Contents

Preface ix

1 Introduction 1

1.1 Ten examples 1
1.2 Inhabitants of space 9
1.3 Challenges 22

2 Enumeration 27

2.1 Hex numbers 27
2.2 Counting calissons 28
2.3 Using cubes to sum integers 29
2.4 Counting cannonballs 35
2.5 Partitioning space with planes 37
2.6 Challenges 40

3 Representation 45

3.1 Numeric cubes as geometric cubes 45
3.2 The inclusion principle and the AM-GM inequality for three numbers 49
3.3 Applications to optimization problems 52
3.4 Inequalities for rectangular boxes 55
3.5 Means for three numbers 59
3.6 Challenges 60

4 Dissection 65

4.1 Parallelepipeds, prisms, and pyramids 65
4.2 The regular tetrahedron and octahedron 67
4.3 The regular dodecahedron 71
4.4 The frustum of a pyramid 72
4.5 The rhombic dodecahedron 74
4.6 The isosceles tetrahedron 76
4.7 The Hadwiger problem 77
4.8 Challenges 79
5 Plane sections
5.1 The hexagonal section of a cube 83
5.2 Prismatoids and the prismoidal formula 85
5.3 Cavalieri’s principle and its consequences 89
5.4 The right tetrahedron and de Gua’s theorem 93
5.5 Inequalities for isosceles tetrahedra 96
5.6 Commandino’s theorem 97
5.7 Conic sections 99
5.8 Inscribing the Platonic solids in a sphere 104
5.9 The radius of a sphere 107
5.10 The parallelepiped law 108
5.11 Challenges 110

6 Intersection
6.1 Skew lines 118
6.2 Concurrent lines in the plane 119
6.3 Three intersecting cylinders 120
6.4 The area of a spherical triangle 121
6.5 The angles of a tetrahedron 124
6.6 The circumsphere of a tetrahedron 126
6.7 The radius of a sphere, revisited 127
6.8 The sphere as a locus of points 129
6.9 Prince Rupert’s cube 130
6.10 Challenges 131

7 Iteration
7.1 Is there a four color theorem in space? 133
7.2 Squaring squares and cubing cubes 134
7.3 The Menger sponge and Platonic fractals 136
7.4 Self-similarity and iteration 139
7.5 The Schwarz lantern and the cylinder area paradox 140
7.6 Challenges 143

8 Motion
8.1 A million points in space 148
8.2 Viviani’s theorem for a regular tetrahedron 149
8.3 Dissecting a cube into identical smaller cubes ... 152
8.4 Fair division of a cake 153
8.5 From the golden ratio to the plastic number 153
8.6 Hinged dissections and rotations 154
8.7 Euler’s rotation theorem 156
8.8 The conic sections, revisited 157
8.9 Instant Insanity .. 158
8.10 Challenges .. 161

9 Projection ... 165
 9.1 Classical projections and their applications 165
 9.2 Mapping the earth 169
 9.3 Euler’s polyhedral formula 177
 9.4 Pythagoras and the sphere 178
 9.5 Pythagoras and parallelograms in space 180
 9.6 The Loomis-Whitney inequality 182
 9.7 An upper bound for the volume of a tetrahedron 184
 9.8 Projections in reverse 185
 9.9 Hamiltonian cycles in polyhedra 187
 9.10 Challenges .. 189

10 Folding and Unfolding 193
 10.1 Polyhedral nets .. 194
 10.2 Deltahedra ... 196
 10.3 Folding a regular pentagon 200
 10.4 The Delian problem: duplicating the cube 201
 10.5 Surface areas of cylinders, cones, and spheres 203
 10.6 Helices ... 209
 10.7 Surface areas of the bicylinder and tricylinder 211
 10.8 Folding strange and exotic polyhedra 214
 10.9 The spider and the fly 217
 10.10 The vertex angles of a tetrahedron 219
 10.11 Folding paper in half twelve times 219
 10.12 Challenges .. 222

Solutions to the Challenges 227
 Chapter 1 ... 227
 Chapter 2 ... 230
 Chapter 3 ... 234
 Chapter 4 ... 237
 Chapter 5 ... 239
 Chapter 6 ... 243
 Chapter 7 ... 245
 Chapter 8 ... 246