, and the augmented carrying. 

TABLE 1. The workings of an algorithm that produces digits of Gr The dashed line indicates the key 
stept starting from the rlght, elltries are reduced modulo the denominator of the column head 
(25, 23, 2l, . . . 1 resp.), with the quotients, aRer multiplication by the numerator (12, 11 > 10 . . . )7 carried 
left. For example, the 20 in the l99's column yields a remainder of 1 and a left carry of 1 9 = 9. After 
the leftmost carriesS the tens digits are 3, 1, 4 1. To get more digits of v one must start with a longer 
string of 2s. 

This algorithm is a 4spigot algorithm: it pumps out digits one at a time and 
does not use the digits after they are computed. Moreover the digits are generated 
without any use of high-precision (or low-precision) operations on floating-point 
real numbers; the entire algorithm uses only ordinary integer arithmetic on 
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relatively small integers. For example, to obtain the first 57000 digits of v requires 
only arithmetic operations on integers less than 600v000v000. Although high- 
precision fleating-point routines are built up from integer operationsX the algo- 
rithms in this paper are quite simple and do not simulate floating-point computa- 

. 

tlons. 

In order to motivate the r-alWrithm7 we fint discuss the much simpler case vf 
ea a which a spigot algorithm was discovered by Sale [Salel. His alwrithm is the 
basis of the discussion in §1. 

1. A NUMBER SYSTEM IN WEIICH es DIATS ARE PECODIC. A real num- 
ber?s decimal representation may be interpreted as an infinitely nested expression; 

s 

. ? 
gXvewV1 WAA111H vos 

4-1b41421356w*w 3 t + Ll (4 + 1 (t + t (4 + t (2 + 1 (t + ))))) 

Some interesting and useful representations may be obtained if we ange the 
base-sequence, which in the case above is ( 3l n 1lO, 1l n 110 . . . ). For exampleX using the 
base b = (2 3, 1, 5 X . * ) yields the following form, called a m-radw represen- 
tation (see [Knu §4.1]). 

ao + 2tal + 3(aX + 4(a3 + (a + X-(as + + * ))))) 

where the az (the s) are nonnegat1ve intege>. If 0 < < i for i > 18 the 

representation is called rlar. Msed-radw representations will be denoted by 
(0;a1Xa2,a3a4X...)b. For base b, evew positive real number has a regular 
representation and representations are unique provided we exclude representa- 
tions that terminate with maximal digits (otherwise bt exampley = 
(Q; 1 0 Q . * + ) = (0 QS 2 3 4? 5 6 * )b)S im now on and for all basesS we exclude 
such repwsentations The proof of the fbllowing Iwmma is in Appendz 1. 

Lemma t(a)- It l > 1 (0 0 0 0 . 0 0 s a+l } * * )b < Ili? 14 SttcubrS 
(0; 41 a2? a3 a4 * )bt < 1- 

(b). Representations using the mixed-rad base b are unique. 
(c)* The tnteger part of (a 1 a2 a3 47 * * * )h is aO and the ctional part S 

(°talta2a4-3a44*w-)b 

In this number system some irrationals become periodic. For twamplet e= 

(2 lt * * * )b thls iS jUSt a restatement of the inftnite series E lt as 

1 + 1 (1 + 2(1 + 3 (1 + 4(1 + 5(1 + * * * )))))* Rational numbers in this system cor- 
respond to digit-sequences that terminate (Appendis 1 Lemma 2). 

The decimal digits of a real number X in [0X 10) can be obtained by taking the 
integer part of x multlplying its Eadiona1 part by 10 taking the integer part of the 
result multiply the resuIting fractional part by 10 and so on. In some med-radz 
bases? this is especially simple. If x-(a0; a 2 . . 2 n)b then lOx - 
(1Q0; 10a1 10a lOa3 . . ., lOa,)b. The latter may not be a regular ewression 
some digits may be too big. But we can decrease digits by reducing them modulo z 
where i is the denominator of the corresponding element of b. Starting these 
reductions at the right end we carry the quotients left, eventually getting the 
reWlar representation of 10X. Thus multiplpng by 10 is igorithmlcally st:raightfor- 
ward Taking the integer and ffactlonal pa"s for b-representations is also easyS 
thanks to Lemma lEc). 
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Base 10 1/ 1/ 1/4 1/5 l/6 1/7 1/8 1/9 l/lo /11 

