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Foreword

This volume, compiled by the editors on behalf of the Linear Algebra Curriculum Study
Group, is for instructors and students of linear algebra as well as all those interested in the
ideas of elementary linear algebra. We have noticed, through attendance at special sessions
organized at the Joint Annual Meetings and through talks given at other conferences and
universities, that there is broad and sustained interest in the content of undergraduate linear
algebra courses.

Since this course became a centerpiece of the mathematics curriculum, beginning around
1960, new topics and new treatments have gradually reshaped it, with noticeably greater
evolution than in calculus courses. In addition, current courses are often taught by those
not trained in the subject or by those who learned linear algebra in a course rather different
from the present one. In this setting, it is not surprising that there is considerable interest
in the context and subtleties of ideas in the linear algebra course and in a perspective based
upon what lies just beyond. With this in mind, we have selected 74 items and an array of
problems, some previously published and some submitted in response to our request for such
items (College Mathematics Journal 23 (1992), 299–303). We hope that these will provide a
useful background and alternative techniques for instructors, sources of enrichment projects
and extended problems for teachers and students, impetus for further textbook evolution to
writers, and the enjoyment of discovery to others.

The Linear Algebra Curriculum Study Group (LACSG) began with a special session,
at the January 1990 Joint Annual Meetings, focusing upon the elementary linear algebra
course. This session was organized by Duane Porter, following upon an NSF-sponsored
Rocky Mountain Mathematics Consortium Lecture Series given by Charles Johnson at the
University of Wyoming; David Carlson and David Lay were panel members for that session.
With NSF encouragement and support, these four organized a five-day workshop held at
the College of William and Mary in August, 1990. The goal was to initiate substantial and
sustained national interest in improving the undergraduate linear algebra curriculum. The
workshop panel was broadly based, both geographically and with regard to the nature of
institutions represented. In addition, consultants from client disciplines described the role of
linear algebra in their areas and suggested ways in which the curriculum could be improved
from their perspective.

Preliminary versions of LACSG recommendations were completed at this workshop and
widely circulated for comment. After receiving many comments and with the benefit of much
discussion, a version was published in 1993 (College Mathematics Journal 24 (1993), 41–46).
This was followed by a companion volume to this one in 1997 (Resources for Teaching Linear
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Algebra, MAA Notes No. 42, Washington, D.C., 1997, 297 pages). Work of the LACSG has
continued with the organization of multiple special sessions at each of the Joint Annual
Meetings from 1990 through 1998. With sustained strong attendance at these sessions,
acknowledged influence on newer textbooks, discussion in letters to the AMS Notices, and
the ATLAST workshops, the general goal of the LACSG is being met.

Though a few items in this volume are several pages, we have generally chosen short,
crisp items that we feel contain an interesting idea. Previously published items have been
screened from several hundred we reviewed from the past 50+ years, most from the American
Mathematical Monthly and the College Mathematics Journal. New (previously unpublished)
items were selected from about 100 responses to our call for contributions. Generally, we
have chosen items that relate in some way to the first course, might evolve into the first
course, or are just beyond it. However, second courses are an important recommendation
of the LACSG, and some items are, perhaps, only appropriate at this level. Typically, we
have avoided items for which both the topic and treatment are well established in current
textbooks. For example, there has been dramatic improvement in the last few decades in
the use of row operations and reduced echelon form to elucidate or make calculations related
to basic issues in linear algebra. But, many of these have quickly found their way into
textbooks and become well established, so that we have not included discussion of them.
Also, because of the ATLAST volume, we have not concentrated upon items that emphasize
the use of technology in transmitting elementary ideas, though this is quite important. We
do not claim that each item is a “gem” in every respect, but something intrigued us about
each one. Thus, we feel that each has something to offer and, also, that every reader will
find something of interest.

Based upon what we found, the volume is organized into ten topical “parts.” The parts
and the items within each part are in no particular order, except that we have tried to
juxtapose items that are closely related. Many items do relate to parts other than the one we
chose. The introduction to each part provides a bit of background or emphasizes important
issues about constituent items. Because of the number of items reprinted without editing,
we have not adopted a common notation. Each item should be regarded as a stand-alone
piece with its own notation or utilizing fairly standard notation.

Each item is attributed at the end of the item, typically in one of three ways. If it is a
reprinted item, the author, affiliation at the time, and original journal reference are given. If
it is an original contribution, the author and affiliation are given. In a few cases, the editors
chose to author a discussion they felt important, and such items are simply attributed to
“the Editors.”

We would like to thank, first of all, the many colleagues and friends who contributed new
items to this volume, as well as the authors of items we have chosen to reprint here. We
also are grateful for the many more contributions we were unable to use due to limitations
of space or fit with the final themes of the volume. We give special thanks to the National
Science Foundation for its support of the activities of the Linear Algebra Curriculum Study
Group (USE 89-50086, USE 90-53422, USE 91-53284), including part of the preparation of
this volume, and for the support of other linear algebra education initiatives. The Mathe-
matical Association of America receives equal thanks, not only for the publication of this
volume and the previous LACSG volume (Resources for Teaching Linear Algebra, 1997), but
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also for its sponsorship of the well-attended LACSG special sessions at the January Joint
Annual Meetings (along with AMS) since 1990 and for the many permissions to reprint items
from MAA publications (the American Mathematical Monthly and the College Mathemat-
ics Journal) used in this volume. We thank the many attendees of these sessions for their
encouragement and interest, and we thank the Rocky Mountain Mathematics Consortium
and the University of Wyoming for hosting Charles Johnson’s initiating lecture series and
the College of William and Mary for hosting the 1990 founding workshop.

Finally, we are most grateful to our several colleagues who assisted with the preparation
of this volume: John Alsup, while a PhD. student at the University of Wyoming; Joshua
Porter, while an undergraduate student at the University of Wyoming; Chris Boner, while
an REU student at the College of William and Mary; Fuzhen Zhang, while a visitor at the
College of William and Mary; Jeanette Reisenburg for her many hours of excellent typing in
Laramie; and the several reviewers for their encouragement and helpful suggestions.

Lastly, we are very pleased with the opportunity to prepare this volume. In spite of more
than 125 years of collective experience in teaching linear algebra and thinking about the
elementary course, we all learned a great deal from many hours of reading and then chatting
about the items. Indeed, we each feel that we learn new subtleties each time we undertake to
describe elementary linear algebra to a new cohort of students. We hope that all instructors
will find similar value in this volume and will continue to reflect upon and enhance their
understanding of ideas that underlie and relate to the course.

The Editors:

Charles R. Johnson, The College of William and Mary
David Carlson, San Diego State University
David C. Lay, University of Maryland
A. Duane Porter, University of Wyoming
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PART 1

Partitioned Matrix Multiplication





Introduction

The simple act of viewing a matrix in partitioned form can lead to remarkable insights.
Even more remarkable is the broad utility of partitioned matrix multiplication for proofs
and other insights. The first example is the variety of views of matrix multiplication itself
(including the three recommended by LACSG for the first course and now appearing in
several textbooks). These views are described and elaborated in the first item of this part.

More importantly, skill at general partitioned multiplication (including that of specially
constructed matrices) has become the stock-in-trade of theoreticians, appliers of linear alge-
bra, and computational linear algebraists alike. We believe, strongly, that it is also one of
the best mechanisms (ranking with the row-reduced echelon form) for understanding ideas
of elementary linear algebra, so that students should become aware of it early. This section
includes a small selection of the very many examples that led us to this conclusion.

3





Modern Views of Matrix Multiplication

The classical definition of matrix product AB is an array whose (i, j)-entry is the inner
product of row i of A with column j ofB. Today, however, our understanding of linear algebra
is greatly enhanced by viewing matrix multiplication in several different but equivalent ways.

The column definition of Ax . Let A be an m× n matrix, with columns a1, . . . , an,
and let x be a (column) vector in IRn, with entries x1, . . . , xn. Then Ax is a linear combi-
nation of the columns of A, using the corresponding entries of x as the weights in the linear
combination:

Ax = (a1 · · · an)









x1
...
xn









= a1x1 + · · ·+ anxn. (1)

Traditionally, scalars are written to the left of vectors, and one usually writes Ax = x1a1 +
· · ·+ xnan.

The column definition of Ax ties the concept of linear dependence (of vectors a1, . . . , an)
directly to the equation Ax = 0, and it connects the question of whether a vector b is in
the subspace spanned by a1, . . . , an to the question of whether the equation Ax = b has a
solution. Also, the single subscript notation in (1) simplifies many proofs, such as the proof
that the mapping x→ Ax is linear.

The column definition of AB . A definition of the matrix product AB can be given in
a natural way by considering the composition of the linear mappings x→ Bx and y → Ay.
Denote the columns of B by b1, . . . , bp and consider x in IRp. Writing

Bx = b1x1 + · · ·+ bpxp

and using the linearity of the mapping y → Ay, we have

A(Bx) = (Ab1)x1 + · · ·+ (Abp)xp.

Since the vector A(Bx) is expressed here as a linear combination of vectors, we can use the
definition (1) to write

A(Bx) = [Ab1 · · ·Abp]x.

The matrix whose columns are Ab1, . . . , Abp transforms x into A(Bx); we denote this matrix
by AB, so that

A(Bx) = (AB)x

5



6 Part 1—Partitioned Matrix Multiplication

for all x. Thus, matrix multiplication corresponds to composition of linear transformations
when the product AB is defined by

AB = A[b1 · · ·Abp] = [Ab2 · · ·Abp]. (2)

This view of AB makes possible, for example, simple proofs that the column space of AB
is contained in the column space of A and that

rank AB ≤ min(rank A, rank B).

The row-column rule for AB. Denote the (i, j)-entries of A,B, and AB by aij, bij, and
(AB)ij, respectively. Then definitions (1) and (2) lead to the classical “row-column rule” for
computing AB:

(AB)ij = ai1b1j + · · · + ainbnj. (3)

This formula holds for each i and j because the jth column of AB is Abj, the entries
b1j, . . . , bnj are the weights for a linear combination of the columns of A, and the ith entries
in these columns of A are ai1, . . . , ain. The row-column rule has the advantages that it is
efficient for hand computation and it can be given directly to students without a discussion of
(column) vectors. Such a definition, however, is usually accompanied by an apology for giving
an unnatural and unmotivated definition. (The definition, of course, can be motivated as
was done historically by considering the effect of substituting one system of equations into
a second set of equations and observing the form of the coefficients in the resulting new
system. This approach usually requires a low-dimensional example, to avoid a nightmare of
double subscripts.) The row-column rule is needed when studying orthogonality and proving
that the null space of A is orthogonal to the row space of B.

Rows of AB . The row-column rule is also useful for showing that each row of the
product AB is the result of right-multiplying the corresponding row of A by the matrix B.
If rowi(A) denotes the ith row of A, then

rowi(AB) = rowi(A) · B. (4)

Because most linear algebra courses today focus on column vectors, property (4) is less useful
than the column property (1). Property (4) can be used, however, to explain why a row
operation on a matrix B can be produced via left-multiplication by an elementary matrix
E, where E is created by performing the same row operation on the identity matrix.

The column-row expansion of AB . Another view of AB describes the product as
a sum of arrays instead of an array of sums. Denoting the jth column of A by colj(A), we
have

AB = [col1(A) · · · coln(A)]









row1(B)
...

rown(B)









=
n
∑

k=1

colk(A) · rowk(B). (5)

To verify (5), observe that for each row index i and column index j, the (i, j)-entry in
colk(A)rowk(B) is the product of aik from colk(A) and bkj from rowk(B). Hence the (i, j)-
entry in the sum (5) is

ai1b1j + ai2b2j + · · · + ainbnj .
(k=1) (k=2) (k=n)



The Editors: Modern Views of Matrix Multiplication 7

This sum is also the (i, j)-entry in AB, by the row-column rule. View (5) is also called an
outer-product expansion of AB because each term is a matrix of rank at most 1.

The expansion (5) is the key ingredient in understanding the spectral decomposition of
a symmetric matrix, A = PDP T , in which P = [u1 · · · un] and D = diag(λ1, . . . , λn). First,
note that PD = [λ1u1 · · ·λnun] because P acts on each column of D, and thus the jth
column of PD is, by (1), a linear combination of the columns of P using weights that are
all zero except for λj as the jth weight. Hence, using (5),

A = (PD)P T = [λ1u1 · · · λnun]









uT
1
...
uT

n









= λ1u1u
T
1 + · · ·+ λnunu

T
n .

Multiplying partitioned matrices. If A is an m× n matrix and B is a q × p matrix,
then the product AB is defined if and only if n = q, and then AB is m × p. Suppose that
n = q, and that A and B are partitioned matrices. Suppose that the rows of A, columns of
A, rows of B, and columns of B are partitioned according toα = (α1 = (1, . . . , m1), α2 =
(m1 + 1, . . . , m2), . . . ), β = (β1, β2, . . . ), δ = (δ1, δ2, . . . ), and γ = (γ1, γ2, . . . ) respectively.
The product AB can be calculated using these partitionings if and only if β = δ, and in
this case the rows of AB and the columns of AB are partitioned according to α and γ,
respectively.

Of possible partitions of any < t >= (1, . . . , t), the coarsest is of course µ = (µ1 =< t >)
and the finest is ν = (ν1 = (1), . . . , νt = (t)). Suppose that A is an m × n matrix and B is
an n × p matrix. There are eight possible choices of (α; β = δ; γ) involving coarsest µ and
finest ν partitions. The descriptions of AB for each of these follows. They give in various
forms the views of matrix multiplication discussed above.

α; β(= δ); γ View of matrix multiplication :

µ; µ; µ This just says AB = A · B.

µ; µ; ν A · (col1(B), . . . , colq(B)) = (A · col1(B), . . . , A · colq(B)) which is (2)

µ; ν; µ The column-row expansion of AB:

[col1(A) · · · coln(A)]









row1(B)
...

rown(B)









=
n
∑

k=1

colk(A) · rowk(B) which is (5)

ν; µ; µ









row1(A)
...

rowm(A)









· B =









row1(A) · B
...

rowm(A) · B









which is (4)

µ; ν; ν From (1), each column of AB is a linear combination of the
columns of A, with coefficients from that column of B:
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(col1(A), . . . , coln(A)) ·









b11 · · · b1p
... bij

...
bn1 · · · bnp









=

(

· · · ,
n
∑

k=1

bkjcolk(A), . . .

)

ν µ ν The usual row-column rule for AB:









row1(A)
...

rowm(A)









· (col1(B), . . . , colp(B)) =









row1(A) · col1(B) . . . row1(A) · colp(B)
...

...
...

rowm(A) · col1(B) . . . rowm(A) · colp(B)









ν ν µ Analogous to (1), each row of AB is a linear combination of
the columns of B, with coefficients from that row of A:









a11 · · · a1n
... aij

...
am1 · · · amn









·









row1(B)
...

rown(B)









=















...
n
∑

k=1

aik · rowk(B)

...















ν ν ν This is another version of the row-column rule.

An instructor could give and justify the alternative views presented above, and use them
to lead into a general discussion of the multiplication of partitioned matrices. Or, an in-
structor could begin with that general discussion, and ask students to find the coarsest and
finest examples, that is, to discover these new views themselves.

The Editors
Contributed



The Associativity of Matrix Multiplication

Among the often-used algebraic properties that matrix multiplication does satisfy, associa-
tivity, A(BC) = (AB)C , is perhaps the most subtle for students, and the property, therefore,
merits explanation in the elementary course. If matrices are viewed as representing linear
transformations, then associativity may be viewed as a simple conceptual consequence of the
associativity of the composition of functions, but this is probably not helpful for many stu-
dents, especially as the discussion of associativity typically comes quite early in the course.
On the other hand, the most common proof via manipulation of sums with its flurry of
subscripts may not be much more helpful. A disguised version of the functional composition
view may be both conceptual and concrete enough to be informative to beginning students.
It is also based upon an appreciation of some of the fundamental views of the mechanics of
matrix multiplication.

First, note two important facts about matrix multiplication.
(a) If B is a matrix and x is a vector for which Bx is defined, then the vector Bx is a

linear combination of the columns of B, with coefficients the entries of x. That is,

Bx = x1b1 + x2b2 + · · ·+ xnbn,

in which the n columns of B are
b1, . . . ,bn :

B = [b1 b2 · · · bn] ,

and

x =













x1

x2
...
xn













.

(b) If A and B are matrices for which AB is defined, then the ith column of AB is A
times the ith column of B, i.e.

AB =
[

Ab1 Ab2 · · · Abn

]

.

Both these facts, among others, should be stressed shortly after the definition of matrix
multiplication. Now, let x be an arbitrary column vector. By (a) and the fact that matrix

9



10 Part 1—Partitioned Matrix Multiplication

multiplication acts linearly, we have

A(Bx)= A(x1b1 + · · · + xnbn) = x1Ab1 + · · ·+ xnAbn

=
[

Ab1 Ab2 · · · Abn

]

x = (AB)x,

the last step being observation (b). Now, if we let x be an arbitrary column of

C =
[

c1 · · · cp

]

, we have

A(Bci) = (AB)ci

or again using (b)
A(BC) = (AB)C

which is associativity.

The Editors
College Mathematics Journal 23 (1992), 299–303



Relationships Between AB and BA

Let A be an m×n matrix and B be an n×m matrix with m ≤ n. In the elementary course
we stress that AB need not equal BA. In fact, they need not even be the same dimensions
if m 6= n! However, it is important to realize that AB and BA are not independent and,
in fact, have much in common. In particular the two matrices have the same eigenvalues,
counting multiplicities, with BA having an additional n − m eigenvalues equal to 0. This
fact is seldom mentioned in the first course and may not be known to some instructors. With
the following proof, perhaps it could be included in the first course. First notice that the
(m+ n)× (m+ n) partitioned matrices

[

AB 0
B 0

]

and

[

0 0
B BA

]

are similar to each other via the partitioned block calculation:
[

AB 0
B 0

] [

Im A
0 In

]

=

[

AB ABA
B BA

]

=

[

Im A
0 In

] [

0 0
B BA

]

.

Since
[

Im A
0 In

]

is nonsingular, it provides the similarity. Because
[

AB 0
B 0

]

is block triangular, its eigenvalues are those of the two diagonal blocks, AB and the n × n
0 matrix. Similarly, the eigenvalues of

[

0 0
B BA

]

are the eigenvalues of BA, together with m 0’s. Because the two partitioned matrices are
similar and similar matrices have the same eigenvalues, AB and BA must have the same
nonzero eigenvalues (counting multiplicities) and the additional n − m eigenvalues of BA
must all be 0, verifying the assertion made earlier. With only a little more effort it may

11
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be seen that the Jordan structure associated with each nonzero eigenvalue is the same in
AB and BA. The Jordan structure of the eigenvalue 0 can be different, even when m = n,
though there is a close relation [1].

Aside from simplicity, the above proof reinforces the use of similarity and the important
tool of manipulating partitioned matrices.

Reference

1. C.R. Johnson and E. Schreiner, The Relationship Between AB and BA, American
Mathematical Monthly 103(1996), 578–582.

The Editors
College Mathematics Journal 23 (1992), 299–303



The Characteristic Polynomial of a Partitioned Matrix

A few years ago, I needed to know about eigenvalues of real matrices of the form

M =

(

0 B
C 0

)

where B,C are both n × n. There was good reason to suspect that the characteristic
polynomial pM (x) of such a matrix is an even function, and so it turns out to be. Perhaps
more interesting is that the same simple argument that establishes the evenness of pM (x)
also shows that BC and CB have the same eigenvalues (at least when B and C are both
square).

Begin with the following lemma, which although known, is already attractive.

Lemma. Let X =

(

A B
C D

)

∈M2n(C) where A,B,C,D ∈Mn(C). Then

(a) D and C commute =⇒ detX = det(AD− BC);

(b) A and C commute =⇒ detX = det(AD − CB).

[There are two similar results if either D and B or A and B commute.]

I will prove only (a), since the other variants are proved similarly. First take care of the
“generic” case where D is invertible.

det

(

A B
C D

)

= det

(

A B
C D

)

· det

(

I 0
−D−1C I

)

= det

(

A− BD−1C B
0 D

)

= det(A− BD−1C) · detD

= det(AD −BD−1CD)

= det(AD −BC).

Now, even if D is not invertible, D+ εI will be invertible for all sufficiently small ε. So using
the above result we have

det

(

A B
C D + εI

)

= det

(

A(D + εI)−BC
)

.

The continuity of det gives the desired result, letting ε→ 0. �

13



14 Part 1—Partitioned Matrix Multiplication

I first saw a result of this type in Hoffman and Kunze’s Linear Algebra, second edition,
section 6.5 on Simultaneous Triangularization and Diagonalization (p. 208, #4). There they
supply the stronger-than-necessary hypothesis that A,B,C,D should all commute.

From this lemma we immediately get the following proposition.

Proposition. For M =

(

0 B
C 0

)

where B,C ∈Mn(C) we have

(a) pM (x) = pBC(x2) and

(b) pM (x) = pCB(x2)

showing twice over that pM (x) is indeed even.

Proof.

pM (x) = det(xI −M) = det

(

xI −B
−C xI

)

= det(x2I − BC) [by Lemma (a)]

= det(x2I − CB) [by Lemma (b)]. �

And now for free we have pBC(x2) = pCB(x2), hence pBC(x) = pCB(x). Thus BC and
CB have the same eigenvalues, including multiplicity.

Notes

• Observing that

(

0 B
C 0

)

is actually similar to

(

0 C
B 0

)

via

(

0 I
I 0

)

, and using just

Proposition (a), we get an alternative proof that pBC = pCB .

• The argument showing that pBC = pCB as a whole can be simplified and made even
more elementary by shifting the continuity from the lemma to the proposition. Prove
the lemma only for D is invertible; then in the proposition we would have pM (x) =
det(x2I−BC) for all x 6= 0. Both sides being polynomials then implies equality for all
x.

• Let N =

(

A 0
0 D

)

and M =

(

0 B
C 0

)

with A,B,C,D ∈Mn(C). The contrast between

the identities pN (x) = pA(x) · pD(x) and pM (x) = pBC(x2) 6= pB(x) · pC(x) is rather
striking.

Editors’ Note: When B = C∗ in M we have the familiar, but important, fact that the
eigenvalues of M are + and − the singular values of C , leading to many important facts.

D. Steven Mackey
Western Michigan University
Contributed



The Cauchy-Binet Formula

In the following, entries in the indicated matrices are from an arbitrary field. The classical
formula attributed to Binet and to Cauchy relates minors of a product to certain minors of
the factors. It is seldom proven in textbooks and can be very useful in particular situations.
For example, a matrix is called totally positive if all of its minors are positive. Cauchy-Binet
implies that the totally positive matrices are closed under matrix multiplication.

Definition: If A is an m × n matrix, α ⊆ {1, 2, . . . , m} and β ⊆ {1, 2, . . . , n}, then
A[α, β] denotes the |α| × |β| submatrix of A with rows lying in α and columns lying in β.

Now suppose that A is an m × n matrix, B is an n × p matrix, and let C = AB. Let
N = {1, 2, . . . , n}. Then if α ⊆ {1, 2, . . . , m} and β ⊆ {1, 2, . . . , p}, it follows from the
definition of matrix multiplication that

C [α, β] = A[α,N ]B[N, β].

Theorem (Cauchey-Binet Formula). Let A be an m× n matrix, B be an n × p matrix
and let C = AB. Given α ⊆ {1, 2, . . . , m} and β ⊆ {1, 2, . . . , p} with |α| = |β| = r, then

detC [α, β] =
∑

K⊆N

|K|=r

detA[α,K] detB[K, β] (1)

in which the sum is over all r-element subsets K of N .

Remark. If r = 1 and α = {i} , β = {j}, then (1) reduces to

cij =
n
∑

k=1

aikbkj

which is just the definition of matrix multiplication.

If we relabel C [α, β] as C,A[α,N ] as A, and B[N, β] as B, then C = AB and (1) becomes,
with M = {1, 2, . . . , m},

det(AB) =
∑

K⊆N

|K|=m

detA[M,K] detB[K,M ] (2)

15
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where A is an m × n matrix, B is an n ×m matrix, and m ≤ n. (If n = m, (2) reduces
to det(AB) = detA · detB, the multiplicative law for the determinant.) So to prove the
Cauchy-Binet formula, it suffices to prove (2). If A is a square matrix, Ek(A) denotes the
sum of all k × k principal minors of A.

Lemma. Let A be an m× n matrix and B an n×m matrix, m ≤ n. Then

Em(BA) =
∑

K⊆N

|K|=m

detA[M,K] detB[K,M ].

Proof. Em(BA) =
∑

K⊆N

|K|=m

det(BA)[K,K]

Since (BA)[K,K] = B[K,M ]A[M,K],

det(BA)[K,K] = detB[K,M ] · detA[M,K]

and the result follows.

The following proof of (2) was communicated by Abraham Berman, from page 54 of
Matrix Analysis by R. Horn and C. Johnson:

[

I A
0 I

]−1 [

AB 0
B 0

] [

I A
0 I

]

=

[

0 0
B BA

]

,

so

C1 =

[

AB 0
B 0

]

and C2 =

[

0 0
B BA

]

are similar matrices.

Since similar matrices have the same characteristic polynomial, and since, in general,
Ek(X) is the coefficient of λn−k in the characteristic polynomial of the n× n matrix X,

Em(C1) = Em(C2)

which reduces to
Em(AB) = Em(BA).

But AB is m×m, so
Em(AB) = det(AB).



Barrett: The Cauchy-Binet Formula 17

Then by the lemma,

det(AB) =
∑

K⊆N

|K|=m

detA[M,K] detB[K,M ]

which is (2). �

Wayne Barrett
Brigham Young University
Contributed





Cramer’s Rule

Though it should not be advocated as a practical means for solving systems of linear equa-
tions Ax = b, in which A is n× n, x is n× 1, and b is n× 1, Cramer’s rule is a historically
fundamental idea of linear algebra that is useful for the analytic representation of the sen-
sitivity of a component of the solution x to the data A,b. It is frequently taught in the
elementary course, either without proof or with an algebra-intensive computational proof
that is more drudgery than illuminating. Actually it can be viewed as a corollary to the
multiplicativity of the determinant function, while again reinforcing important mechanics of

matrix multiplication. To see this, adopt the notation A
i← b for the n × n matrix that

results from replacing the ith column of A with the column vector b and rewrite the system

Ax = b

as
A
[

I
i← x

]

= A
i← b.

That the latter is an expanded version of the former again simply makes use of observation
(b) from page 9. Taking determinants of both sides and using the multiplicativity of the
determinant function then gives

(detA)
(

det
[

I
i← x

])

= det
[

A
i← b

]

.

But det
[

I
i← x

]

= xi by Laplace expansion, so that if detA 6= 0, we have

xi =
det

[

A
i← b

]

detA
,

which is Cramer’s rule. This proof also gives practice in the important skill of exploiting the

structure of sparse matrices, in this case I
i← x.

The Editors
College Mathematics Journal 23 (1992), 299–303
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The Multiplicativity of the Determinant

The idea for the following proof was submitted by William Watkins who credited his idea
to a discussion of 3× 3 determinants in [1]. Two facts are assumed:

(i) detEC = detC if E is a product of type III (row replacement) elementary matrices.

(ii) The determinant of a 2× 2 block triangular matrix is the product of the determinants
of the diagonal blocks [2].

Let A and B be n× n matrices. Then

(detA)(detB) = det

[

A 0
−I B

]

= det

[

I A
0 I

]

· det

[

A 0
−I B

]

= det

[

I A
0 I

] [

A 0
−I B

]

because

[

I A
0 I

]

is a product of type III elementary matrices. Continuing,

(detA)(detB) = det

[

0 AB
−I B

]

= (−1)n det

[

AB 0
B −I

]

n column interchanges

= (−1)n(detAB) · det(−I)

= detAB.
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PART 2

Determinants





Introduction

Leibnitz formalized the determinant in 1693, and there are strong Japanese claims to knowl-
edge of it in 1683 with likely earlier precursors. But after a longer history than other linear
algebraic concepts, the determinant has become controversial! Since it is seldom numerically
efficient to compute a solution to a problem by calculating a determinant, and since it is
difficult to define the determinant so cleanly in infinite dimensions, the notion of determinant
is sometimes downplayed by computational linear algebraists and operator theorists.

Nonetheless, it is difficult to imagine a more fundamental single scalar to associate with
a square matrix, and experience has long demonstrated its ability to contribute unique
insights on both theoretical and applied levels. The structural beauty of determinants is not
in question, and, as students find relative ease with their concrete nature, they remain a
core topic of elementary linear algebra. However, it is difficult for the first course to include
more than the tip of the iceberg of analytic power determinants hold.

Muir’s volumes on the history of determinants contain an immense amount of classi-
cal information, both tedious and fundamental, so that it is difficult to assemble many
“fresh” items about such an historical topic. We have included here a number of items that
are less well-known and can enrich the elementary course. Because of its centrality, there
are remarkably many ways to calculate a determinant. The definition, Laplace expansion,
elementary operations, and Schur complements are familiar. Less familiar and amusing ways
are discussed in the pieces by Barrett and by Fuller and Logan, and these are only a sample.
The fundamental theorem of multiplicativity of the determinant lies in contrast to the fact
that the determinant of a sum has no simple relation to the sum of the determinants. Several
aspects of what is true are discussed in the first two papers of this part. Each of the other
pieces contains an elementary idea that may intrigue teachers as well as students.
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The Determinant of a Sum of Matrices

If A = (aij) and B = (bij) are n × n matrices such that aij = bij for i 6= s and C = (cij)
is an n × n matrix such that cij = aij for i 6= s and csj = asj + bsj for j = 1, 2, . . . , n
then |C| = |A| + |B|. This property of determinants leads some students to the incorrect
generalization that |A +B| = |A|+ |B| for any matrices A and B.

The formula for |A+B| is actually a bit more involved; since, going back to the definition

of determinants, we find that |A + B| =
∑

(a1i1 + b1i1) · (a2i2 + b2i2) · · · (anin + bnin) where
i1, i2, . . . , in range over all permutations of 1, 2, . . . , n. If, in evaluating this sum of products,
we choose first all the aij and sum over the permutations of 1, 2, . . . , n, we obtain the value
|A|. If we choose the bij, we obtain |B|. If we make some other definite choice of aij or bij from
each parenthesis, and sum over the permutations of 1, 2, . . . , n, we obtain the determinant
of a matrix whose kth row is the kth row of A or B depending upon whether we chose aij

or bij from the kth parenthesis.
There are 2n possible ways of making the above choices; therefore, we see that we may

evaluate |A +B| by constructing the 2n matrices each of which is obtained by choosing for
its kth row the kth row of A or B and then taking the sum of the determinants of these
matrices.

This result may be extended to |A1 + A2 + · · · + At|. We find in a similar manner that
|A1 +A2 + · · ·+At| is the sum of the determinants of tn matrices each of which is obtained
by choosing for its kth row one of the Ai.

The student should note that if a1, a2, . . . , at are elements of some non-commutative ring,
there is a strong analogy between the expressions for |A1+A2+· · ·+At| and (a1+a2+· · ·+at)

n

in that (a1 + a2 + · · ·+ at)
n is the sum of tn products each of which is obtained by choosing

for its kth factor one of the ai.

L.M. Weiner
DePaul University
American Mathematical Monthly 63 (1956), 273
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Determinants of Sums

A Determinant Formula. In an issue of the College Mathematics Journal [Evaluating
“uniformly filled” determinants, CMJ 19, 1988, pp. 343–345], S.M. Goberstein exhibits a
formula for computing the determinant of a matrix V obtained from a matrix U by adding
the scalar v to every entry of U . The author then evaluates several determinants of this type
and mentions that freshmen mathematics majors in the Soviet Union have used the method
for several decades.

The method that Goberstein exhibits for determinant of this type is a very special case
of an interesting formula for the determinant of the sum of any two matrices. This formula
for det(A+B) can be easily derived from the Laplace expansion theorem, and consequently
is readily accessible to students in an elementary linear algebra course. As we shall see,
the formula can also be used to directly obtain important results about the characteristic
polynomial, and about relationships between the characteristic roots and subdeterminants
of A. The formula in question is one of those “folk” results whose precise origins are difficult
to trace. It appears in [Marvin Marcus, Finite Dimensional Multilinear Algebra, Part II,
Marcel Dekker Inc., New York, 1975, pp. 162–163] with a related result about the permanent.

[Ed: If A = (aij), per (A) ≡
∑

n
∏

i=1

aiσ(i), in which the sum is over all permutations σ. Thus,

the permanent is the determinant without the − signs.] In fact, the permanent version
of the formula provides a simple proof of the classical formula that counts the number
of derangements of an n element set [Herbert J. Ryser, Combinatorial Mathematics, The
Mathematical Association of American, Carus Mathematical Monograph #14, 1963, pp.
22–28]. However, I first learned the determinant version from Professor Emilie Haynsworth
more than twenty years ago. The formula is

det(A +B) =
∑

r

∑

α,β

(−1)s(α)+s(β) det (A [α|β]) det (B(α|β)) . (1)

In (1): A and B are n-square matrices; the outer sum on r is over the integers 0, . . . , n, for a
particular r, the inner sum is over all strictly increasing integer sequences α and β of length
r chosen from 1, . . . , n; A[α|β] (square brackets) is the r-square submatrix of A lying in rows
α and columns β; B(α|β) is the (n− r)-square submatrix of B lying in rows complementary
to α and columns complementary to β; and s(α) is the sum of the integers in α. Of course,
when r = 0 the summand is taken to mean det(B) and when r = n, it is det(A).

The proof of (1) is a very simple consequence of the linearity of the determinant in each
row of the matrix, and the standard Laplace expansion theorem. Here are the details of the
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argument. Write

det(A+B) = det
(

A(1) +B(1), . . . , A(n) +B(n)

)T
(2)

where A(i) denotes the ith row of A. The right side of (2) formally acts just like a product
of the “binomials” A(i) + B(i), i = 1, . . . , n: this is the meaning of det being linear in the
rows. Thus for each r chosen from 0, . . . , n, the right side of (2) contributes a sum over all
α of length r of terms of the form

det
(

B(α′

1
), . . . , A(α1), . . . , A(αr), . . . , B(α′

n−r)

)

(3)

in which A(αt) occupies row position αt in (3), t = 1, . . . , r and B(α′

t)
occupies row position

α′t, t = 1, . . . , n − r. The sequence α′ is strictly increasing and complementary to α in
1, . . . , n. Let Xα denote the n-square matrix in (3), i.e., A(αt) is row αt of Xα, t = 1, . . . , r
and B(α′

t)
is row α′t of Xa, t = 1, . . . , n− r. (In the cases r = 0 and r = n,Xα is B and A,

respectively.) In terms of Xα we have

det(A+B) =
∑

r

∑

α

det(Xα). (4)

Use the Laplace expansion on rows numbered α in Xα to obtain

det(Xα) = (−1)s(α)
∑

β

(−1)s(β) det (Xα[α|β]) det (Xα) (α|β). (5)

But according to the definition of Xα,

Xα[α|β] = A[α|β], (6)

and
Xα(α|β) = Xα[α′|β ′]

= B[α′|β ′]
= B(α|β).

(7)

Substitute (6) and (7) in (5) and then replace det(Xα) in (4) by (5). The result is formula
(1).

Some Examples. The examples in Goberstein’s article are all of the form A+B in which
B has rank 1. Any rank 1 matrix is of the form B = uvT where u and v are nonzero n× 1
matrices. Every subdeterminant of uvT of size 2 or more is 0, so that the only summands that
survive on the right side of the formula (1) are those corresponding to r = n and r = n− 1.
For r = n the single summand is det(A); for r = n− 1 the interior sum may be rewritten as

n
∑

i,j=1

(−1)i+j det (A(i|j))uivj. (8)

The i, j entry of adj(A), the adjugate of A (sometimes called the adjoint of A), is
(−1)i+j detA(j|i) and hence (8) can be written as vTadj(A)u. Thus we have the rather
neat formula

det(A+ uvT ) = det(A) + vTadj(A)u. (9)
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The first matrix considered in Goberstein’s article is

diag(1− n, 2− n, 3− n, . . . , 0) + nJ (10)

in which J is the n-square matrix all of whose entries are 1. Let A be the diagonal matrix in
(10) and let u = ne, v = e where e is the n× 1 matrix all of whose entries are 1. Obviously
det(A) = 0 and the only term that survives in (8) corresponds to i = j = n, namely

n · (1− n)(2− n) · · · 1 = (−1)n−1n!.

The second and third matrices considered in Goberstein’s article are

−P + J (11)

and the 2n-square matrix
M + J. (12)

In (11), P is the matrix whose only nonzero entries are 1’s on the sinister diagonal, i.e.,
Pi,n−i+1 = 1, . . . , n; the matrix M in (12) is a direct sum of n copies of the 2-square matrix

[

0 1
1 0

]

,

and J is the 2n-square matrix of 1’s. In (11) note that det(P ) = (−1)p where p = [n/2],
i.e., the largest integer in n/2. Since P 2 = In we have P−1 = P ,

adj(P ) = det(P ) · P−1

= (−1)pP.

Then
adj(−P ) = det(−P )(−P )−1

= (−1)n+1 det(P ) · P
= (−1)n+1(−1)pP

= (−1)n+p+1P,

so that (9) becomes

det(−P + J) = det(−P ) + eTadj(−P )e

= (−1)n+p + (−1)n+p+1eTPe

= (−1)n+p(1− n).

It is easy to check that n+ p and n(n+ 1)/2 have the same parity and thus

det(−P + J) = (−1)n(n+1)/2(1− n). (13)

The value of det(M +J) is equally simple to compute. Observe that M also satisfies M−1 =
M , and that det(M) = (−1)n. Thus, as was the case with the matrix P ,

adj(M) = (−1)nM,
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and again taking u = v = e, (9) specializes to

det(M + J) = det(M) + (−1)neTMe

= (−1)n + (−1)n(2n)

= (−1)n(1 + 2n).

(14)

The arguments used so far point to a unified formula incorporating (13) and (14). Let A be
an arbitrary n-square real orthogonal matrix. Then

adj(A) = det(A)A−1

= det(A)AT .

If u = ce and v = e then A+ uvT = A+ cJ and (9) becomes

det(A + cJ) = det(A) + det(A)ceTATe

= det(A)(1 + ca)
(15)

where a is the sum of the entries in A. A referee points out that the formula (15) holds for
matrices that satisfy eTAe = eTA−1e. The proof is identical.

One of the troika of excellent referees assigned to this paper suggests several additional
examples on which to apply (9) or some variant of it. The first of these is the matrix

P +B (16)

where B is the n-square rank 1 matrix whose kth row is

B(k) = k[1 2 3 . . . n], k = 1, . . . , n,

and P is the matrix in (11). Note that B = uvT with

u = v − [1 2 3 . . . n]T .

Then (9) becomes

det(P +B) = det(P ) + (−1)puTPu

= (−1)p

(

1 +
n
∑

k=1

k(n − k + 1)

)

.