2.718281826 ........ 2 1 1 1 1 1 1 1 1 1 1 7.18281826 ........ 10 10 10 10 10 10 10 10 10 10 

carries 7 +3 +3 +2 +1 +1 +1 +1 +1 +0 -- 

14 13 12 11 11 11 11 11 10 10 

0.18281826 ...... 0 1 0 1 5 4 3 2 0 10 1.8281826 ...... 0 10 0 10 50 40 30 20 0 100 

carries 1 +3 +0 +3 +9 +6 +4 +2 +0 +9 _ 

3 10 3 19 56 44 32 20 9 100 

0.8281826 ..... 1 1 3 4 2 2 0 2 9 1 8.281826 ..... 10 10 30 40 20 20 0 20 90 10 

czaa 8 86 s!9 + 8 < +2 +40 +3 Sd9 id0 -- 
16 19 38 43 22 20 3 29 90 10 

0.281826 .... 0 1 2 3 4 6 3 2 0 10 2.81826 .... 0 10 20 30 40 60 30 20 0 100 

cames 2 +5 +6 +7 +8 +9 +4 +2 +0 i9 -- 

5 16 27 38 49 64 32 20 9 100 

0.81826 .... 1 1 3 3 1 1 0 2 9 1 

We can now give the algorithm to get the first n base-10 digits of e. A proof of 
correctness-the error analysis showing that n + 2 mixed-radix digits suffice1 to 
get n base-10 digits-is given as Lemma 3 in Appendix 1. 

Algorithm e-spigot 
1. Initialize: Let the first digit be 2 and initialize an array A of length n + 1 to 

(1,1,1,...,1). 
2. Repeat n - 1 times: 

Multiply by 10: Multiply each entry of A by 10. 
Take the fractional part: Starting from the right, reduce the ith entry of A 

modulo i + 1, carrying the quotient one place left. 
Output the next digit: The final quotient is the next digit of e. 

The first few steps of this algorithm, starting with an array of 10 ls (this 
corresponds to 11 mixed-radix digits, good for 9 digits of e; only 5 are shown), are 
displayed in Table 2. 

TABLE 2. The workings of a spigot algorithm for the digits of e (in bold). The reductions in the 
column headed 1 are performed modulo i. The leftmost base-10 real numbers are the values of the 
rows viewed as mixed-radix representations. Since only 11 mixed-radix digits start the algorithm, the 
first base-10 number is only an approximation to e. 

2. A SPIGOT FOR DIGITS OF . The ideas of §1 lead to a spigot algorithm for 
7r, but there are additional complexities and additional interesting questions that 
distinguish 7r from e. Our starting point is the following moderately well-known 

1Any digit-producing algorithm for a presumed-normal number x suffers from a drawback that, 
although unlikely, can impinge on the result. If x is between 1 and 10 and the algorithm says that the 
first 100 digits of x are, say, 4, 6, 5, 0, 7, . . ., 3, 9, 9, 9, 9, 9 then one cannot be sure that the last 6 digits 
are correct. They will be the digits of a certain approximation to x that is within 5 10-1°° of the true 
value. One cannot simply go farther until a non-9 is reached, because memory allocations must be made 
in advance. The user must realize that a terminating string of 9s is a red flag concerning those digits 
and even with no 9s, the last digit might be incorrect. In practice, one might ask for, say, 6 extra digits, 
reducing the odds of this problem to one in a million. 
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. 

serles: 

(it) 2 
7 .E0 (2i + 1) t 

This series can be derived from the Wallis product for 1r; another approach uses 
an acceleration technique called Euler's transform applied to the series 7r = 4 - 
3- + 54 - 4 +.... These proofs, together with three others and references to 
earlier sources, may be found in [Li]. We let kf t denote the product 1 * 3 * 5 * k 
for odd integers k; then the series is equivalent to 

7r X i! 1 1 * 2 1 * 2 * 3 

2 iE (2i+1)!! 3 3 5 3 5 7 

which expands to become 

ar 1 1 2 3 4 
2 =1+ 3t1+ 5 1+ 7 1+ 9(1+---) . 

This last expression leads to the mixed-radix base c = (-, 5-, 37, 49, . . . ), with respect 
to which sr is simply (2; 2, 2, 2, 2, 2, . . . )c For a regular representation in base c, 
the digit in the ith place must lie in the interval [0, 2i]. Unfortunately, base c is less 
accommodating than b. 

Lemma 4 (Proof in Appendix 1). The base-c number with maximal digits, 
(0; 2, 4, 6, 8, . . . )7 represents 2; hence regular representations of the form 
(0; a7 b, c, . . . )c lie between O and 2. 

Lemma 4 implies that c-representations are not unique. For example, 
(0,0,4,6,8,...) = 2 _ 23= 43, whence (0;0,2,3,4,...)c = 32= (0;2,0c0,0c...)C. 