The summation in this last formula is quickly evaluated as

n(n+ 1)(n+ 2)/6

and thus
det(P +B) = (−1)p(1 + n(n+ 1)(n + 2)/6), p = ndiv 2. (17)

As another example we will evaluate the function

f(x) = det(In +B) (18)

where B is the n-square rank 1 matrix whose kth row is

B(k) = xk[1 x · · · xn−1], k = 1, . . . , n
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(x is indeterminate). Note that
B = xuuT

where
u = [1 x x2 · · · xn−1]T .

Again applying (9) we have
f(x) = 1 + xuTu

= 1 + x
n−1
∑

k=0

x2k

= 1 +
n−1
∑

k=0

x2k+1.

The general idea of how to use (9) should be clear, so we leave a final example as an exercise
for the reader: evaluate

f(x) = det(D + xJ)

where D = diag(1, 2, . . . , n). The answer is

f(x) = n!

(

1 + x
n
∑

k=1

1

k

)

.

The Characteristic Polynomial. The formula (1) can be directly applied to the
characteristic matrix λIn − B by replacing A by λIn and B by −B. Since det(In[α|β]) is 0
for α 6= β and is 1 for α = β, we have

det(λIn − B) =
n
∑

r=0

∑

α

λr det(−B(α|α))

=
n
∑

r=0

λr(−1)n−rbn−r

(19)

where bn−r is the sum of all (n− r)-square principal subdeterminants of B. If λ1, . . . , λn are
characteristics roots of B then

det(λIn − B) =
n
∏

i−1

(λ− λi)

=
n
∑

r=0

λr(−1)n−ren−r

(20)

where ek is the kth elementary symmetric polynomial in λ1, . . . , λn. Matching coefficients
in (19) and (20) we have

ek = bk, k = 1, . . . , n.

Of course, k = 1 and k = n are the familiar

tr(B) =
n
∑

i=1

λi,
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and

det(B) =
n
∏

i=1

λi.
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An Application of Determinants

A simple and elegant application of the theory of determinants for the beginning student is
the following criterion of Sylvester, a well-known theorem of algebraic lore: let K be a field
and f(x) = amx

m + · · ·+ a1x+ a0, g(x) = bnx
n + · · ·+ b1x+ b0, where am 6= 0 6= bn, be two

polynomials in K[x]; then f(x) and g(x) have a nonconstant factor in K[x] if and only if the
determinant of the following (m+ n)× (m+ n) matrix A is zero:

A =





























am am−1 · · · a1 a0 0 0 · · · 0
0 am · · · a2 a1 a0 0 · · · 0
· · · · · · · · · · ·
0 0 · · · · · · a0

bn bn−1 · · · b0 0 · · · 0
0 bn · · · b1 b0 · · · 0
· · · · · · · · · · ·
0 0 · · · · · · b0





























.

We present a simple proof of this theorem which requires only knowledge of the fact that
the determinant of the product of two matrices is the product of the determinants; no use
of the theory of linear equations is needed. Set

B =





















xn+m−1 0 0 · · · 0
xn+m−2 1 0 · · · 0
xn+m−3 0 1 · · · 0
· · · · · · ·
x 0 0 · · 1 0
1 0 0 · · · 1





















.

Then|B| = xn+m−1 and

|AB| = |A|xn+m−1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xn−1f(x) am−1 am−2 · · · 0
xn−2f(x) am am−1 · · · 0
· · · · · ·
f(x) · · · · · a0

xm−1g(x) bn−1 bn−2 · · · 0
· · · · · ·
g(x) · · · · · b0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= f(x)h(x) + g(x)k(x),

where h(x) and k(x) are polynomials in K[x] of degree at most n−1 and m−1, respectively,
calculated by expanding |AB| by the first column.
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If f(x) and g(x) have a nonconstant factor r(x), then

|A|xn+m−1 = f(x)h(x) + g(x)k(x) = r(x)q(x),

for some polynomial q(x). If q(x) = 0, then clearly |A| = 0. If q(x) 6= 0, then r(x) is a
multiple of some power of x. But since r(x) is a factor of both f(x) and g(x), both a0 and
b0 must be zero, whence the last column of A consists of zeros and again |A| = 0.

Conversely, suppose |A| = 0. Then f(x)h(x) = −g(x)k(x). Factoring both sides of
this equality into irreducible factors over K we must obtain the same factors, and hence all
factors of f(x) must divide either g(x) or k(x). But since k(x) is of at most degree m− 1,
not all factors of f(x) can divide k(x), hence f(x) and g(x) have a common factor.

Helen Skala
University of Massachusetts, Boston
American Mathematical Monthly 78 (1971), 889–890



Cramer’s Rule via Selective Annihilation

For an instructive classroom session that employs important concepts in linear algebra, begin
by solving

a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

(a11a22 − a12a21 6= 0) (1)

using Cramer’s well-known rule:

x1 =

∣

∣

∣

∣

∣

b1 a12

b2 a22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣

.

This result may be easily rederived by writing (1) in vector form as

x1a1 + x2a2 = b, (2)

where

a1 =
[

a11 a21

]T
, a2 =

[

a12 a22

]T
, b =

[

b1 b2
]T
.

Since the vector v = [ a22 −a12 ]T is orthogonal to a2, taking its dot product with both
sides of (2) leads to

x1a1 · v = b · v,
or

x1 =
b · v
a1 · v

=
b1a22 − b2a12

a11a22 − a21a12
=

∣

∣

∣

∣

∣

b1 a12

b2 a22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣

.

Thus, by annihilating one term in the vector equation we are able to determine one of the
unknowns.

This idea may be generalized to three dimensions in a natural way. Given the vector
equation

x1a1 + x2a2 + x3a3 = b

for noncoplanar vectors a1, a2, a3, we wish to take the dot product of both sides with a
vector v that will annihilate both a2 and a3. The cross product is the obvious choice, and
leads to

x1a1 · a2 × a3 = b · a2 × a3.
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Thus

x1 =
b · a2 × a3

a1 · a2 × a3

When the triple products are expressed as determinants, the Cramer’s Rule formula for x is
obtained.

The idea of eliminating all but one of the vector terms by an appropriate dot product
may be extended to n equations in n unknowns. Consider the equation

x1a1 + x2a2 + · · · + xnan = b, (3)

where {ai = (ai1, ai2, . . . , ain) : 1 ≤ i ≤ n} are assumed to be independent vectors in IRn To
generate a vector v orthogonal to a2, . . . , an, for example, form the formal array













e1 e2 · · · en

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann













,

where ei is the ith standard basis vector, and expand as a determinant along the first row.
The resulting linear combination of e1, . . . , en is the desired vector v. Note that, for any
vector c = [c1, . . . , cn]

T , the value of v · c is given by

v · c = det













c1 c2 · · · cn
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann













,

verifying that v ·ai = 0 for i = 2, . . . , n. Alternatively, observe that the explicit formulation
of v is not necessary. We simply require a way to compute v ·c for any vector c. Accordingly,
for 1 ≤ i ≤ m, define a linear functional Li by the formula

Li(c) = det(a1, . . . , ai−1, c, ai+1, . . . , an)

for each vector c. Then Li(aj) = 0 for j 6= i, and applying Li to both sides of (3) gives

xiLi(ai) = Li(b).

This is equivalent to Cramer’s Rule.

Dan Kalman
The Aerospace Corporation
College Mathematics Journal 18 (1987), 136–137



The Multiplication of Determinants

There are perhaps half a dozen different proofs given in the literature to the classical theorem
asserting that the determinant of the product of two square matrices is equal to the product
of the two determinants of the individual matrix factors. There is, of course, always the
vague question as to how much variation in two proofs should entail a feeling that the two
proofs are really essentially different. But nobody is likely to gainsay that the three proofs
given in the standard texts of Bôcher, Kowalewski, and Birkhoff and MacLane are quite
different from each other.

The purpose of this note is to present still another proof which I have used in the classroom
and which has been particularly suitable from the point of view of conciseness and also from
the point of view of what properties of determinants and matrices it is convenient to develop
beforehand. Until recently I have never seen in the existing literature anything like it. But
in the preparation of this note a more thorough search has revealed the idea in a book by
G. Doster entitled Éléments de la théorie des determinants, [pp. 65–71]. The method is
there incompletely developed; it is applied explicitly only to three-rowed matrices and even
so misses some points of rigor.

Our proof, as distinguished from most other proofs of the same theorem, uses analysis to
obtain a purely algebraic result. Indeed the fundamental theorem of algebra (which despite
its name is a theorem of analysis rather than of algebra) is fundamental to our method. We
also use the further result from analysis, deduced from the implicit function theorem, to the
effect that the roots of an algebraic equation of the nth degree are continuous functions of
the coefficients, at least as long as the n roots are distinct.

Theorem 1. If P and Q are both n×n matrices, if P is non-singular and if Q has distinct
eigenvalues, none of which are zero, then the two equations

(1) det(xI −Q) = 0

and

(2) det(xP − PQ) = 0,

which are both equations of the n-th degree in x, have the same roots all of which are simple
and none of which is zero.

Proof. x is a root of (1) if and only if there exists an n-vector v 6= 0 such that

(3) (xI −Q)v = 0

and it is a root of (2) if and only if there exists an n-vector v 6= 0 such that

(4) (xP − PQ)v = 0.
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But (3) is readily transformed into (4) by multiplying on the left by P , and (4) likewise is
transformed by (3) by multiplying on the left by the inverse of P , which is assumed to exist.
It follows that every root of (1) is a root of (2) and every root of (2) is a root of (1). Since
the roots of (1) are the n distinct eigenvalues of Q, none zero, it is clear that the nth degree
equation (2), as well as (1), must have just n simple distinct roots, none zero.

Theorem 2. If P and Q are as in the previous theorem, then

(5) det(PQ) = (detP )(detQ).

Proof. Since, by Theorem 1, the equations (1) and (2) have simple identical roots, their
coefficients must be proportional. Now the coefficients of xn in these two equations are
1 and detP , respectively, while their constant terms are (−1)n detQ and (−1)n det(PQ)
respectively. det(PQ) 6= 0, since the case of a zero root was excluded from (1) and hence
also from (2). We are therefore fully justified in writing 1/detP = detQ/det(PQ), from
which (5) follows at once.

Theorem 3. If A and B are arbitrary n × n matrices

det(AB) = (detA)(detB).

Proof. Let C and D be n× n matrices such that C is non-singular, while D has distinct
eigenvalues, none zero. Define the matrices P (t) and Q(t) as follows:

P (t) = tA+ (1− t)C, Q(t) = tB + (1− t)D,
so that

(6) P (1) = A, Q(1) = B

and

(7) P (0) = C, Q(0) = D.

Also let

(8) F (t) = det(P (t)Q(t))− (detP (t))(detQ(t)).

F (t) is evidently a polynomial in t, which, if not identically zero, is of degree not exceeding
2n. Because of (7), we know that P (0) is non-singular and that Q(0) has distinct eigenvalues,
each different from zero. By continuity we know that the same is true for P (t) and Q(t) as
long as |t| is sufficiently small. Hence by Theorem 2 and (8) we know that F (t) = 0 for all
t whose absolute values are sufficiently small. Since F (t) is known to be a polynomial, we
must therefore have F (t) ≡ 0. In particular F (1) = 0, and the theorem then follows at once
from (6) and (8).

With Theorem 3 we have reached our main objective: but it will probably occur to the
reader that Theorem 3 is merely a special case of the following.

Theorem 4. Let pk be the coefficient of xk in the polynomial det(xI − B) and let qk be
the coefficient of xk in the polynomial det(xA − AB), where A and B are arbitrary n × n
matrices and where k = 0, 1, 2, · · · , n. Then pkqj = pjqk.
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We leave the proof as an exercise to the reader and merely remark that Theorem 3 is the
special case of Theorem 4 where k = 0 and j = n.

Theorem 3 also admits an entirely different generalization, the so-called Binet-Cauchy
formula relating to the product of certain types of rectangular matrices [4]. There appears
to be no way by which the methods of the present note can be modified so as to yield the
Binet-Cauchy formula directly. However, even though Theorem 3 is generally deduced as a
consequence of the Binet-Cauchy formula in most of the texts where the latter is discussed,
it is also possible to deduce the Binet-Cauchy formula as a consequence of Theorem 3.
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A Short Proof of a Result of Determinants

In the reference below, Busch proves the following:
Theorem. If A is an (n− 1)× n matrix of integers such that the row sums are all zero,

then |AA′| = nk2 where k is an integer. (A′ means A transpose, and |A| means determinant
of A.)

The proof uses an interesting application of the Cauchy-Binet theorem, prefaced by a
remark on how the unwary may be led astray if they improperly use the rules for manipulating
rows of a determinant. It is possible, by partitioning A, to get a simpler proof—one which
suggests generalizations and also provides the value of k. Write A = (B,Bβ ′), where B is
(n− 1)× (n− 1) and β = (−1,−1, · · · ,−1) is 1× (n− 1). Then

|AA′| =

∣

∣

∣

∣

∣

(B,Bβ)

(

B ′

βB ′

)∣

∣

∣

∣

∣

= |BB ′ +Bβ ′βB ′| = |B(I + β ′β)B ′|

= |B|2|I + β ′β|.
Since |I + β ′β| = n, we have |AA′| = n|B|2.

Reference
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Dodgson’s Identity

We begin with the 3× 3 matrix

M =







4 2 1
2 3 2
1 5 6







and evaluate its determinant as follows. Compute the determinant of each of the four
contiguous 2× 2 submatrices of M and record its value in the “center” of each:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4 2 1
8 1

2 3 2
7 8

1 5 6

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Disregarding the “edge” entries, we compute the determinant of the “new” 2× 2 submatrix
and divide by the center entry, yielding

∣

∣

∣

∣

∣

8 1
7 8

∣

∣

∣

∣

∣

3
=

57

3
= 19,

which is the determinant of M as can be checked by conventional methods.
More generally, we have the following.

Dodgson’s identity. Let M be an n× n matrix and let A be the submatrix obtained
by deleting the last row and column, B by deleting the last row and first columns, C by
deleting the first row and last column, D by deleting the first row and column, and E by
deleting the first and last rows and first and last columns. Let a, b, c, d, e be the respective
determinants of these submatrices and assume that e is nonzero (so E is invertible). Then

detM =

∣

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

∣

e
. (1)

A convenient mnemonic representation for (1) is
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= .

This identity may be viewed as a direct generalization of the rule for evaluating 2 × 2
determinants. Note that unlike the usual expansion rules for determinants such as the
minor expansion and Laplace’s expansion, which involve products from non-overlapping
submatrices, all five of these submatrices overlap in the “big” submatrix E.

We give the following elementary proof. Write M as a partitioned matrix

M =







r vT s
w E x
t yT u





 .

Since E is invertible, vT and yT are each linear combinations of the rows of E, while w and
x are linear combinations of the columns of E. Applying the corresponding elementary row
operations to M gives the matrix

M ′ =







r′ 0T s′

0 E 0
t′ 0T u′







where detM ′ = detM . Furthermore, the determinants of the submatrices of M ′ that cor-
respond to the submatrices A,B,C,D in M are unchanged because no row or column
outside any one of these submatrices has been added to one inside. Thus, a = detA =

det

[

r′ 0T

0 E

]

= r′e, and likewise b = (−1)n−2s′e, c = (−1)n−2t′e and d = u′e. Upon

expanding detM ′ we have detM ′ = (r′u′ − s′t′)e, which yields detM = (ad− bc)/e. �

Dodgson’s identity can be applied sequentially to evaluate the determinant of an n × n
matrix: Begin by computing the determinants of all the contiguous 2×2 submatrices, apply
the identity to all of them to yield the determinants of all contiguous 3× 3 submatrices, and
so on. We illustrate with the following 4× 4 example:

A =











1 3 2 −1
2 −1 3 1
−1 2 1 1
−2 −5 2 3











.
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Step 1: Evaluate the contiguous 2× 2 submatrices:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 3 2 −1
−7 11 5

2 −1 3 1
3 −7 2

−1 2 1 1
9 9 1

−2 −5 2 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Eliminate the entries on the edge as they are no longer needed:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−7 11 5
−1 3

3 −7 2
2 1

9 9 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Step 2: Evaluate the contiguous 3× 3 submatrices by Dodgson’s identity.
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−7 11 5
−16 19

3 −7 2
45 −25

9 9 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

For example,

−16 =

∣

∣

∣

∣

∣

−7 11
3 −7

∣

∣

∣

∣

∣

−1
=

∣

∣

∣

∣

∣

∣

∣

1 3 2
2 −1 3
−1 2 1

∣

∣

∣

∣

∣

∣

∣

.

Again eliminating the entries on the edge, we arrive at

∣

∣

∣

∣

∣

∣

∣

−16 19
−7

45 −25

∣

∣

∣

∣

∣

∣

∣

.

Step 3:
∣

∣

∣

∣

∣

−16 19
45 −25

∣

∣

∣

∣

∣

−7
= 65,

which is the determinant of A.
We leave it as an exercise to show that this method of evaluating an n× n determinant

requires approximately n3 multiplications and divisions to carry out. Note that it is also
highly parallelizable, as the computation of the determinants of each k × k submatrix in
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step k − 1 can be done independently. Nonetheless, this method cannot be regarded as a
serious computational tool because the process terminates if one ever has to divide by zero
before reaching the answer. This cannot in general be anticipated beforehand and there
seems to be no way to effectively compensate. However, for the 3×3 and 4×4 determinants
encountered in the classroom one can quickly check for a problem with zeros before beginning
the computation, and, if necessary, avoid it by a judicious row/column interchange.

History. Dodgson’s identity is a special case of two earlier determinantal identities,
Jacobi’s formula for minors of the inverse and Sylvester’s identity [4]. See [1] for a survey
of several classical determinantal identities. The above method for evaluating determinants
was introduced by C.L. Dodgson (better know as the author Lewis Carroll) in [2]. It has no
doubt been rediscovered independently several times (see e.g. [5]) and has appeared in a text-
book [3]. I also discovered Dodgson’s identity and his method for evaluating determinants
in 1978–79 and even used his term “condensation” to describe the process. At the time I
verified Dodgson’s identity by means of the above proof; that the identity and procedure are
credited to him I learned at a very interesting talk given by Alfred W. Hales at the annual
meeting of the Mathematical Association of America in Phoenix, 1989. He presented exactly
the same proof and reported on more general identities of this type and their application to
the solution of a problem in combinatorics [6]. As this account is surely incomplete, I would
appreciate learning from readers of other occurrences of Dodgson’s identity.
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On the Evaluation of Determinants by Chiò’s Method

1. Introduction

The traditional methods for hand-calculating the determinant of an n × n matrix are
based either on expansion along a row or column (expansion by minors), or on simplifying
the determinant by performing elementary row operations (adding a multiple of one row
to another, and so on). In addition, for second- and third-order determinants, there are
well-known schemes which permit the calculation to be done quickly; but unfortunately, and
especially to the consternation of students, these special schematic devices do not work for
higher order determinants.

The purpose of this note is to publicize a concise, simple, alternative method for hand-
calculating a determinant of arbitrary order. This method, a special case of which was
originally described by Chiò [1] in 1853, owes its utility to the fact that it requires only
the calculation of second-order determinants. Other treatments of Chiò’s method appear in
Whitaker and Robinson [2] and Muir [3], but these treatments, which give proofs based on
Sylvester’s method, are somewhat dated with respect to language and notation; the method
does not in general find its way into more modern textbooks, and it is relatively unknown
to many mathematicians. In our treatment in the following paragraphs, we have hoped to
make Chiò’s method accessible to the beginning student of matrix algebra; this includes a
precise formulation of a generalization of the method and a proof which depends only on
some elementary facts about determinants.

2. The Reduction Theorem.

Given an n-th order determinant, the procedure begins by reducing it to a single (n−1)st
order determinant, and then reducing the (n− 1)st order determinant to a single (n− 2)nd
order determinant, and so on until a simple second order determinant is reached. At each
step, the reduction for a kth order determinant to a (k−1)st order determinant requires only
the calculation of (k − 1)2 second order determinants. Consequently, the evaluation of an
nth order determinant can be carried out by evaluating (n−1)2 +(n−2)2 + · · ·+32 +22 +1
second-order determinants.

The basic reduction theorem can be formulated as follows:
Theorem. Let A = (aij) be an n × n matrix for which ann 6= 0, and let E = (eij) be the
(n− 1)× (n− 1) matrix defined by

eij = aijann − ainanj , i, j = 1, . . . , n− 1.
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Then
detE = an−2

nn detA.

We note that the elements of eij of the (n−1)×(n−1) matrixE consist of the determinants
of certain two-by-two submatrices of A; that is,

eij = det

(

aij ain

anj ann

)

, (i, j = 1, . . . , n− 1).

We now give the proof of the reduction theorem.
Proof: From the matrix A = (aij) we construct a new n × n matrix B by multiplying the
first n− 1 rows of A by the non-zero element ann. Hence

B =













a11ann a12ann · · · a1nann
...

...
...

an−1,1ann an−1,2ann · · · an−1,nann

an1 an2 · · · ann













Therefore, we clearly have
detB = an−1

nn detA. (1)

Now, let C be the matrix obtained from B by replacing the ith row of B by its ith row
minus ain times its last row; we do this for i = 1, 2, . . . , n− 1. Then,

C =













a11ann − a1nan1 · · · a1,n−1ann − a1nan,n−1 0
...

...
...

an−1,1ann − an−1,nan1 · · · an−1,n−1ann − an−1,nan,n−1 0
an1 · · · an,n−1 ann













or

C =

















0

E
...
0

an1 · · · an,n−1 ann

















where E is the desired reduced matrix. Since C was obtained from B by elementary row
operations, it follows that

detC = detB (2)

but, upon expanding C by minors along the last column, we obtain

detC = ann detE. (3)
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Equations (1),(2), and (3) imply

detE = an−2
nn detA,

and the theorem is proved.
Instead of ann, the statement of the theorem can be extended to any non-zero element ars

of A. This can be accomplished by interchanging the rth and nth rows and the sth and nth
columns, thereby placing the element ars in the n,n position; moreover, the two interchanges
leave the sign of the original determinant unaltered. In general, it is not difficult to see that
if ars 6= 0, then

detE = an−2
rs detA, where E = (eij)

is now given by
eij = (−1)t(aijais − aisarj),

where t = (i− r)(j − s), t 6= 0.
We shall call the element ars the pivot element. If a zero element of A is chosen as the

pivot, then the determinant of E turns out to be zero, in which case the determinant of A
cannot be evaluated by this method. Other treatments, as in the references, depend upon
having a pivot element numerically equal to 1.

3. An Example

To illustrate this method, we evaluate the fourth order determinant
∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −2 3 1
4 2 −1 0
0 2 1 5
−3 3 1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Choosing a44 = 2 as the pivot and applying the reduction theorem with n = 4, the above
determinant is equal to

1

24−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1
−3 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−2 1
3 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

3 1
1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4 0
−3 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 0
3 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 0
1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 5
−3 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 5
3 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 5
1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

4

∣

∣

∣

∣

∣

∣

∣

5 −7 5
8 4 −2

15 −11 −3

∣

∣

∣

∣

∣

∣

∣

.

In the resulting third-order determinant, we shall choose −11 as the pivot element with n = 3
in order to illustrate the generalization of the method. Therefore, the original determinant
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becomes
(

1

4

)

(

1

(−11)3−2

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

5 −7
15 −11

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−7 5
−11 −3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

8 4
15 −11

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4 −2
−11 −3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= − 1

44

∣

∣

∣

∣

∣

50 76
−148 −34

∣

∣

∣

∣

∣

= −217 .

Clearly, this method is much quicker than expansion by minors, and it requires considerably
less bookkeeping than any other method; it is general enough, moreover, to calculate deter-
minants of arbitrary size, and it is exceedingly easy to master. As an alternative method
for hand-calculating determinants, therefore, Chiò’s method is quite effective. For numerical
computations of large determinants on a computer, however, Chiò’s method is not so efficient
as other methods such as, for example, Gaussian elimination, because of certain difficulties
with round-off errors. In addition, the method described above requires approximately 2

3
n3

multiplications, whereas Gaussian elimination requires approximately 1
3
n3.
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Apropos Predetermined Determinants

In “Predetermined Determinants” [CMJ 16 (September 1985) 227–229], David Buchtal
illustrated how determinants whose terms in arithmetic progression can be used to moti-
vate students to study determinants and their properties. In this capsule, we extend these
results to geometric progressions and to arithmetic progressions of higher order.

The value of a determinant whose terms are in geometric progression is zero, because the
rows of the determinant are proportional. Thus,

∣

∣

∣

∣

∣

∣

∣

0.0625 0.125 0.25
0.5 1 2
4 8 16

∣

∣

∣

∣

∣

∣

∣

= 0 and

∣

∣

∣

∣

∣

∣

∣

0.0016 0.008 0.04
0.2 1 5
25 125 625

∣

∣

∣

∣

∣

∣

∣

= 0.

Recall that
∣

∣

∣

∣

∣

∣

∣

1 2 3
4 5 6
7 8 9

∣

∣

∣

∣

∣

∣

∣

= 0.

One can also compute that

∣

∣

∣

∣

∣

∣

∣

∣

∣

12 22 32 42

52 62 72 82

92 102 112 122

132 142 152 162

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 and

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

13 22 33 43 53

63 73 83 93 103

113 123 133 143 153

163 173 183 193 203

213 223 233 243 253

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

In fact, this follows from the more general cases
∣

∣

∣

∣

∣

∣

∣

∣

∣

a2 (a + 1)2 (a+ 2)2 (a+ 3)2

b2 (b+ 1)2 (b+ 2)2 (b+ 3)2

c2 (c+ 1)2 (c+ 2)2 (c+ 3)2

d2 (d+ 1)2 (d+ 2)2 (d+ 3)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

and
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a3 (a + 1)3 (a + 2)3 (a + 3)3 (a+ 4)3

b3 (b+ 1)3 (b+ 2)3 (b+ 3)3 (b+ 4)3

c3 (c+ 1)3 (c+ 2)3 (c+ 3)3 (c+ 4)3

d3 (d + 1)3 (d + 2)3 (d+ 3)3 (d+ 4)3

e3 (e+ 1)3 (e+ 2)3 (e+ 3)3 (e+ 4)3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

We can prove this for the 4×4 determinant of squares by proceeding as follows: reduce the
second, third, and fourth columns to first-degree polynomials by adding suitable multiples
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of the first column to each, then reduce the third and fourth columns to constants by adding
a suitable multiple of the second column to each, then reduce the fourth column to zero
by adding a suitable multiple of the third column to the fourth column. For the 5 × 5
determinant of cubes, this type of procedure reduces the fifth column to zeros.

These results can be further generalized to determinants whose entries are members of
an arithmetic progression of higher order. For a given sequence a1, a2, a3, . . . the sequence
of differences of consecutive terms ∆a1 = a2− a1,∆a2 = a3− a2,∆a3 = a4− a3, . . . is called
the first-order difference sequence; higher-order difference sequences are formed by repeating
this procedure on the preceding difference sequence. An arithmetic progression of order k is
a sequence for which the kth order difference sequence is the last one that does not vanish.
In other words, the kth order difference sequence is the constant sequence d, d, d, . . . with
d 6= 0. Thus,

1 4 9 16 25 . . .
3 5 7 9 . . .

2 2 2 . . .
and

1 8 27 64 125 . . .
7 19 37 61 . . .

12 18 24 . . .
6 6 . . .

show that the consecutive squares (cubes) form an arithmetic sequence of order 2 (order 3).
More generally, as is well known, the consecutive kth powers form an arithmetic sequence of
order k. [See Calvin Long’s “Pascal’s Triangle. Difference Tables, and Arithmetic Sequences
of Order N ,” CMJ 15 (September 1984) 290–298.]

Further examples are the polygonal and pyramidal numbers. The triangular numbers
(

1
2

)

n(n− 1), the pentagonal numbers
(

1
2

)

n(3n− 1), the hexagonal numbers n(2n− 1), etc.,

form arithmetic progressions of order two; the tetrahedral numbers
(

n
3

)

form an arithmetic

progression of order three.
Our main result is the following.

Theorem. Let a1, a2, a3, . . . be an arithmetic progression of order k, and let d be the constant
obtained as the kth difference sequence. Then

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 · · · an

an+1 an+2 · · · a2n

· · · · · ·
· · · · · an2

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

{

0, k ≤ n− 2,

(−n)(
n
2)dn, k = n− 1.

To prove this, we begin by subtracting the first column from the second, the second
column from the third, etc. In this way, we obtain a determinant whose second, third,
. . . , nth columns contain the elements of the first difference sequence. We continue by
subtracting the second column from the third, the third column from the fourth, etc., to
obtain a determinant whose third, fourth, . . . , nth columns contain the elements of the
second difference sequence. In the (n − 1)st step, we get a determinant whose last column
consists of the elements of the (n − 1)st difference sequence. If k ≤ n − 2 (equivalently,
n− 1 ≥ k + 1), then the last column is 0, and hence the determinant D = 0.

If k ≥ n − 1, then D 6= 0 and one may think that the determinant is no longer “prede-
termined.” Therefore, it may come as a surprise that in the case k = n− 1, the value of the
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determinant does not depend on the actual members of the arithmetic progression, so long
as consecutive members are entered. For example:

∣

∣

∣

∣

∣

∣

∣

12 22 32

42 52 62

72 82 92

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

22 32 42

52 62 72

82 92 102

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

32 42 52

62 72 82

92 102 112

∣

∣

∣

∣

∣

∣

∣

= · · · = −216.

This is a consequence of the following result, which may also be of interest in its own
right.
Lemma. Let a0, a1, a2, . . . be an arithmetic progression of order k with ∆kan = d for
n = 0, 1, 2, . . . . Then a0, am, a2m, . . . is also an arithmetic progression of order k with
∆kamn = mkd for n = 0, 1, 2, . . . . More generally, a subsequence formed by taking every
mth member, starting with an arbitrary member of the arithmetic progression of order k is
also an arithmetic progression of order k.

Proof of Lemma. An arithmetic progression of order k can be expressed as a polynomial of
degree k:

an = ckn
k + ck−1n

k−1 + · · · + c0 (ck 6= 0). (∗)

In more detail, an = (1+∆)na0 =
∑k

j=0

(

n
j

)

∆ja0 because ∆k+1a0 = · · · = ∆na0 = 0. Since the

∆ja0 are constants and
(

n
k

)

is a polynomial of degree k, we express an as in (∗). By linearity of

the operator ∆, and because ∆knh = 0 for h ≤ k−1, we have ∆kan = ∆kckn
k = ck∆

knk = d
for n = 0, 1, 2, · · · . Therefore, for

amn = ck(mn)k + ck−1(mn)k−1 + · · ·+ c0,

we have

∆kamn = ∆kckm
knk = mkck∆

knk = mkd for n = 0, 1, 2, . . . .

The general case follows from this, because we may omit the first N members of the arith-
metic progression of order k, the remainder is an arithmetic progression of the same order.

We may now conclude the proof of the Theorem as follows. In order to calculate the
value of D in the case k = n − 1, observe that the steps prescribed in the first part of the
proof have brought the original determinant to the form

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 ∆a2 · · · ∆n−2an−1 ∆n−1an

an+1 ∆an+2 · · · ∆n−2a2n−1 ∆n−1a2n

a2n+1 ∆a2n+2 · · · ∆n−2a3n−1 ∆n−1a3n

a3n+1 ∆a3n+2 · · · ∆n−2a4n−1 ∆n−1a4n

...
...

· · ·· · ·· · ·
...

...

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

By the Lemma, the elements in the jth column are in arithmetic progression of order n− j.
In particular, each element in the last column is the constant d. Moreover, the jth difference
sequence of the elements in the (n− j)th column is constant and is equal to njd.
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Therefore, we may bring the determinant to triangular form as follows. Subtract the first
row from the second, the second row from the third, etc., making all the elements except
the first one in the nth column equal to zero, and all the elements except the first one in the
(n − 1)st column equal to the constant value nd. Then subtract the second row from the
third, the third row from the fourth, etc., making all the elements except the first two in the
(n − 1)st column equal to zero, and all the elements except the first two in the (n − 2)nd
column equal to the constant n2d. Proceeding in this way, after the (n− 1)st step we get

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∗ ∗ · · · ∗ ∗ d
∗ ∗ · · · ∗ nd 0
∗ ∗ · · · n2d 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . .
nn−1d 0 · · · 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)
(

n
2

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

nn−1d 0 · · · 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . .
∗ ∗ · · · n2d 0 0
∗ ∗ · · · ∗ nd 0
∗ ∗ · · · ∗ ∗ d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)
(

n
2

)

n1+2+···+n−1dn = (−n)
(

n
2

)

dn.

As the signature indicates, it takes (n− 1) + (n− 2) + · · ·+ 2 + 1 =
(

n
2

)

switches of rows to

bring the determinant to the form in which the upper right triangle consists of zeros. As the
students will recall, the value of such a determinant can be calculated by taking the product
of the elements in the main diagonal.
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PART 3

Eigenanalysis





Introduction

Eigenvectors and eigenvalues are among the most powerful of linear algebraic concepts.
Eigenvectors (with eigenvalues) provide, in many instances, the right way to describe the
action of a linear map. Eigenvalues, and relations between them, yield a panoply of beau-
tiful and useful results. Eigenanalysis figures prominently in application and in functional
analysis. The basic ideas are not hard: Given a linear map L on a space V , eigenvectors are
the nonzero vectors on which the map acts most simply. Nevertheless, the concise definition,

nonzero v in V is an eigenvector of L ⇐⇒ L(v) = tv for some scalar t,

does not easily reveal its power and utility to students. (Indeed, a graduate student once
asked one of the editors about writing a Master’s thesis on “What are eigenvectors, anyway?”)

An added difficulty for students is that eigentheory is nonlinear. (How do you find v and
t so that L(v) = tv?) If A is an n×n matrix and L(v) = Av, the eigenvalues of L (and of A)
are the roots of the characteristic polynomial p(t) = det(tI − A). Definitely nonlinear, and
nontrivial for the numerical analyst. And, for the lower division student, the computations
are more complicated than those required to row-reduce a matrix or orthogonalize a set of
linearly independent vectors. They require algebra, not just arithmetic (which they all do
on their calculators anyway).

Several of the articles in this chapter are intended to help the harried instructor con-
struct reasonable examples. Others discuss numerical methods or numerical exploration for
students. Others explore some of the beautiful relationships among eigenvalues, and the use
of eigenanalysis to illuminate various mathematical structures. Taken together, they add a
lot of meat to the bare bones of L(v) = tv.
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Eigenvalues, Eigenvectors and Linear Matrix Equations

Understanding of linear matrix equations such as the commutativity equation

AX −XA = 0

and Lyapunov’s and Sylvester’s equations (e.g. [1]) hinges upon a study of the transformation
from n× n matrices over a field F into itself, given by left and right multiplication by fixed
matrices:

X → AXB ≡ LA,B(X).

Being a linear transformation from a vector space into itself, of course LA,B has eigenval-
ues (though this seems curious to students). Eigenanalysis of LAB may be, and historically
typically is (e.g. [1]), carried out by developing the theory of Kronecker products) to give
an n2 × n2 matrix representation of LA,B . This construct, unfortunately, places the subject
beyond elementary status. However, for many purposes (all but some fine points), eigen-
analysis may be carried out at an elementary level and in a manner appropriate for discovery
exercises or an enrichment topic in the elementary course. It also illustrates the importance
of the notion of “left” (as opposed to right) eigenvector.

Suppose that A has eigenvalues {λi}ni=1 and associated right eigenvectors {yi}ni=1, while

B has eigenvalues {µj}nj=1 and associated left
(

zTB = µjz
T
)

eigenvectors {zj}nj=1. For sim-

plicity, we’ll assume that the λi’s are distinct and the µj’s are distinct, though deleting this
assumption poses an interesting challenge in the elementary context.

Claim: The eigenvalues of LA,B are {λiµj}ni,j=1 and the matrices
{

yiz
T
j

}n

i,j=1
are associated

(linearly independent) eigenvectors.

Proof: Let X = yiz
T
j . Then,

LA,B(X) = Ayiz
T
j B = λiyiµjz

T
j = (λiµj) yiz

T
j = λiµjX,

so that λiµj is an eigenvalue associated with the eigenvector yiz
T
j . If

0 =
∑

i,j

aijyiz
T
j = Y AZT ,

in which Y has the columns yi, Z has the columns zi, and A = (aij), then A = 0, as Y and

ZT are invertible. Thus, the set
{

yi, z
T
j

}

is linearly independent. The equality that results

in Y AZT exploits the Linear Algebra Curriculum Study Group’s three views of matrix
multiplication. [See “Modern Views of Matrix Multiplication” in Part 1 of this book.] �
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62 Part 3—Eigenanalysis

It is interesting that this approach shows that “eigenmatrices” of LA,B are generically rank

1. In general, they can be higher rank. For example,

[

1 0
1 1

]

is an eigenmatrix associated

with the eigenvalue 0 (multiplicity 4) of L[
0 0
1 0

]

,

[

0 0
1 0

].
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Matrices with Integer Entries
and Integer Eigenvalues

When eigenvalues are first covered in linear algebra, it is often convenient to give numerically
simple exercises—thus it may be desirable to provide problems which have integer solutions.
It is reasonably easy to find examples of 2× 2 and 3 × 3 matrices with integer entries and
integer eigenvalues, but this leads naturally to the question: exactly how can one construct,
in general, an n × n matrix with such a property? The theorem below gives a complete
answer, in the sense that all such matrices can be built up in the same elementary way.
Remarkably, its proof is based on only three well-known results.

Theorem. The n × n matrix A with integer entries has integer eigenvalues if and only
if it is expressible in the form

A =
n−1
∑

i=1

uT
i vi + kIn

where the ui and vi are row vectors with n integer components such that ui · vj = 0 for
1 ≤ i ≤ j ≤ n− 1, k is an integer, and In is the unit n× n matrix.

The eigenvalues are k, u1 · v1 + k, . . . ,un−1 · vn−1 + k.

Discussion and Proof. Consider the n× n matrix A with integer entries and eigenvalues.
We can choose one eigenvalue, say k, and form B = A − kIn. Clearly B also has integer
entries and eigenvalues, one of which is 0. It is now sufficient to show that B is expressible
in the form of the summation term in A above. The first step is to show:

Lemma 1. Let B be an n × n matrix with integer entries whose determinant is zero.
Then B is expressible in the form B = XY where X is n × (n − 1), Y is (n − 1) × n, and
all entries are integers.

Proof. This is based on a well-known result (see for example Theorem 7.10 in [2]): since
the determinant of B is zero, B is expressible in the form B = M1DM2 where M1 and M2 are
invertible and D has the form diagonal (d1, . . . , dn−1, 0), all entries of M1,M2, and D being
integers. Now D = D1D where D1=diagonal (1, . . . , 1, 0) is n× n, and B = (M1D1)(DM2).
But the nth column of M1D1 and the nth row of DM2 are null: delete these, and call the
remainder X and Y , respectively. Then B = XY as required.