More relevant algorithmically, integer and fractional parts using c are not straight- 
forward, as they are for b. The integer part of (aO, al, a27 . + . )c is either aO or 
aO + 1 according as (0; a1, a2, . . . ) is in [0, 1) or [1, 2). This problem is surmounted 
by leaving the units digit of aO in place during the next iteration and calling the 
tens digit of aO a predigat. The predigits must be temporarily held because 
occasionally (once every 20 iterations, roughly) the next predigit is a 10; this will 
happen when the carryS which is between 0 and 197 iS greater than 10 and, 
simultaneously, the leftover units digit of aO is 9 which becomes 9Q in the 
multiply-by-10 step. This event requires that the held number be increased by 1 
before being released. Specific details of the algorithm follow; the presentation at 
the beginning of this paper sidestepped the problem of the occasional 10. The 
proof that [lOn/3J mixed-radix digits suffice for n digits of v is in Appendix 1 
(Lemma 5). Appendix 2 contains a Pascal implementation of this algorithm. 

Algorithm Tr-spigot 

1. InitiaZize: Let A = (2, 2, 2, 2, . . ., 2) be an array of length LlOn/3j. 
2. Repeat n times: 

Multiply by 10: Multiply each entry of A by 10. 
Put A into regular form: Starting from the right, reduce the ith element of A 

(corresponding to c-entry (i- 1)/(2i- 1)) modulo 2i- 1, to get a 
quotient q and a remainder r. Leave r in place and carry q(i - 1) one 
place left. The last integer carried (from the position where i - 1 = 2) 
may be as large as 19. 
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Get the next predigit: Reduce the leftmost entry of A (which is at most 
109[- 9 * 10 + 19]) modulo 10. The quotient qX is the new predigit of 
r the remainder staying in place. 

Adjust the predigits: If q is neither 9 nor 10 release the held predigits as true 
digits of sr and hold q. If q is 9, add q to the queue of held predigits. If 
q is 10 then: 
. set the current predigit to O and hold it; 
. increase all other held predigits by 1 (9 becomes 0); 
* release as true digits vf v all but the current held predigit 

This algorithm uses only integer arithmetic and is easy to program. The table at 
the beginning of the paper shows it in action starting with 13 mised-radix digits of 
1r (good for 4 base-10 digits). To clarib the working of the algorithmX note that the 
(Enite) first row of Table 1 is a mrsed-radw representation of 3.1414796..* 
the second row represents 31.414796. .., the fifth row represents 1.414796..., the 
sixth row is 14.14796 . . . * the ninth row is 4.14796 . . . * and so on. Table 3 shows 
the result of a computation using a larger initial array the holding aspect does not 
become relevant until the 32nd digit. 

TABLE 3. The actual digits of T ottom) compared to the sequence of leftmost base-c digits for 35 
iterations with a starting array of 116 2s (good br 35 digits). At the 32nd iteration a 102 shows up 
yielding a predigit of 10. 

30 13 41 15 58 92 26 64 53 35 58 89 97 78 92 32 23 38 84 4S 62 26 63 42 33 38 82 32 27 78 94 49 102 28 87 

3 1 4 1 S 9 2 6 S 3 S 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 S 0 2 8 

We repeat that the algorithm uses only integer operationsX To get 5+000 digits of 
v requires only integer arithmetic on numbers less than 600,00Q000. The algo- 
rithm leads naturally to the question of improving it to one that is essentially as 
simple as e-spigot. 

Question. Is there a base d of rationals such that xr has a d-representation that is 
periodic, or an arithmetic progression, and such that aO is always the integer part 
of (an; al, a2, * . * )d? 

Gosper [S7 p- 32] has discovered a series for r that brin us tantalizingly 
close to spigot-perfection: 

1 1 2*3 1 2*3 3*5 

T 3 608 60 7 * 8 - 3 3 60 7 8 3 lQ 11 3 

1 2-3 3 5 4*7 
- 23 + *-- 
60 7 * 8 3 10 * 11 3 13 14 * 3 

He obtained this series by using a refinement of the Euler transform on 4 - 3- + 

45 - 47 + .... Gosper's series leads to the base d = (6l0 1G8, 3130 52867++,) with 
respect to which sr is (3 8, 13 18, . . * ). A computation shows that 
(0;59x 16713297545x . . . )d-1.092 . . ., a substantial improvement over the 2 that 
arose for c. Under the usual randomness assumption for rT'S digits the odds of a 
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bad predigit in base c are 1 in 20, while in base d they decrease to less than 1 in 
110; this is because a d-predigit of 10 occurs only when the remainder is a 9 (which 
becomes 90) and the carry is a 10. The former happens lONo of the time, while the 
latter happens no more than once in 11 iterations because the carry is the integer 
part of a real between 0 and 10.93. So base d is within 1% of spigot-perfection. 
Because Gosper's series converges more quickly than the one we used, it has less 
memory requirements: n digits of rr require an initial array of length n; however, 
the arithmetic on the array will involve integers larger than those in an array of the 

* . same slze uslng rase c. 
One way to improve the Gosper-series approach is to reduce the fractions in d 

to lowest terms. Then the regular number with maximal digits is (0; 59, 27, 21, 
38, ... )d which equals 1.0000476468.... It is not hard to see that the regular 
representation of qr is unchanged in this new base. However, the work expended 
in reducing to lowest terms outweighs the gain made in reducing the number of 
times a 10 appears as a predigit. Thus it is likely that an affirmative answer to the 
question above is of more theoretical than practical interest. 

The spigot algorithm for 7r is by no means competitive with the recently 
discovered fast algorithms (due to the Borwein brothers, the Chudnovsky brothers, 
and others) that have been used to compute hundreds of millions of digits of 7r 
(see [BBB]). But the spigot algorithm does have the advantage of avoiding all 
floating-point computations; thus it is easily implemented on a home computer 
where it can produce thousands of digits in a few minutes. Moreover, it gives the 
result directly in base 10 (most other gr-algorithms produce the result in binary or 
some internal format and a second pass must be made to obtain decimal digits). 

The algorithm given here can be made to run faster by outputting multiple 
digits at a time. For example, to get five decimal digits at a time, simply compute 
the digits of 7r using base 100,000. This can be done by multiplying by 100,000 
instead of 10 in the main step. The integer part is then the next "digit" in base 
100,000. 

If one is working in base 100,000 and knows in advance that the portion of digits 
to be computed does not contain the string 00000, then one can omit the lengthy 
part of the algorithm that adjusts the predigits. This can lead to an exceedingly 
short computer program. For example, Rabinowitz [Rab] used this idea to exhibit a 
14-line Fortran program that outputs 1,000 decimal digits of 7r. 

Finally, we mention that the algorithm can be parallelized, in which case it 
becomes blindingly fast up to about 10,000 digits. 

For examples of spigot algorithms for other functions, see [Abd]. 

APPENDIX 1. FIVE LEMMAS 
Lemmal(a). If i2 l,(O;O,O,...,O,ai,ai+l,...)b< l;inparticular,(O;al,a2,a3, 
a4 . . . )b < 1 

(b). Representations using maxed-radix base b are unique. 
(c). The integer part of (aO; al, a2, a3, a4, . . . )b is a,, and the fractionaZ part is 

(°; al a2' a3 a4 * * * )b- 

Proof: (a). It suffices to prove that Ek=i+l(k - l)/k!= l/i!, which follows from 
the fact thatthe series telescopes to: 

( 1 1 ) ( 1 1 ) ( 1 1 ) 
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(b)* Suppose (aO; al, a2, a3, a41 * * * )b and (cO; C1, C2, C3, C4, . . . )b represent the 
same real number. Then, for some i, O = Sk=idk/k!, where ldkl < k and di + °* 
But then | di | /i! < Sk =i + 1 | dk | /k !, contradicting (a). 

(c). This follows from (a). 

Lemma 2. A positive number is rational iff its digits using the mixed-radix base b are 

eventually 0. 

Proof: The reverse direction is obvious. For the forward direction we use a 
sublemma. 

Sublemma. For any integers t and n, with O < n < t!, there are integers di in [O, i] 

such that n - d1t(t - 1)(t - 2) 4 * 3 + d2t(t - 1)(t - 2) 5 * 4 + 

*** +dt_3t(t - 1) + dt-2t + dt-lv 

Proof: By induction on t. If n < t! write n as qt + r with O < r < t and O < q < 

(t - 1)!. By induction there is a sequence (d1, d2, . . . dt_3, dt_2) that is a solution 
for q with respect to terms (t - 1)(t - 2) 4* 3, and the like, whence 
(d1, d2, . . . dt_3, dt_2, r) is a solution for n w.r.t. the terms t(t - 1)(t - 2) * * * 4 * 3, 

and the like. 

Returning to Lemma 2's proof, suppose a positive rational s/t is given. Use the 
sublemma to express s(t - 1)! in the form d1t(t - 1)(t - 2) 4 * 3 + d2t 

(t - 1)(t - 2) *** 5 * 4 + ** +dt_3t(t - 1) + dt_2t + dt_1. Dividing by t! then 
yields a representation of s/t as a sum of reciprocals of factorials with appropri- 
ately small coefficients, which is the same as a terminating representation in the 
mixed-radix base b. 