Note that the converse also holds.
Two other fundamental lemmas are required: Lemma 2 may be found in the exercises of

Chapter 22 in [1], attributed to Barton, while Lemma 3 is Theorem III.12 in [3]. These are:

Lemma 2. Let B = XY where X is n× (n−1), Y is (n−1)×n. Then the characteristic
polynomial of B, |B − λIn|, is equal to the polynomial −λ |Y X − λIn−1|.
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64 Part 3—Eigenanalysis

Lemma 3. Let C be an m×m matrix with integer entries and integer eigenvalues. Then
there exists T , m × m and invertible, |T | = ±1, with integer entries such that T−1CT is
upper triangular.

These three lemmas are sufficient to complete the proof of the theorem. We have B =
XY , and there exists T, (n−1)× (n−1), such that TYXT−1 is upper triangular. Moreover,
the eigenvalues of XY are just 0 and those of Y X, or those of T (Y X)T−1.

Now rewrite B = (XT−1)(TY ) and set U = XT−1, V = TY . That is, B = UV and V U
is upper triangular. Letting uT

i be the ith column of U and vi be the ith row of V gives

B =
n−1
∑

i=1

uT
i vi and ui · vj = 0 for i < j.

Since the eigenvalues of B are those of V U , together with 0, these are 0 and ui · vi =
1, . . . , n− 1. Hence A is of the requisite form and has the stated property.

This is really only a proof of the “only if” case; however, the “if” case is merely a direct
retracement of the above steps.

We give an example of this construction for a 4× 4 case:










1
0
1
0











[

1 −2 1 1
]

+











2
1
2
−1











[

−1 −1 1 1
]

+











−3
2
1
2











[

1 2 −1 1
]

+1 ·











1 0
1

1
0 1











=











−3 −10 6 0
1 4 3 3
0 −2 3 4
4 6 0 1











has eigenvalues 1, 1 + 2, 1 + (−3), 1 + 2 or 1, 3,−2, 3.

Remark. The author has used this technique in constructing exercises for students, and
found it quite useful for 3× 3 and 4× 4 cases. However, the restriction ui · vj = 0 for i < j
makes it clumsy at higher levels (which are in any case beyond classroom work).

Problem. It would be pleasant to be able also to give a nice formula for the eigenvectors.
For the 3× 3 case, we obtain

eigenvalue eigenvector
k v1 × v2

k + u1 · v1 v1 × (u1 × u2)u1 + (u2 · v2)u2

k + u2 · v2 = (u2 · v2 − u1 · v1)u2 + (u2 · v1)u1

This is almost neat, but probably will not generalize easily.
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Matrices with “Custom Built” Eigenspaces

In a recent note [1], J.C. Renaud poses the question of constructing an n × n matrix with
integer entries and integer eigenvalues. The motivating problem is the need to provide
suitable matrices for classroom exercises in linear algebra. He proves an interesting theorem
which characterizes such matrices and can be used in their construction.

The motivating problem can be solved pragmatically in a way which may not impress
the purist, but will (if thoughtfully applied) provide a supply of suitable classroom exercises
and answer the more general motivating question:

How can one produce an n×n matrix possessing each of the following: (a) integer
entries; (b) a set of n integer eigenvalues in a specified proportion to each other;
(c) a corresponding set of n specified independent eigenvectors having integer en-
tries?

Such a matrix, A, is diagonalisable and so a nonsingular matrix P exists such that

P−1AP = D,

where D is a diagonal matrix with entries which are the eigenvalues of A. The matrix P , of
course, has the specified eigenvectors as columns. It follows that

A = PDP−1.

If we begin by constructing matrix P , using the specified n independent eigenvectors as
columns, and the matrix D, using a corresponding set of integers in the proportion specified
in (b), then the matrix A′ produced by the product

A′ = PDP−1

will possess properties (b) and (c) but not, in general, property (a).
This problem can be overcome by a variety of ruses. For example, A′ will have integer

entries if the determinant of P , detP , is a factor common to each eigenvalue.
A less restrictive approach is to begin with a set of relatively prime eigenvalues and

then multiply each entry of the matrix obtained, A′, by detP . This will ensure that the
resulting matrix, A′′, has the desired properties. However, each entry of A′′ and each of its
eigenvalues may have a factor, f , in common with detP . In that case a more manageable
and still suitable matrix A′′ can be obtained from A′′ by dividing each of its elements by f .
If {λi}ni=1 is the set of eigenvalues chosen for matrix A′, then {((detP )/f)λi}ni=1 will be the
set of eigenvalues of matrix A′′′. The original set of eigenvectors selected for A′ remain the
eigenvectors of A′′′.
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68 Part 3—Eigenanalysis

The calculations involved are extensive and require the writing of a suitable computer
program. This would invite the input of the order of the matrix, its eigenvalues, and the
corresponding eigenvectors. Subroutines for transposing a matrix, inverting a matrix and
multiplying matrices would quickly produce the matrix A′. A further subroutine could find
detP and the factor f . These values could then be used to display matrix A′′′ and its
eigenvalues.

Earlier, it was remarked parenthetically, that in using this method to generate suitable
classroom exercises, a thoughtful application is needed. Clearly the eigenvectors need to
be chosen so that the value of detP is small, otherwise the magnitude of the elements of
A′′′ may be too large to make pencil and paper calculation convenient. Of interest in this
context is an article by Robert Hanson [2], in which an algorithm for constructing matrices
which have determinant +1 or −1 is established. This can be used in the present situation
to construct a convenient matrix P and hence a suitable set of eigenvectors with integer
entries. If it is desired, the algorithm could be coded as a further subroutine.

The program will be useful in a variety of teaching and learning situations, including
the production of matrices (with integer entries) possessing a set of specified orthogonal
eigenvectors. This problem has been investigated by Konrad J. Heuvers [3]. He provides
several results which can be used to construct a real n×n symmetric matrix having prescribed
orthogonal eigenvectors and prescribed eigenvalues. The program may also be useful in the
search for possible further characterizations of matrices with integer entries and integer
eigenvalues.
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A Note on Normal Matrices

It is well known that the product of two Hermitian matrices is itself Hermitian if and only
if the two matrices commute. The generalization of this statement to normal matrices (A is
normal if A∗A = AA∗) is not valid, although it is easy to see that if A and B are normal and
commute then AB is also normal. A pair of noncommuting unitary matrices will suffice to
show that the converse does not hold. In this note we discuss briefly a sufficient condition
on a normal matrix A so that for normal B we will have AB normal if and only if A and B
commute. It should be observed that if A,B and AB are normal so is BA (see [2]).

A normal matrix A, being unitarily similar to a diagonal matrix, always has the spectral
representation

(1) A = λ1E1 + λ2E2 + · · ·+ λkEk,

where λ1, λ2, · · · , λk are the distinct eigenvalues of A and the projectors Ei are uniquely
determined polynomials in A such that Ei, Ej = δijEi and E1 + E2 + · · · + Ek = I . The Ei

are always Hermitian and B will commute with A if and only if B commutes with each of
the Ei (see [1]).

For any complex matrix A we can find a unique positive semi-definite H and a unitary
U (not unique if det(A) = 0) such that A = HU . This result is a generalization of the
polar representation of complex numbers and H is called the Hermitian polar matrix of A.
It is not hard to see that H is the unique positive semi-definite square root of AA∗. In [2]
Wiegmann proved that if A and B are normal then AB (and hence BA) is normal if and
only if each factor commutes with the Hermitian polar matrix of the other.

From the spectral representation of A (1) it follows that

(2) A∗ = λ1E1 + λ2E2 + · · ·+ λkEk,

(3) AA∗ = λ1λ1E1 + λ2λ2E2 + · · ·+ λkλkEk,

and

(4) H = (AA∗)1/2 = |λ1|E1 + |λ2|E2 + · · ·+ |λk|Ek.

If (4) is the spectral representation of H then B commutes with H if and only if B commutes
with each Ei, and if B commutes with each Ei then it follows from (1) that B commutes
with A. Only if |λi| = |λj | for i 6= j could (4) fail to be the spectral representation of H.
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70 Part 3—Eigenanalysis

We shall say that A has modularly distinct eigenvalues if unequal eigenvalues of A have
unequal moduli. Our discussion yields the following result.

Theorem. If A and B are normal and one of the two has modularly distinct eigenvalues,
then AB is normal if and only if A and B commute.

No real matrix with a complex eigenvalue can have this property, but all positive semi-
definite and all negative semi-definite Hermitian matrices have modularly distinct eigenval-
ues; our theorem has the following consequence.

Corollary. If A is positive (negative) semi-definite and B is normal then AB is normal if
and only if A and B commute.
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Eigenvectors: Fixed Vectors and Fixed Directions
(Discovery Exercises)

Except as noted, all matrices, vectors and scalars are real.

1. We say that a square matrix A fixes a vector v if Av = v.

a. Show that the zero vector is fixed by every matrix.

b. Suppose that A fixes a vector v, and that c is a scalar. Does A fix cv?

c. Suppose that A fixes the vectors v and w, does A fix v + w?

d. Suppose that In is the n × n identity matrix. Does In fix any nonzero vectors?
Does In fix a basis for <n?

e. Suppose that D = diag(1, 2, 3, . . . , n). Does D fix any nonzero vectors? Does D
fix a basis for <n? (Hint: Examine D for several small choices of n in formulating
your response.)

f. Suppose that E is the 4 × 4 matrix E = diag(1, 1, 1, 0). Does E fix any nonzero
vectors? Does E fix a basis for <4?

g. What properties must a diagonal matrix have in order to fix a basis for <n?

2. We say that a square matrix A fixes a direction if there is a nonzero vector v for which
Av has the same (or opposite) direction as v. That is, A fixes the direction specified
by the nonzero vector v provided there exists a scalar λ such that Av = λv.

a. Explain the relationship between fixing a vector and fixing a direction.

b. Suppose that A fixes the direction of v, and that c is a scalar. Does A fix the
direction of cv? Give a description of what happens geometrically to vectors
pointing in a fixed direction when they are multiplied by the matrix A.

c. Does the matrix In defined in Exercise 1d above have any fixed directions that do
not correspond to fixed vectors?

d. Does the matrix D defined in Exercise 1e above have any fixed directions? Does
the matrix D have any fixed directions that do not correspond to fixed vectors?
What values of λ occur? Find a basis for <n that consists entirely of vectors that
correspond to fixed directions.
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e. Based on your experience in answering part d, consider this case: If A fixes the
direction given by the nonzero vector v, and if A fixes the direction given by the
nonzero vector w, must A fix the direction given by the vector v +w? If you need
to impose additional conditions so that A fixes the direction of v+w when A fixes
the directions of v and w, what are the additional conditions?

f. Does the matrix E defined in Exercise 1f have any fixed directions that do not
correspond to fixed vectors? What values of λ occur? Find a basis for <n that
consists entirely of vectors that correspond to fixed directions.

3. Let F =











2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2











.

a. Show that v1 = [1,−1, 0, 0]T , v2 = [1, 0,−1, 0]T , and v3 = [1, 0, 0,−1]T are all fixed
vectors for F .

b. Is v4 = [1, 1, 1, 1]T a fixed vector for F ? Does it correspond to a fixed direction?

c. Let S be the 4 × 4 matrix whose columns are v1, v2, v3, and v4. Verify that the
columns of S are independent.

d. Relate the columns of FS to the columns of S.

e. Find a matrix M such that FS = SM .

f. Compare the matrices F kS and SMk for various integers k. Which product re-
quires fewer computations? Does this suggest a reason for finding fixed directions
for a matrix? Explain.

4. Let G =

[

0 1
1 0

]

.

a. Find two independent, fixed directions for G. What scalars λ did you use?

b. Call the direction vectors you found in part a, v1 and v2. Let T be the matrix
whose columns are your two vectors. Relate the columns of GT to the columns of
T .

c. Find a matrix N such that GT = TN .

5. Let H =

[

0 −1
1 0

]

.

a. Find a fixed direction for H.

b. If you allow complex vectors and complex scalars, show that v1 = [1, i]T is a fixed
direction for H. What is the required complex scalar λ?
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c. Find a second fixed direction for H. (Hint: Look for a vector v2 of the form
v2 = [1, ∗]T where ∗ is a complex number other than i.) What is the required
complex scalar λ?

d. Show that your vectors v1 and v2 are independent, and use them as the columns
to form the matrix U . Find a matrix P such that HU = UP .

6. Let K =

[

1 −1
0 1

]

.

a. Find a fixed vector v1 for K.

b. Show that K has no other independent fixed vectors, and that K has no other
fixed directions independent from the direction given by v1.

c. Let V be the matrix whose first column is v1 and whose second column is [x, y]T .
What condition(s) on x and y are necessary in order that the columns of V be
independent?

d. Find values for the scalars x and y, where y 6= 0, such that KV = V Q, where
Q = diag(1, d) for some scalar d.

J. Stuart
University of Southern Mississippi
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On Cauchy’s Inequalities for Hermitian Matrices

The purpose of this note is to give a simple and elementary proof for the following theorem,
whose proof is usually accomplished by an application of the Courant-Fischer theorem [1,2].

Theorem. Let A be an n-square Hermitian matrix with eigenvalues

λ1 ≥ · · · ≥ λn,

and let B be a k-square principal submatrix of A with eigenvalues µ1 ≥ · · · ≥ µk. Then

λn−k+s ≤ µs ≤ λs, s = 1, . . . , k.

Proof. It is sufficient to prove the theorem for k = n − 1, i.e., that the eigenvalues of
an (n− 1)-square principal submatrix of A interlace with the eigenvalues of A. The general
case follows by applying the result to a chain of matrices A,B1, B2, . . . , Bn−k−1, B, where
B1 is (n−1)-square, B2 is (n−2)-square,. . . ,Bn−k−1 is (k+1)-square and each is a principal
submatrix of the preceding one. Consequently, let B be an (n−1)-square principal submatrix
of A, obtained by the deletion of the qth row and the qth column of A. Let A = UDU∗,
where U = (uij) is a unitary n-square matrix and D = diag(λ1, . . . , λn). We have

[det(λI − A)]−1adj(λI − A) = (λI − A)−1 = U(λI −D)−1U∗,

whence, taking the (q, q) entry in both sides, we obtain

det(λI − B)

det(λI − A)
=

n
∑

j=1

|uqj|2
λ− λj

.

The above function is clearly monotonically decreasing at all points of continuity. It
follows that it has precisely one zero between two successive poles and such a zero is nec-
essarily an eigenvalue of B. If A has only simple eigenvalues and all uqj 6= 0, then n − 1
eigenvalues of B interlace strictly with the n eigenvalues of A. It may, of course, happen that
A has multiple eigenvalues or that some of the uqj = 0. In that case some of the eigenvalues
of B will coincide with some of those of A, but the interlacing property is preserved.
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The Monotonicity Theorem, Cauchy’s Interlace
Theorem and the Courant-Fischer Theorem

1. Introduction. In this note some important theorems on eigenvalues of Hermitian
matrices are reworked from a unified viewpoint of exploiting a simple dimensional identity
to obtain easier and quicker proofs. The usual procedure of invoking the minimax charac-
terization or Sylvester’s Law of Inertia to prove these results leads to longer proofs (see, for
instance, [1, 186–192] or [2, 99–104]).

Our proofs depend on the following simple dimensional identity:

dim (S1 ∩ S2) = dimS1 + dimS2 − dim(S1 + S2), (1)

where S1 and S2 are subspaces of a finite-dimensional vector space. Thus, this note may also
be viewed as a collection of good applications of the dimensional identity (1).

Before proceeding, we state the following basic facts used in the subsequent proofs without
explicit reference: (a) the eigenvalues of a Hermitian matrix are real and the corresponding
eigenvectors may be taken to be orthonormal; (b) letting α1 ≤ · · · ≤ αk denote a subset
of eigenvalues of a Hermitian matrix A and letting u1, . . . , uk denote an orthonormal set of
corresponding eigenvectors, we have α1 ≤ xHAx ≤ αk for any x in the span of u1, . . . , uk,
where xHx = 1. (The symbol “H” denotes conjugate transpose.)

2. The Monotonicity Theorem [1, p. 191].
Let A and B be Hermitian and let A + B = C. Let the eigenvalues of A,B, and C be

α1 ≤ · · · ≤ αn, β1 ≤ · · · ≤ βn and γ1 ≤ · · · ≤ γn, respectively. Then

(1) αj + βi−j+1 ≤ γi, (i ≥ j)
(2) γi ≤ αj + βi−j+n, (i ≤ j)
(3) αi + β1 ≤ γi ≤ αi + βn.

Proof. Let
Aui = αiui, Bvi = βivi, Cwi = γiwi,

uH
i uj = vH

i vj = wH
i wj = δij , i, j = 1, . . . , n.

Consider first the case i ≥ j and let

S1 = span {uj, . . . , un} , dimS1 = n− j + 1;
S2 = span {vi−j+1, . . . , vn} , dimS2 = n− i+ j;
S3 = span {w1, . . . , wi} , dimS3 = i.
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Then (1) gives

dim (S1 ∩ S2 ∩ S3) ≥ dimS1 + dimS2 + dimS3 − 2n = 1.

This assures the existence of an x ∈ S1 ∩ S2 ∩ S3 such that xHx = 1. For this x we have

αj + βi−j+1 ≤ xHAx+ xHBx = xHCx ≤ γi,

proving (1). Application of (1) to (−A) + (−B) = −C proves (2). Setting i = j in (1) and
(2) gives (3).

3. Cauchy’s Interlace Theorem [1, p. 186].

Let

A =

[

B C
CH D

]

be an n× n Hermitian matrix, where B has size m×m (m < n). Let eigenvalues of A and
B be α1 ≤ · · · ≤ αn and β1 ≤ · · · ≤ βm, respectively. Then

αk ≤ βk ≤ αk+n−m, k = 1, . . . , m.

Proof. Let
Aui = αiui, uH

i uj = δij, i, j = 1, . . . , n,

Bvi = βivi, vH
i vj = δij, i, j = 1, . . . , m,

wi =

[

vi

0

]

, i = 1, . . . , m.

Let 1 ≤ k ≤ m and let

S1 = span {uk, . . . , un} , dimS1 = n − k + 1;
S2 = span {w1, . . . , wk} , dimS2 = k.

Again by §1(1), the existence of an x ∈ S1 ∩ S2 such that xHx = 1 is assured and we have

αk ≤ xHAx ≤ βk.

Application of this inequality to −A gives βk ≤ αk+n−m.

4. The Courant-Fischer Theorem (Minimax Characterization)

[1, p. 188].
Let A be Hermitian and let α1 ≤ · · · ≤ αn be the eigenvalues of A. Then for k = 1, . . . , n,

αk = min
Sk

max
{

vHAv : v ∈ Sk, vHv = 1
}

= max
Sk−1

min
{

vHAv : v ⊥ Sk−1, vHv = 1
}

,

where Sk denotes an arbitrary k-dimensional subspace of complex n-vectors.
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Proof. Let
Aui = αiui, uH

i uj = δij, j = 1, . . . , n.

Let
S1 = span {uk, . . . , un} and S2 = Sk, (any k-dimensional subspace).

Then §1(1) guarantees the existence of an x ∈ S1 ∩ Sk, xHx = 1, giving xHAx ≥ αk.
On the other hand, for any u ∈ span {u1, . . . , uk}, a k-dimensional subspace, we have

uHAu ≤ αk and uH
k Auk = αk, proving the first equality of the theorem.