Lemma 3. The algorithm for digits of e is correct. 

Proof: It must be shown that n + 2 mixed-radix digits of e suffice to get n base-10 
digits of e. We first prove that if n 2 28 (= [lOel), then n mixed-radix digits 
suffice for n base-10 digits. Using n mixed-radix digits means we are actually 
getting the base-10 digits of en = (2;1,1,1, . . . ,1) = LI.=ol/i!. Thus we must show 
that 
e - en < S * 10-n (see footnote at beginning of paper). A geometric series estima- 
tion of the tail of the series shows that e - en < 2/(n + 1)!, and then Stirling's 
formula yields 

(n + 1)! n! (n) ( 10) 
If n < 28 then a direct computation of the digits shows that n + 2 mixed-radix 
digits suffice. 

Lxmma 4. The base-c number with maximal digits, (0; 2, 4, 6, 8, . . . ), represents 2; 

hence regular representations of the form (O; a, b, c, . . . )c lie between O and 2. 

Proof: Instead of giving a formal proof, we show how some Mathematica computa- 
tions led to the result (and a proof). In terms of series, the lemma states that 

, (2i)i ! _ 2 

=o(2i+,1)!! 
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A rough calculation showed that the sum is near 2. Then a rational computation of 
the remainders the differences between the partial sums and 2 yielded the 
following sequence. 

_ 4 16 16 32 32 256 256 512 512_ 
3 ' 5 1 35 1 63 ' 231 1 429 ' 6435 1 12155 1 46189 ' 88179 * 

The pattern in these remainders was found by dividing each by the preceding one, 
which yielded: 

3 4 5 6 7 8 9 10 11 
5' 7' 91 11' 13' 15' 17' 19' 21* 

Induction proves the pattern to be valid in general; it follows that the remainders 
have the closed form 2n+l/(2n + 1) which converges to 0, as claimed. 

Ltmma 5. The algorithm for digits of XT is correct. 

Proof: As for e, we look at XT - XTm where 7rm = (2; 2, 2, . . ., 2)c. This error is the 
tail of our main series for Tr: Li=m(i!)22i+1/(2i + 1)!. This tail is less than twice its 
first term since each subsequent term is less than half its predecessor, leading us to 
study m!22m+2/(2m + 1)!. Splitting the denominator into evens and odds turns 
this into: m! 22/(3 * 5 * * * (2m + 1)), which is less than 3-m! 22/(2 * 4 * * * (2m)), or 
1/(3 * 2m-1). It is easy to see (using the fact that 130 < loglo 2) that this last is less 
than 5 * 10-n when m = 110n/3], as claimed. 

APPENDIX 2. PASCAL CODE 
The following program, for which we are grateful to Macalester student Simeon 
Simeonov, implements the algorithm 7r-spigot. This code makes use of the fact that 
the queue of predigits always has a pile of 9s to the right of its leftmost member, 
and so only this leftmost predigit and the number of 9s need be remembered. The 
program computes 1000 digits of gT and requires a version of Pascal with a longint 
data type (32-bit integer). 

Program Pi_Spigot; 
const n =1000; 
len =108n div 3; 
var i, j, k, q, x, nines, predigit : integer; 

a : array[1..len] of longint; 
begin 

for j := 1 to len do a[j] := 2; {Start with 2s} 
nines := 0; predigit := 0 {First predigit is a 0} 
for j := 1 to n do 
begin q := 0; 

for i := len downto 1 do {Work backwards} 
begin 

x := 10*a[i]+q*i; 
aCi] := x mod (2*i-1); 
q := x div (2*i-1); 

end; 
a[1] := q mod 10; q := q div 10; 
if q = 9 then nines := nines + 1 
else if q=10 then 
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begin writeXpredigit+1); 
for k := 1 to nines do write(O); {zeros} 
predigit := O; nines := O 

end 
else begin 

writeXpredigit), predigit *= q; 
if nines <> O then 
begin 

for k := 1 to nines do write(9); 
nines := Q 

end 
end 

end, 
writetnSpredigit); 

end. 

ADDED IN PROOF The latest version of Maffiematica (2.3) can sum many of the series that occur in 
this paper. It takes only a second or so to get 7r/2 as the sum of the crucial series at the beginning of 
section 2, to get 1/il for the series in Lemma 1's proof, and to get 2 as the sum of the series in Lemma 
4's proof. 
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