To prove the second, choose

S1 = span {u1, . . . , uk} , S2 = (Sk−1)⊥,

and proceed in a similar line of argument as above.
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The Power Method for Finding Eigenvalues
on a Microcomputer

Introduction. Computers are becoming more available for classroom use in mathematics
and quality mathematics software is beginning to appear. It is an appropriate time to look
into the ways that these tools can be used to explore mathematics. Microcomputers can be
used for much more than merely drill and practice. They can be used to introduce a flavor
of discovery into courses. Students can discover results and view theorems in a pedagogical
manner that has not been possible until this era. With all the computational power needed
at their fingertips (power that was only available to research workers in the past), students
can examine many situations quickly and focus on the behavior of methods or models. The
computer introduces an element of surprise. Things do not always work the way they are
expected to. This paper discusses such a situation in the application of the power method to
compute the dominant eigenvalue and a corresponding eigenvector of a matrix. It illustrates
how much is often learned when things “go wrong.”

The Power Method [1]. Numerical techniques exist for evaluating certain eigenval-
ues and eigenvectors of various types of matrices. The power method is a straightforward
iterative method that leads to the dominant eigenvalue (if it exists) and a corresponding
eigenvector. It is often taught in linear algebra and numerical methods courses.

The dominant eigenvalue is the one with the largest absolute value. We remind the reader
of the power method at this time.

Let A be an n × n matrix having n linearly independent eigenvectors and a dominant
eigenvalue λ. Let X0 be an arbitrarily chosen initial column vector having n components. If
X0 has a nonzero component in the direction of an eigenvector for λ, then the sequence

X1 = AX0, X2 = AX̂1, X3 = AX̂2, . . . , Xk = AX̂k−1, . . .

will approach an eigenvector for λ. Here X̂k is a normalized form of Xk, obtained by dividing
each component of Xk by the absolute value of its largest component.

Furthermore, the sequence

X̂ · AX̂1

X̂1 · X̂1

, . . . ,
X̂k · AX̂k

X̂k · X̂k

, . . .

will approach the dominant eigenvalue.
The power method is not the most efficient numerical method for computing eigenvalues

and eigenvectors; convergence can be extremely slow. However, it is the easiest to prove and
the most commonly taught in introductory courses.
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Construction of a Test Case. Let us construct a 3 × 3 matrix that has known
eigenvalues and eigenvectors for testing the power method. A similarity transformation
CAC−1 performed on a diagonal matrix A will lead to a matrix B having the diagonal
elements of A as eigenvalues and having the columns of C as eigenvectors [2].

Let

B = CAC−1 =







1 0 1
0 1 1
1 1 1













1 0 0
0 4 0
0 0 6













1 0 1
0 1 1
1 1 1







−1

=







6 5 −5
2 6 −2
2 5 −1





 .

The eigenvalues of B are thus known to be 1, 4, 6 with corresponding eigenvectors






1
0
1





 ,







0
1
1





 ,







1
1
1





 .

For convenience we shall henceforth write the eigenvectors as row vectors.
All computation, such as the similarity transformation above, is carried out by students

in a linear algebra class using menu driven software [3]. The students do no programming.
The similarity transformation is carried out using a matrix inverse program to compute C−1

and then using a matrix multiplication program twice to compute AC−1 and then C(AC−1).
All intermediate results in the computation of CAC−1 are saved on the computer for use in
the next stage.

Let us verify that B does indeed have the above eigenvalues and corresponding eigenvec-
tors. This can be conveniently done using the following multiplication:







6 5 −5
2 6 −2
2 5 −1













1 0 1
0 1 1
1 1 1







=







1 0 6
0 4 6
1 4 6





 .

6 BBM 6 ��� BBM 6���

B eigenvectors
1, 4 and 6 times
the eigenvectors

Thus (1, 0, 1), (0, 1, 1) and (1, 1, 1) are eigenvectors of B corresponding to the eigenvalues
1, 4 and 6. B can now be used to test the power method. The method should result in the
dominant eigenvalue 6 and the corresponding eigenvector (1, 1, 1).

Applying the Power Method. Let us use the vector X = (1, 2, 3) as the initial
vector for the power method. This is a popular initial vector with students for iterative
methods! The method, using 15 iterations, gives 3.99926723 as the dominant eigenvalue
with corresponding eigenvector

(2.94530762 × 10−8, .999999996, .999999996).

These are approximations for the second eigenvalue 4 and corresponding eigenvector (0, 1, 1).
This is an opportunity for students to examine the conditions of the power method—to find
out why the expected results have not occurred.
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There are three assumptions made in the power method. The first is that there are three
(in this case) linearly independent eigenvectors, the second that there exists a dominant
eigenvalue, the third that the initial vector has a nonzero component in the direction of the
dominant eigenvector. The first two conditions are satisfied. B has three linearly independent
eigenvectors and a dominant eigenvalue, namely 6. Thus the third condition involving a
nonzero component in the direction of a dominant eigenvector must be violated. Let us
write (1, 2, 3) as a linear combination of eigenvectors. We get

(1, 2, 3) = 1(1, 0, 1) + 2(0, 1, 1) + 0(1, 1, 1).

The initial vector (1, 2, 3) does indeed have a zero component in the direction of the dom-
inant eigenvector (1, 1, 1). The conditions of the method do not hold. We cannot expect
convergence to the dominant eigenvalue.

The next step, of course, is to investigate the convergence to the second eigenvalue. Is
this to be expected in general if the initial vector has zero component in the direction of the
dominant eigenvector? The proof of the power method is straightforward and students can
easily see why, on selecting an initial vector having zero component in the direction of the
dominant eigenvector, convergence will take place to the second eigenvalue and corresponding
eigenvector if the initial vector has a nonzero component in this direction. This observation
suggests how the power method can be used to determine further eigenvalues and eigenvectors
once the dominant eigenvalue and eigenvector have been found.

Finally, however, if the power method is continued beyond the 15th iteration, divergence
from the eigenvalue 4 takes place with gradual convergence towards the dominant eigenvalue
6. For example after 60 iterations, the method gives 5.54002294 while after 100 iterations it
gives 5.99999995. The theory of the power method does not predict such a phenomenon. It
predicts convergence to the eigenvalue 4. This is an opportunity to discuss the effect of round-
off errors that occur when such methods are executed on computers. At the 16th iteration,
X16 has a significant nonzero component in the direction of the dominant eigenvector (1, 1, 1)
due to round-off errors on the computer. We are back with all the original conditions of the
power method being satisfied. X16 is the new initial vector and convergence takes place to
the dominant eigenvalue and eigenvector beyond this point. The convergence is extremely
slow due to the small component of X16 in the direction of the dominant eigenvector.

The geometrical interpretation of the above is of interest. The initial vector (1, 2, 3) lies
in the subspace spanned by the eigenvectors (1, 0, 1) and (0, 1, 1). The theory of the power
method shows that convergence should take place within this subspace to the dominant
eigenvalue and eigenvector of this subspace, namely 4 and (0, 1, 1). In our case however,
round-off errors cause vectors to stray out of this two-dimensional subspace. This causes
vectors beyond the 16th to be gradually dragged toward the eigenvector (1, 1, 1) which lies
outside the subspace.

Comments. This example arose by chance in a linear algebra class. An Apple micro-
computer was used to carry out the computations using special linear algebra software. The
matrix C was introduced as one having a clean inverse. The matrix A and initial guess
were supplied by students. The class (and the instructor!) struggled together to interpret
the output. The matrix B is now given to students as a regular assignment on the power
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method. They are asked to interpret the output. It is this type of experimentation that the
computer introduces into the teaching of mathematics.

Let us summarize the benefits that have been achieved through this example.

1. The student has applied the power method in the environment that it is meant to be
applied, namely on the computer.

2. The importance of conditions under which the method holds has been stressed. The
conditions are part of the method—a part that is often overlooked.

3. The student has had the experience of modifying the method to arrive at a generaliza-
tion.

4. The effect of round-off errors on computers has been emphasized.
5. The importance of interpreting and checking computer output has been illustrated.

The student could have assumed that 4 was the dominant eigenvalue if the method had
been applied to 15 iterations.

6. The importance of using test cases, with known results, to understand the behavior of
algorithms before entering upon the unknown has been vividly illustrated.

The time is now ripe to start collecting examples such as the above for use in the un-
dergraduate classes. These examples can be used to supplement standard course material,
adding an element of mathematical exploration. Students now have the opportunity to see
dimensions of the field that could not be revealed to previous generations. At the same time
it is important to stress that the computer should be used sparingly and naturally. This is
a new teaching medium. We are all going to have to discover when and how to use it most
effectively.

The authors are interested in starting a collection of such “mathematical experiments”
with the idea of making this collection available to the mathematical community. Readers
who have discovered such examples are encouraged to contact us.
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Singular Values and the Spectral Theorem

The action of an arbitrary real or complex m × n matrix is not all arbitrary: it takes a
suitable orthonormal basis of n-space into some orthogonal set in m-space; consequently it
maps the unit n-ball onto a (possibly lower-dimensional) ellipsoid. This is the geometric
view of the Singular Value Theorem, which is not only one of the nicest matrix theorems to
state and to visualize but also one of the easiest to prove and to apply. In any introductory
course on matrices it deserves a place near the center. Theorem 1 below is a pure matrix
version of this result. One of its main consequences, Theorem 2 below, leads straight to the
orthogonal diagonalization of certain matrices, i.e. the Spectral Theorem.

It is customary to prove Theorem 2 independently, applying either the Fundamental
Theorem of Algebra to a characteristic polynomial or Lagrange Multipliers to a quadratic
form, and even to deduce Theorem 1 from it. The analytic equipment needed for the following
proof is more modest: it suffices to know that a continuous real-valued function on any
compact set has a maximum. For the sake of simplicity the argument will first be given for
real matrices and then (trivially) extended to complex ones. To prevent any suspicion that
extraneous subtleties are tacitly used, the prefix “eigen” will be avoided.

Theorem 1. Let A 6= 0 be an m × n matrix. Then there exist orthogonal matrices M
and N such that

MAN =

[

D 0
0 0

]

where D =









d1 0
. . .

0 dr









with di ≥ di+1 > 0.

Proof. Let O(k) be the set of all k×k orthogonal matrices. For M ∈ O(m) and N ∈ O(n),
let α(M,N) stand for the entry in the first row and first column of MAN. Clearly, α is a
continuous function of the pair (M,N) and, therefore, attains a maximal value d1 > 0 on
the set O(m) × O(n), which is closed and bounded in a suitable Euclidean space. Say
d1 = α(M1, N1). Then

M1AN1 =

[

d1 X
Y A′

]

,

where A′ is an (m− 1) × (n− 1) matrix. It turns out that X and Y are actually zero rows
and columns, respectively. Indeed, if X were nontrivial, the first row ρ1 of M1AN1 would
have length d > d1. Then one could multiply on the right by the reflection H which takes ρ1

to [d, 0, . . . , 0] and create a value α(M,N) = d > d1. For similar reasons, involving columns
and left multiplication, it follows that Y = 0. Finally, none of the entries of A′ can exceed
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d1 in absolute value (because each of them could be permuted to the upper left), and this is
true for all the possible forms of A′. An obvious induction now finishes the proof.

The positive numbers d1 ≥ · · · ≥ dr, are known as the singular values of A.
Remarks. The n×n matrix A# = ATA has a very simple effect on the columns v1, . . . , vn

of N ; in fact A#vi = µivi, where µi = d2
i for i ≤ r, and = 0 beyond. In matrix terms, this

says that A#N = N∆, where ∆ is a diagonal matrix with diagonal entries µi as described.
It is proved by putting ∆ = (MAN)T (MAN), which is just NTA#N .

To prove uniqueness of the singular values di it clearly suffices to characterize the µi as
being the only numbers such that (A#−µI)v = 0 for some v 6= 0. Indeed, setting v =

∑

aivi,
one gets (A# − µI)v =

∑

ai(µi − µ)vi, which is never 0, unless µ is one of the µi. More
geometrically, the di can also be retrieved from the image under A of the appropriate unit
sphere.

If m = n, the theorem is often written as A = SR, with S positive semidefinite and
R = MTNT orthogonal. It is then called the polar decomposition.

Theorem 2. Every real symmetric n × n matrix A has an invariant one-dimensional
subspace.

Proof. Let v 6= 0 be one of the columns of N , so that (A# − µI)v = 0, as in the remarks
above. The symmetric nature of A makes A# = ATA = A2 and

0 = (A# − µI)v = (A + λI)(A− λI)v,
where λ2 = µ. If (A− λI)v = w 6= 0, then w generates such a line; otherwise v does.

Remarks. For symmetric A it is trivial to show that the orthocomplement of any in-
variant subspace is itself invariant. Hence, by induction, Theorem 2 provides a set of n
mutually orthogonal invariant lines, thus proving the spectral theorem for symmetric matri-
ces. Moreover, if B is symmetric and commutes with A, it defines a symmetric operator on
the non-zero kernel of A− λI . Hence, the two matrices have a common invariant line, and
again, by induction, a complete orthogonal set of such lines.

If the use of linear transformations is didactically impracticable, the spectral theorem
can be stated in terms of an orthogonal U making UTAU diagonal. Then the induction will
hinge on partial diagonalizations V TAV , where the columns of V form an orthonormal basis
of an invariant subspace and its orthocomplement.

Everything said after the first sentence of Theorem 1 and before the present one applies
verbatim to complex matrices, if one changes “orthogonal” to “unitary,” “symmetric” to
“hermitian,” and replaces the transpose AT by its complex conjugate A∗ (adjoint of A).
Writing every complex matrix as C = A + iB, with A and B hermitian, one can clearly
extend the spectral theorem to all C for which A and B commute, i.e., where C commutes
with its adjoint A− iB. These are, of course, the normal matrices.

K. Hoechsmann
University of British Columbia, Vancouver
American Mathematical Monthly 97 (1990), 413–414



The Characteristic Polynomial of a Singular Matrix

Let A = [aij] be an n × n matrix of rank r < n. Then 0 is a characteristic value of A
of multiplicity at least n − r. Thus, if φ(λ) = |λI − A| is the characteristic polynomial of
A, φ(λ) = λn−rψ(λ) where ψ(λ) is a polynomial of degree r. We ask the question: Is there
any way to find ψ(λ) without first finding φ(λ)? The purpose of this note is to give an
affirmative answer and to show that ψ(λ) is the characteristic polynomial of an r× r matrix
D which is related to A in a simple way.

Since A is of rank r < n, it may be represented (actually in many ways) as a product
BC of two n × n matrices where the last n − r columns of B and the last n − r rows of C
consist of zeros. For example, the first r rows of C could be any r independent rows of A;
B would then contain the proper multipliers to generate A.

Now CB will be of the form diag {D, 0} where D is an r × r matrix. By a theorem
originally stated by Sylvester [2] and proved in many modern textbooks (e.g. [1,p. 23]), BC
and CB have the same characteristic polynomial. Thus

φ(λ) = |λIn×n − A| = |λIn×n − CB| = λn−r|λIr×r −D| = λn−rψ(λ).

If D is of rank less than r, the procedure could be repeated.
The result would seem to be particularly useful when r is small in comparison to n. We

illustrate for r = 1 and r = 2, noting that the representation A = BC above is equivalent
to aij =

∑r
k=1 bikckj, 1 ≤ i, j ≤ n, and that the i, jth element of D is then given by dij =

∑n
k=1 cikbkj, 1 ≤ i, j ≤ r.

Example 1: (r = 1). If aij = bicj, then

|λI − A| = λn−1

(

λ−
n
∑

i=1

bici

)

.

Example 2: (r = 2). If aij = bicj + diej, then

|λI − A| = λn−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ−
n
∑

i=1

bici −
n
∑

i=1

cidi

−
n
∑

i=1

biei λ−
n
∑

i=1

diei

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Characteristic Roots of Rank 1 Matrices

The purpose of this note is to prove a result which generalizes popular elementary Problem
E 1859 (this MONTHLY, 74 (1967) 598, 724).

Theorem. Let A denote an n × n rank 1 matrix over any field. When Trace (A) is
nonzero, it is a simple characteristic root of A and 0 is a root of multiplicity n−1. Otherwise,
the only characteristic root of A is 0.

Proof. When n = 1 the result is trivial. We first show directly that Trace (A) is a
characteristic root of A. Suppose the row vectors of A are A1, · · · , An. Since A is not zero,
A has a nonzero row, say Ak. Then there are scalars λ1, · · · , λn with λk = 1 for which

Ai = λiAk (i = 1, · · · , n).

Let Ak = (a1, · · · , an). Then A may be written as [λiaj]. For any n-vector
x = (x1, · · · , xn), (Ak, x) will denote the usual inner product

∑n
i=1 aixi. In particular,

(Ak, ω) = Trace(A), where ω is the nonzero vector (λ1, · · · , λn). A simple calculation shows

AxT = (Ak, x)ω
T .

Thus, ω is a characteristic vector of A corresponding to (Ak, ω) = Trace(A) and AxT = 0
only if (Ak, x) = 0.

To determine the multiplicities of 0 and Trace (A), we note that A must be similar to
a matrix all of whose rows except the kth are zero. For, if A is not already in this form,
λj 6= 0 for some j 6= k and C = Bjk(−λj)ABjk(λj) is a matrix similar to A with jth row
zero. Bij(λ) here denotes the elementary matrix I+λEjk, where Eij is the matrix with entry
(i, j) equal to 1 and zeros elsewhere. Since C is also a rank 1 matrix we may repeat the
argument as necessary with a possibly different set of scalars λ1, · · · , λn to obtain a matrix
C = [cij] which is similar to A with only Ck 6= 0. Since the characteristic equation of C
is λn−1(λ − ckk) = 0, 0 is a root of A with multiplicity ≥ n − 1. Since one root of the
characteristic equation is Trace (A), the multiplicity of zero is n− 1 if Trace (A) is nonzero
and otherwise is n. This completes the proof.

The fact that Trace (A) is a characteristic root is also seen by noting that the trace is
a similarity invariant and Trace (C) = ckk is a root of C with characteristic vector ek =
(δ1k, · · · , δnk).

Larry Cummings
University of Waterloo
American Mathematical Monthly 75 (1968), 1105
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A Method for Finding the Eigenvectors
of an n × n Matrix Corresponding
to Eigenvalues of Multiplicity One

Many texts [1],[2] and introductory courses on linear algebra introduce the adjoint matrix
(the transpose of the cofactor matrix) to determine an expression for the inverse of an n×n
invertible matrix. The purpose of this report is to show, using elementary linear algebra
techniques, that the adjoint matrix can also be used to find the eigenvectors of an n × n
matrix corresponding to eigenvalues of multiplicity one. An advanced analysis of our results
lying outside the scope of an introductory linear algebra course can be found in the text
Matrix Theory by F.R. Gantmacher [3].

As mentioned, the introductory linear algebra student’s first encounter with the adjoint
matrix appears in the expression [1],[2]

(1) A[adj(A)] = (detA)I,

where adj(A) is the adjoint matrix of an n×n matrix A, and detA is its determinant. When
detA 6= 0, Equation (1) leads to the usual formula,

A−1 = [detA]−1[adj(A)]

for the inverse of the matrix. Equation (1), however, is usually not explored in an intro-
ductory course for the case when detA = 0. We will consider one implication of this case.
When detA = 0, Equation (1) becomes

(2) A[adj(A)] = 0.

If λi is an eigenvalue of a matrix H (making det(λiI − H) = 0), then the substitution
A = λiI −H into Equation (2) gives (λiI −H)[adj(λiI −H)] = 0 or

(3) H [adj(λiI −H)] = λi [adj(λiI −H)] .

The pth column of this matrix equation is

(4) H[adj(λiI −H)]p = λi[adj(λ, I −H)]p,

which shows that any nonzero column [adj(λiI −H)]p of adj(λiI −H) is an eigenvector for
H corresponding to the eigenvalue λi.

As an example of this method consider the 3× 3 matrix

H =







0 1 0
0 0 1
4 −17 8
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which has λi = 4 as an eigenvalue of multiplicity one. Then

4I −H =







4 −1 0
0 4 −1
−4 17 −4





 and adj(4I −H) =







1 −4 1
4 −16 4

16 −64 16





 .

Since [adj(4I −H)]11 is not zero, we can take p = 1, giving
[

1 4 16
]T

as an eigenvector

for H corresponding to the eigenvalue λi = 4. It is usually not necessary to calculate the
entire adj(λiI −H) matrix. In the example above, once we find that [adj(4I −H)]11 is not
zero, then we need only find the 1st column of adj(λiI−H) when obtaining the eigenvector.
In fact, for a 2× 2 or 3× 3 matrix this technique is much faster and easier to program on a
computer than the usual methods of computing eigenvectors.

The only complication to the method above arises when adj(λiI −H) is the zero matrix.
To address this complication, we use the following result from linear algebra for the derivative
of det(λI −H)[4]:

(5) (d/dλ)[det(λI −H)] = Trace {adj(λI −H)} .
We shall apply this result to the eigenvalue polynomial

det(λI −H) =
n
∏

j=1

(λ− λj),

where λ1, λ2, λ3, . . . , λn are the eigenvalues of H. Taking the derivative of both sides of this
equation with respect to λ and using Equation (5) leads to

(6) Trace {adj(λI −H)} =
n
∑

k=1

n
∏

j=1
j 6=k

(λ− λj).

By setting λ = λi in Equation (6) we obtain

(7) Trace {adj(λiI −H)} =
n
∑

j=1

[adj(λiI −H)]jj =
n
∏

j=1
j 6=i

(λi − λj).

Therefore if λi is an eigenvalue of multiplicity one, the right-hand side of Equation (7) is
nonzero. It follows that there exists a value of p between and 1 and n for which [adj(λiI −
H)]pp is nonzero, and hence adj(λiI −H) 6= 0.

To summarize: Let H be an n × n matrix with eigenvalues λ1, λ2, λ3, . . . , λn. Further,
let λi for some i have multiplicity one. Then there exists a value of p such that the pth
column of adj(λiI −H) is an eigenvector for H corresponding to λi. Moreover, a value of p
to use is one for which [adj(λiI −H)]pp is not zero (i.e., we need only consider the cofactors
of the diagonal elements of λiI − H when determining p). Of course, once one eigenvector
corresponding to an eigenvalue of multiplicity one is known, all others are just multiples of
it.

For the case when the multiplicity of λi is greater than one, it can be shown [3] that the
matrix adj(λiI−H) is nonzero provided the eigenspace of eigenvectors corresponding to the
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eigenvalue λi had dimension exactly equal to one. However, in this case adj[(λiI − H)]pp

may be zero for all p, and so the choice of a suitable value of p may be more difficult.
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PART 4

Geometry





Introduction

The interactions between linear algebra and geometry are many and varied. Much of the
elementary linear algebra can be described as “using the ideas of geometry to see what to do,
and using the formulas of algebra to actually do it precisely.” Gram-Schmidt projections, and
the Cauchy-Schwarz inequality, and Standard Least Squares Problems (the titles of three
of the articles in this section.) are beautiful and simple examples of how natural geometric
notions in R2 and R3 carry over to Rn with algebraic techniques that work for n = 2, 3, . . . .
Orthogonality is meaningful and useful in spaces for which no protractor exists.
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Gram-Schmidt Projections

Given a linearly independent set in an inner product space, the Gram-Schmidt orthonor-
malization process is an algorithm that replaces it with an orthonormal set that spans the
same subspace. Gram-Schmidt is mentioned in many linear algebra books, e.g., [4, 0.6.4].
If {x1, . . . , xn} is a linearly independent set in <m, m ≥ n, the sequential calculation of the
resulting orthonormal set {z1, . . . , zn} is given by

yk = xk −
k−1
∑

i=1

(

zT
i xk

)

zi,

zk =
yk

(yT
k yk)

1

2

, for k = 1, . . . , n.

(1)

If X is the m-by-n matrix with columns x1, . . . , xn and Z the m-by-n matrix with columns
z1, . . . , zn, this results in the factorization X = ZR, with Z orthogonal and R upper trian-
gular. We work with xi ∈ <m, but note that with obvious modifications, our results hold for
xi ∈ Cm; for example, the matrix Z is then unitary.

The factorization of an m-by-n matrix A into a product QR, where Q is an m-by-n
matrix with orthonormal columns and R is upper triangular, is called a QR factorization
of A; see [4, 2.6]. This factorization is used, for example, in numerical methods for solving
least squares problems and computing eigenvalues and singular values; see [2]. When A
has full column rank, it has a unique factorization A = QR, where Q is an m-by-n matrix
with orthonormal columns, and R is an n-by-n upper triangular matrix with positive main
diagonal entries.

Here we consider a fixed m-by-n real matrix A having full column rank, and define a
sequence of m-by-m matrices B(k), k = 0, . . . , n − 1, which we note are the linear transfor-
mations that implement the Gram-Schmidt process. This provides an alternative (and we
believe novel, though elementary) way of viewing the process and of building up the matrix
Q of the QR factorization. This is an outgrowth of our detailed study of the combinatorial
structure of the matrices Q and R of this factorization [3].

Let ai, qi denote the ith column of matrix A,Q, respectively, and let Im denote the m-
by-m identity matrix. Given an m-by-n matrix A, we claim that the Gram-Schmidt process
applied to the column vectors of A can be written in terms of matrix transformations as
follows:

yk = B(k−1)ak,

qk =
yk

(yT
k yk)

1

2

, for k = 1, . . . , n, (2)
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where
B(0) = Im, B(k) = B(k−1) − qkq

T
k , for k = 1, . . . , n− 1. (3)

For the first term, y1 = a1 and q1 = a1/
(

aT
1 a1

)1/2
. For k = 1, . . . , n− 1, from (3) we have

B(k) = Im −
k
∑

i=1

qiq
T
i . (4)

Thus (2) gives yk = ak−
∑k−1

i=1

(

qT
i ak

)

qi. Identifying ak with xk and qi with zi, this is exactly

the Gram-Schmidt process given by (1) as claimed.
A column of matrix A can be written as the sum of two orthogonal vectors, namely

ak = B(k−1)ak +
k−1
∑

i=1

(

qT
i ak

)

qi.

The first vector B(k−1)ak is orthogonal to Span {q1, . . . , qk−1}, whereas the second vector
(involving the summation) is in Span {q1, . . . , qk−1} and is the projection of ak on this sub-
space.

The matrices B(k) have some interesting basic properties which depend only on the fact
that they are defined from an orthonormal sequence. We now summarize them (in Theorems
1 and 2) and then (in Theorem 3) prove a result that shows explicitly how zero rows can
occur in B(k) and so force zero entries in the output of Gram-Schmidt.

Theorem 1.

(i) Given k (0 ≤ k ≤ n− 1), the matrix B(k) is positive semidefinite with rank m− k.
(ii) If 0 ≤ i ≤ j ≤ n− 1, then B(i) ≥ B(j), that is B(i) − B(j) is positive semidefinite.

(iii) If 0 ≤ i, j ≤ n − 1, then B(i)B(j) = B(j)B(i) = B(q) where q = max {i, j}.

Proof.

(i) The fact that B(k) is symmetric is obvious from (4). As qT
i qi = 1 and qT

j qi = 0 for

i 6= j, then (B(k))2 = B(k); that is B(k) is idempotent.

Thus the eigenvalues of B(k) ∈ {0, 1}, and B(k) is positive semidefinite. (Note that
B(0) = Im is, in fact, positive definite.) Each product qiq

T
i is symmetric and has rank

1, and qiq
T
i qjq

T
j = qjq

T
j qiq

T
i = 0 for all i 6= j; so

{

qiq
T
i

}

, i = 1, . . . , n, form a commut-

ing family of symmetric matrices. Thus there exists a single orthogonal matrix U such

that U
(

qiq
T
i

)

UT = Di, where Di is an m-by-m diagonal matrix for i = 1, . . . , n; see e.g.,

[4, 2.5.5]. Each Di has rank 1, so it has exactly one nonzero entry (equal to 1), and if i 6= j,
then DiDj = Uqiq

T
i qjq

T
j U

T = 0. From (4) we see that UB(k)UT = Im −
∑k

i=1Di, and thus

rank B(k) = m− k.
(ii) This follows directly from (3). Note that B(i) 6= B(j) for i 6= j.
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(iii) Suppose q = i > j, and consider

B(i)B(j) =
(

B(j) − qj+1q
T
j+1 − · · · − qiq

T
i

)

B(j)

= B(j) −
(

qj+1q
T
j+1 + · · · + qiq

T
i

) (

Im − q1qT
1 − . . .− qjq

T
j

)

= B(j) −
(

qj+1q
T
j+1 + · · · + qiq

T
i

)

= B(i) .

The other products follow in a similar manner. �

As B(k) is symmetric and idempotent, it follows that it is a projection matrix; hence we
call B(k) a Gram-Schmidt projection. If the range of B(k) is Sk, then B(k) is the orthogonal
projection onto Sk. We can deduce more about the spectrum of B(k) by using the rank result
in Theorem 1 (i). In fact, B(k) has eigenvalue 1 with multiplicity m − k, and eigenvalue 0
with multiplicity k. The spectral properties show immediately that rank B(k) = trace B(k).
From Theorem 1 (iii) and also the fact that B(i)B(j)B(i) = B(i) for i > j, we note that B(j)

is a {1, 3, 4, 5} generalized inverse of B(i); see, e.g., [1]. Also B(k) is its own {1, 2, 3, 4, 5}
inverse.

We use the properties of {B(k)} to deduce the following.

Theorem 2. If a sequence of m-by-m matrices B(k), k = 0, . . . , n−1, have the properties of
Theorem 1 (i), (ii) and (iii), then they must satisfy (iii) for some orthonormal set of vectors
{qk}.

Proof. First note that C(k) ≡ B(k−1)−B(k) ≥ 0, from Theorem 1 (ii), so if xTB(k−1)x = 0 then
xTB(k)x = 0. With Sk denoting the subspace onto which B(k) projects, we have Sk ⊂ Sk−1.
Letting S⊥k denote the orthogonal complement of Sk, if x ∈ Sk ∪ S⊥k−1 then C(k)x = 0 (as

B(k−1)x = B(k)x = 0 if x ∈ S⊥k−1; and B(k)x = x = B(k−1)x if x ∈ Sk). Thus, by Theorem

1 (i), C(k) is not the zero matrix, so the dimension of the null space of C(k) is exactly
m− 1, which implies that C(k) has rank one. We can therefore write C(k) = fkf

T
k for some

vector fk ∈ <m. As trace C(k) = 1, we must have fT
k fk = 1. Also, by Theorem 1 (iii),

C(i)C(j) = 0 for i 6= j, so fif
T
i fjf

T
j =

(

fT
i fj

)

fif
T
j = 0, which implies fT

i fj = 0, and {fk} is

an orthonormal set of vectors which we can identify with {qk}. �

Given k (2 ≤ k ≤ n), t (1 ≤ t ≤ k − 1) and indices 1 ≤ j1 < j2 < · · · < jt ≤ k − 1,

note that B(r), r ≥ k − 1, projects into the orthogonal complement of Span
{

aj
1
, . . . , ajt

}

,

since it projects onto the orthogonal complement of Span {a1, . . . , ar}. In particular,

Span
{

aj
1
, . . . , ajt

}

is in the null space of B(r). In the event that aj
1
, . . . , ajt

collectively

have nonzero entries in only the t rows i1, . . . , it, then Span
{

aj
1
, . . . , ajt

}

is exactly the

coordinate subspace of <m in which there are arbitrary entries in positions i1, . . . , it and 0
entries elsewhere. For B(r) to have such a subspace in its null space, each row of B(r) must
have zeros in the positions i1, . . . , it. We have thus proved the following combinatorial result.

Theorem 3. If columns aj
1
, . . . , ajt

for 1 ≤ j1 < · · · < jt ≤ k−1 and 2 ≤ k ≤ n collectively

have nonzero entries only in rows i1, . . . , it, then rows and columns i1, . . . , it of B(r) are zero
for k − 1 ≤ r ≤ n− 1. �
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It follows from (2) that if some subset of the columns of A has the property stated in Theorem
3, then the entries i1, . . . , it of vectors qr+1, . . . , qn are zero.

The following example illustrates the construction and some properties of the Gram-
Schmidt projections.

Consider A =







1 3 1
0 0 1
2 4 2





. Then (2) and (3) give:

B(0) = I3, q1 =
1√
5
(1, 0, 2)T ,

B(1) = I3 − q1qT
1 =











4
5

0 −2
5

0 1 0

−2
5

0 1
5











, q2 =
1√
5
(2, 0,−1)T ,

B(2) = B(1) − q2qT
2 =







0 0 0
0 1 0
0 0 0





 , q3 = (0, , 1, 0)T .

Here columns a1, a2 have nonzero entries only in rows 1,3; thus rows and columns 1 and 3
of B(2) are zero and the 1 and 3 entries of q3 are zero. �
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Pythagoras and the Cauchy-Schwarz Inequality

Most current textbook introductions to coordinate vector algebra appeal to the students’
knowledge of Euclidean geometry and geometric intuition to justify the introduction of
Cartesian coordinates and the usual distance formula. Similarly, vector addition, scalar
multiplication, and length of a vector are accompanied by discussions of their geometric
significance. Frequently, however, the usual inner (dot) product then appears abruptly, the
Cauchy-Schwarz and triangle inequalities are proved as technical exercises, and the cosine
of the angle between vectors is defined with no reference to the ratio of sides of a right
triangle. The following remarks indicate one way that elementary geometric considerations
lead naturally to the introduction of the inner product, to trivial proofs of the inequalities,
and to the geometric law of cosines.

We assume that the distance between points (vectors) A and B in Rn and the length of

B−A may be computed as |B−A| = (
∑

(bi − ai)
2)

1/2
, and this has been justified by appeal

to the Pythagorean Theorem. Considering the triangle with vertices A,B,−A it is clear the
vector B should be orthogonal to vector A if and only if |B − A| = |B − (−A)|, so we take
this as our definition of orthogonality.
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•

Since

|B − A|2 = |A|2 + |B|2 − 2
∑

aibi and |B + A|2 = |A|2 + |B|2 + 2
∑

aibi ,

B is orthogonal to A if and only if
∑

aibi = 0 and also if and only if the Pythagorean identity

|B − A|2 = |A|2 + |B|2 holds. Moreover, when A and B are not orthogonal, the quantity
∑

aibi measures the failure of the Pythagorean identity. Now define the dot (scalar, inner)

product by A · B =
∑

aibi and note that, like ordinary number multiplication, it is bilinear
and positive.
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•α

The point P is the orthogonal projection of B onto A (onto the line thru the origin O
and A) if and only if P = cA for some number c and B − P is orthogonal to A. From
A · (B − cA) = 0 it follows that c = A · B/A · A and, as we saw above, since B − P is
orthogonal to P it follows that |B|2 = |P |2 + |B − P |2. Hence

1 ≥ |P ||B| =
|A · B|
|A||B| (Cauchy-Schwarz inequality)

and equality holds if B = P , that is, B = cA. Moreover, in the right triangle O,P,B the
ratio |P |/|B| is the usual cosine of the angle at O. Taking into account the sign of A · B, it
is geometrically clear that the angle α between A and B satisfies

cosα =
A · B
|A||B| .

From the computation of |B−A|2 above we get |B−A|2 = |A|2 + |B|2− 2|A||B| cosα (Law
of Cosines). This equation also makes obvious the triangle inequality

|A|2 + |B|2 − 2|A||B| ≤ |B − A|2 ≤ |A|2 + |B|2 + 2|A||B| or
∣

∣

∣

∣

∣

|A| − |B|
∣

∣

∣

∣

∣

≤ |B −A| ≤ |A|+ |B|.

Finally note that the arguments above work equally well in any space with an inner product.

Ladnor Geissinger
University of North Carolina, Chapel Hill
American Mathematical Monthly 83 (1976), 40–41



An Application of the Schwarz Inequality

In textbooks on linear algebra a complex n× n matrix U is said to be unitary if

U∗U = In

where U∗ is the transposed conjugate of U . The following theorem is then given:
Theorem. For the matrix U to be unitary it is necessary and sufficient that ‖Ux‖ = ‖x‖,

for all x in unitary n-space, Un.
Although the necessity is trivial to prove, the sufficiency part is a bit more involved.

A variety of proofs, for the most part being variations of those in [1] and [2], are in the
literature. None of the proofs which we have seen make use of the Schwarz inequality. In
this note we show how the Schwarz inequality can be employed to construct a brief proof of
the sufficiency part of the above theorem. This new proof can be used as an application of
the Schwarz inequality which usually has been presented earlier in the book where its wide
applicability has been duly noted but rarely if ever illustrated.

Thus we assume that

(1) ‖Ux‖2 = (Ux, Ux) = ‖x‖2 = (x, x), for all x ∈ Un,

and we prove that U is a unitary matrix. We first note that (1) implies that U , hence also
U∗, is nonsingular. Now suppose that x is an arbitrary nonzero vector from Un. Then

(U∗x, U∗x)2 = (x, UU∗x)2 ≤ (x, x)(UU∗x, UU∗x)

= (x, x)(U∗x, U∗x),

where we have used the Schwarz inequality and (1). Then, since (U∗x, U∗x) > 0,

(2) (U∗x, U∗x) ≤ (x, x).

Also,

(3)

(x, x)2 = (Ux, Ux)2 = (x, U∗Ux)2 ≤ (x, x)(U∗Ux, U∗Ux)

≤ (x, x)(Ux, Ux)

= (x, x)2

where we have used first the Schwarz inequality and then (2). Thus equality must hold in
the Schwarz inequality, which means that U∗Ux = αx for some scalar α. But

α =
(U∗Ux, x)

(x, x)
=

(Ux, Ux)

(x, x)
= 1
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so that U∗Ux = x for all nonzero x ∈ Un (equality is trivially true for x = 0), or

U∗U = In.

As an alternative way of finishing the proof we note that (3) implies equality in (2) and
this with (1) implies that

(x− U∗Ux, x− U∗Ux) = 0

or x− U∗Ux = 0 for all x ∈ Un.
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A Geometric Interpretation of Cramer’s Rule

If A is a nonsingular real n×n matrix and b ∈ <n, then Cramer’s rule states that if Ax = b,
then the components xi of x satisfy

(1) xi =
detAi

detA
,

in which Ai is the matrix obtained from A by replacing the ith column of A by b.
One may interpret (1) as expressing xi as the ratio of the (signed) volumes of two

n-dimensional parallelepipeds. Thus, it might be interesting to see a proof of (1) based
upon geometric principles.

Our proof of Cramer’s rule will be for the 3 × 3 case, and for the sake of exposition
we will make certain simplifying assumptions. First, we will assume that A has a positive
determinant, and second that our right-hand side b lies in the open cone generated by the
columns of A (that is, the set of linear combinations of columns of A in which the coefficients
are positive).

Let A be a nonsingular 3 × 3 matrix, let a1, a2, and a3 be the columns of A, and let
b ∈ <3. Since A is nonsingular, there exist uniquely determined scalars x1, x2 and x3 such
that

x1a1 + x2a2 + x3a3 = b.

(From our simplifying assumptions x1, x2 and x3 are positive.)
Consider the two parallelepipeds generated by the vectors x1a1, x2a2 and x3a3 and by b,

x2a2 and x3a3, as pictured in the figure below.
Think of the parallelogram generated by x2a2 and x3a3 as the base of both of these

parallelepipeds. Note that these two parallelepipeds then have the same perpendicular height
above the base (indeed, the face opposite the common base lies, in both cases, in the plane
x1a1 + Span {a2, a3}). It follows that our two parallelepipeds have equal volumes. Thus

det
[

x1a1 x2a2 x3a3

]

= det
[

b x2a2 x3a3

]

.

It follows then that

x1x2x3 det
[

a1 a2 a3

]

= x2x3 det
[

b a2 a3

]

,

and equation (1) follows for the case i = 1; of course, the cases i = 2 and 3 are entirely
analogous.
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Isometries of lp-norm

The goal of this note is to provide a short proof of the fact that the isometries of lp-norm
(p 6= 2) on Rn are generalized permutation matrices, those matrices that can be written as a
product of a diagonal orthogonal matrix and a permutation matrix. As usual, the lp=norm

on Rn is defined by lp(x) = (
∑n

i=1 |xi|p)1/p if 1 ≤ p <∞, and lp(x) = max1≤i≤n |xi| if p =∞.
An isometry of lp-norm is an n× n matrix A satisfying

lp(Ax) = lp(x) for all x ∈ Rn.

It is well-known that the isometries of the l2-norm are orthogonal matrices. A less well-known
fact is the following theorem.

Theorem. Suppose 1 ≤ p ≤∞ and p 6= 2. An n× n matrix A is an isometry of lp-norm if
and only if A is a generalized permutation matrix.

This result can be deduced from stronger statements about more general norms [2][3][7]
or can be viewed as a special case of its infinite dimensional version [1,p. 119][5,p. 112].
However, there is a direct proof which requires only a basic fact from the theory of norm on
Rn [4,Ch. 5]: an n× n matrix A is an isometry of lp-norm if and only if its transpose AT is
an isometry of lq-norm, where 1/p + 1/q = 1.

Proof. The sufficiency is easy to check. For necessity, suppose A = (aij) is an isometry of the
lp-norm. We may assume 1 ≤ p < 2, otherwise consider the lq-norm and AT . First consider
the case that p 6= 1. For i = 1, . . . , n let ei denote the ith column of the n×n identity matrix.
Then lp(Aei) = 1 for all i = 1, . . . , n. Thus |aij| ≤ 1 and

∑n
i,j=1 |aij|p = n. Since AT is an

isometry of the lq-norm, the same argument gives
∑n

i,j=1 |aij|q = n. Notice that |aij|q ≤ |aij|p,
and equality holds if and only if |aij| = 0 or 1. Since every column of A (respectively, AT )
has lp-norm (respectively, lq-norm) equal to one, the equality

∑n
i,j=1 |aij|p = n =

∑n
i,j=1 |aij|q

implies that each row and each column of A has exactly one nonzero entry whose magnitude
equals one, and the result follows. For the case p = 1, the above argument also yields
∑n

i,j=1 |aij| = n =
∑n

i=1 αi = max1≤j≤n |aij|. Thus each row and hence each column of A has
only one nonzero entry with magnitude equal to one, and the result follows.

After this note was finished, the authors were informed that R. Mathias [6] had obtained
the same proof for the complex case previously and independently.

ACKNOWLEDGEMENT. The authors wish to thank Professor R. Horn for bringing the ref-

erences [6] [7] to their attention.
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Matrices Which Take a Given Vector
into a Given Vector

A slight variation of the usual problem for a system of linear equations is to solve for the
coefficient matrix when the solution vector is known. More abstractly, if V and W are n-
and m-dimensional vector spaces over the same field, and x ∈ V and y ∈ W , find all linear
transformations L such that Lx = y. In this note we answer the question completely and in
fact give a procedure for writing down the solution from inspection.

Since we are dealing with the finite-dimensional case, we may assume x and y are given
column vectors and L is an m× n matrix. When x = 0, a solution clearly exists if and only
if y = 0, and L is, in fact, any m×n matrix. The case for x 6= 0 is governed by the following:

Theorem. Let x 6= 0 and y be column vectors of n and m components, respectively (with
elements from the same field). Suppose the p-th component of x is not zero. The set of all
matrices L such that Lx = y is nonempty, and is given by

L = L0 +
n
∑

r=1

′
m
∑

q=1

αqrL
qr (1)

(the prime denotes that r does not take on the value p), where the αqr are arbitrary constants
(scalars of the field), and

(2)

L0
ij = (yiδjp)/xp, i = 1, 2, · · · , m; j = 1, 2, · · · , n,

(δij is the “Kronecker delta”)

Lqr
ij = xrδiqδjp − xpδiqδjr, i = 1, 2, · · · , m; j = 1, 2, · · · , n.

Proof. The equation Lx = y or

(3)

L11x1 + L12x2 + · · ·+ L1nxn = y1

L21x1 + L22x2 + · · ·+ L2nxn = y2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lm1x1 + Lm2x2 + · · ·+ Lmnxn = ym
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may be rewritten as

(4)















x1 x2 · · · xn 0 0 · · · 0 0 · · · 0 . . . . . . . . . .
0 0 · · · 0 x1 x2 · · · xn 0 · · · 0 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 0 0 · · · 0 0 · · · 0 x1x2 · · ·xn
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L1n

L21

L22
...
L2n
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Lmn
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y1

y2
...
ym













Denoting this m×mn coefficient matrix by X, we see that its rank is m since xp 6= 0. Since
the rank of the augmented matrix is also m there is a solution L to this system. Also the
associated homogeneous system has nm−m = (n−1)m linearly independent solutions. Thus
the general solution is the sum of a particular solution plus an arbitrary linear combination
of (n − 1)m linearly independent solutions of the homogeneous system. One may readily
check that L0 and the Lqr as defined by (2) are these required solutions. (They may be
obtained by applying Gaussian elimination to (4).)

We observe that L0 and the Lqr may be immediately written down from an inspection of
(3). The pth column of L0 is y/xp, all the other entries are zero. The qth row of Lqr contains
xr in the pth column and −xp in the rth column. All its other rows are zero. Thus the set
of all matrices A satisfying

[

a11 a12 a13

a21 a22 a23

]







1
−1

2





 =

[

1
5

]

is immediately seen to be (we will work with p = 1)

A =

[

1 0 0
5 0 0

]

+ α12

[

−1 −1 0
0 0 0

]

+ α22

[

0 0 0
−1 −1 0

]

+α13

[

2 0 −1
0 0 0

]

+ α23

[

0 0 0
2 0 −1

]

Although the question is easily answered in the finite-dimensional case it offers new
difficulties when we proceed to infinite dimensions, especially when we restrict the class of
permissible transformations. A typical question might be to find all kernels of the integral
equation

∫ b
a k(s, t)f(t)dt = g(s) once f and g are specified.

M. Machover
St. John’s University
American Mathematical Monthly 74 (1967), 851–852



The Matrix of a Rotation

What is the matrix of the rotation of R3 about a unit axis p through an angle θ? Since a
rotation has a fixed axis (or eigenvector or eigenvalue 1) and rotates the plane perpendicular
to p by angle θ, the matrix is easy to determine if we change to a convenient basis; however,
it is not well known that there is a simple expression for the matrix in the standard basis
which depends only on the coordinates of p and the angle θ. The formula is obtained without
changing bases. Furthermore, this formula can be useful in coding the effect of a rotation in
computer graphics. The derivation of this formula was motivated by the close relationship
between rotations and quaternions.

For two vectors v and w we use the notation v · w for the standard inner product and
v × w for the cross product. Consider the linear transformations of R3 given by P (q) = p×q
where p is a unit vector.

Proposition 1. P 2(q) = −q + (p · q)p. Thus I + P 2 is the projection operator along the
unit vector p.

Proof. The first part follows easily by using the triple product formula p × (q × r) =
(p · r)q− (p · q)r. The second statement follows easily from the first part and the definition
of an orthogonal projection.

Proposition 2. The rotation of R3 about an axis p of unit length by an angle θ is given by

L(q) = q + (sin θ)P (q) + (1− cos θ)P 2(q).

Proof. To see this, we show that this linear transformation has the geometric properties of a
rotation as described in the first paragraph. The vector p is left fixed since P (p) = P 2(p) =
0. It follows from the definition of L and Proposition 1 that if q is perpendicular to p then
L(q) = cos θq+sin θ(p×q). Moreover if q is also of unit length then p×q is of unit length
and also perpendicular to p; hence

L(p× q) = cos θ(p× q) + sin θ(p× (p× q)) = cos θ(p × q)− sin θq.

Thus the plane perpendicular to p is rotated by angle θ. It follows now that all of R3 is
rotated about the axis p by angle θ and thus L describes the rotation.

We can now easily write the matrix of L = I + (sin θ)P + (1 − cos θ)P 2 in terms of
the standard basis e1, e2, e3. Suppose p = (a, b, c)t; then P is easily computed: P (e1) =
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(0, c,−b)t, P (e2) = (−c, 0, a)t and P (e3) = (b,−a, 0)t. Furthermore, the matrix of the pro-
jection I + P 2 is the matrix product ppt. Thus the matrix of L is

I + (sin θ)







0 −c b
c 0 −a
−b a 0





+ (1− cos θ)







a2 − 1 ab ac
ab b2 − 1 bc
ac bc c2 − 1





 .

Roger C. Alperin
San Jose State University
College Mathematics Journal 20 (1989), 230



Standard Least Squares Problem

Consider the equation

A~x = ~y (2)

where A is an m × n matrix with m ≥ n, ~x is in Rn, and ~y is in Rm. The least squares
solution to this equation is the vector ~x∗ that satisfies the equation

ATA~x∗ = AT~y, (3)

which is called the normal equation. This result may be derived by the methods of calculus,
geometry, or algebra.

Using calculus, one takes derivatives of the objective function

J (~x) = ‖A~x− ~y‖2 (4)

with respect to x1, x2, · · · , xn, the components of ~x. Setting these derivatives equal to zero,
solving the resulting equations, and rearranging yield equation (2).

The geometric approach recognizes that for any candidate solution ~x, the vector A~x will
be in the column space of A. Hence, one seeks the vector in the column space of A that is
closest to ~y. This implies ~x∗ satisfies

A~x∗ = projection of ~y onto the column space of A

= projection matrix of A times ~y

= A(ATA)−1AT~y

and

~x∗ = (ATA)−1AT~y,

assuming the columns of A are linearly independent. This approach provides the most insight
and is the approach taken in [1].

The algebraic approach takes the method of “completing the square” from high school
algebra and extends it to vectors and matrices. As motivation, consider the quadratic poly-
nomial f(x) = ax2 + 2bx + c where a > 0. The minimum can be found by adding and
subtracting b2/a to complete the square. Specifically,
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f(x) = ax2 + 2bx+ c

= a

(

x2 +
2b

a
x

)

+ c

= a



x2 +
2b

a
x+

(

b

a

)2


− b2

a
+ c

= a

(

x+
b

a

)2

− b2

a
+ c.

(5)

The minimizing value of x can now be found by inspection. The only term that depends
on x is a(x+ (b/a))2, which is obviously minimized by x = −b/a. Therefore, the quadratic
polynomial is minimized by x = −b/a. In anticipation of the vector/matrix generalization,
this polynomial is rewritten as

f(x) = (x+ a−1b)a(x+ a−1b)− ba−1b+ c. (6)

The objective function in equation (3) can be expressed as

J(~x) = (A~x− ~y)T (A~x− ~y)
= ~xTATA~x− ~xTAT~y − ~yTA~x+ ~yT~y (7)

= ~xTS~x− 2~xT~z + ~yT~y (8)

where

S = ATA,

~z = AT~y.

This is analogous to the quadratic polynomial as expressed in equation (4) above with

x↔ ~x
a↔ S
b↔ −~z
c↔ ~yT~y.

If the columns of A are linearly independent, then S = ATA is invertible. (See [1] Theorem
19, p. 194.) In addition, A is symmetric (ST = S). These properties allow the objective
function to be rewritten as

J(~x) = (~x− S−1~z)TS(~x− S−1~z)− ~zTS−1~z + ~yT~y, (9)

which is analogous to equation (5); see Exercise (4) below. S has the property ~vTS~v > 0 if
~v 6= 0 by Exercises (1) and (2). (Matrices with this property are called positive definite.)
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Hence, the unique value of ~x that minimizes J(~x) can be determined by inspection. It is
~x∗ = S−1~z, which is equation (2).

If the columns of A are linearly independent, a similar argument also shows that J(~x) is
minimized by any vector satisfying equation (2). In this case, however, ~x∗ is not unique.

The simplicity and elegance of this solution reflects the compatibility of linear “dynamics”–
equation (1) and a quadratic cost function–equation (3). It has been said that they fit
together like a hand fits a glove.

Exercises

1. Show that ~vTS~v ≥ 0 for all ~v, where S = ATA.

2. Show that ~vTS~v 6= 0 if ~v 6= 0 (assuming the columns of A are linearly independent).

3. Show that ~xTAT~y = ~yTA~x. (This is used in going from equation (6) to (7). The proof
should be very short.)

4. Show that the form of J(~x) in equation (8) is equal to that given in equation (7).
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Multigrid Graph Paper

Ordinary two-dimensional graph paper is imprinted with two sets of parallel lines that are
mutually perpendicular to one another. Such graph paper is very useful for plotting points
that are represented with respect to the canonical basis, e1 = (1, 0)T , e2 = (0, 1)T , of the
vector space R2. Multigrid graph paper may be imprinted with three or four sets of parallel
lines as shown in Figure 1. Such graph paper is easily produced using most of the drawing
programs available for personal computers. It is also far more useful than ordinary graph
paper for illustrating many concepts of elementary linear algebra, such as representation
of vectors or linear transformations, change of basis, similarity, orthogonality, projections,
reflections, and quadratic forms.

e2 u
T

u2

e1

Figure 1

Consider the problem of writing the vector v = (3, 4)T as a linear combination of the
vectors u1 = (2, 1)T and u2 = (−1, 2)T . Instead of solving a system of linear equations,
one may simply write down the answer v = 2u1 + u2 by plotting the point (3, 4) on the
e1, e2-grid in Figure 1, and then determining the coordinates of that point with respect to
the u1, u2-grid.
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This ability is particularly useful for working examples in R2 that would otherwise require
solving several systems of equations. For example, if one has two bases for R2 and needs to
express each vector in terms of the basis to which it does not belong, then one would have
four systems of equations to solve. In such situations, students can become bogged down
in solving the systems of equations, and never get to the underlying concept that has to
be illustrated. Thus multigrid graph paper not only provides geometric interpretations for
many concepts, but also allows students to work examples in which their efforts are more
highly focused.

When one writes a vector v as a linear combination, v = αu1+βu2, of a basis B = {u1, u2},
the coefficients α, β are called the coordinates of v with respect to the basis B, and B is
said to define a coordinate system. Without multigrid graph paper, students never see any
coordinate system except the natural one associated with the canonical basis of R2. For a
deeper understanding of coordinate systems students need to see other examples. In order
to appreciate the properties of a coordinate system associated with an orthonormal basis,
one would need to do some work with a nonorthonormal coordinate system such as the one
associated with the basis {v1, v2} of Figure 2.

e1

e2 v2

v1

Figure 2

A change of basis in the representation of a vector or linear transformation is actually a
change in coordinate system, and multigrid graph paper is particularly useful in this context.
We illustrate this with the bases B0 = {e1, e2} and B1 = {v1, v2} of Figure 2. If w0 gives
the coordinates of some vector with respect to the basis B0, and w1 gives the coordinates
of the same vector with respect to B1, then there are invertible matrices S and T such that
w1 = Sw0 and w0 = Tw1. The basic rule for obtaining a change of basis matrix states that
the columns of S are the coordinates of e1 and e2 with respect to B1, and the columns of T are
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the coordinates of v1 and v2 with respect to B0. One immediately obtains T =

(

2 1
−1 1

)

.

Also by examining Figure 2, 3e1 = v1 + v2 and 3e2 = −v1 + 2v2. (Note that det(T ) = 3,
which is the area of the parallelogram with vertices at the origin, v1, v1 + v2, and v2.) Hence

e1 =
1

3
v1 +

1

3
v2, e2 = −1

3
v1 +

2

3
v2, and S =

(

1/3 −1/3
1/3 2/3

)

.

It is now easy to check that S = T−1. There is a pedagogical advantage in using just one
rule to obtain both S and T rather than obtaining S as T−1. To illustrate a basic property of
a change of basis matrix, one may compute or check visually, for a point such as (4, 1), that

S−1

(

1
2

)

=

(

4
1

)

and S

(

4
1

)

=

(

1
2

)

give the appropriate change of coordinates. One may

similarly find a change of basis matrix for converting between B0 and the basis B2 = {u1, u2}
of Figure 1. By combining this matrix with S−1, one can convert between coordinates with
respect to B1 and B2. As illustrated above, multigrid graph paper not only simplifies the
computation of change of basis matrices, but also provides a geometric setting for illustrating
many of their properties.

Let B2 = {u1, u2} be the basis of Figure 1, and consider the linear transformation L :
R2 → R2 which doubles the component of a vector along u1 and reverses the component
along u2; that is, L is defined by L(u1) = 2u1 and L(u2) = −u2. The columns of a matrix
representation of L are the coordinates of the images under L of the basis elements. Thus, the

matrix representation of L with respect to the basis B2 is the matrix B =

(

2 0
0 −1

)

. From

Figure 1 (expanded slightly to the right and upward), 5e1 = 2u1 − u2 and 5e2 = u1 + 2u2.
Hence,

L(e1) =
4

5
u1 +

1

5
u2 =

(

7/5
6/5

)

, L(e2) =
2

5
u1 −

2

5
u2 =

(

6/5
−2/5

)

,

and A =

(

7/5 6/5
6/5 −2/5

)

is the matrix representation of L with respect to the basis B0. One

may now illustrate by computation or geometrically a number of properties such as

(1) S−1AS = B for the appropriate change of basis matrix S, so that A or B are similar.

(2) A

(

1
3

)

=

(

5
0

)

does give L

((

1
3

))

.

(3) u1 and u2 are eigenvectors of A (and L) corresponding to eigenvalues 2 and −1.

Similar treatments can be given to linear transformations defined as reflections about u1 or
u2, or as projections onto u1 or u2. Such examples reinforce geometric ideas related to linear
transformations.

Multigrids should have two or three times more lines than shown in each parallel set of
Figures 1 and 2. This would prevent having to extend the grid as we did in the last example.
I like to use a full 81

2
by 11-inch sheet for each multigrid, and supply several copies of several
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different multigrid styles without coordinate axes drawn in. Students can then select the
appropriate style multigrid for any given problem and also select an appropriate point to
insert the origin. One style of multigrid paper can be used with several different basis vector
combinations. For example, the multigrid of Figure 1 can also be used for coordinates with
respect to the bases {u1, e1} , {e1,−u2}, or {u2, 2e1}. It is even useful for the orthonormal

basis

{

1√
5
u1,

1√
5
u2

}

.

In closing, it is briefly noted that properties of orthonormal bases can be nicely illustrated
in connection with quadratic forms. The hyperbola 0.6x2+1.6xy−0.6y2−1.6

√
5x−0.8

√
5y+

3 = 0 can be easily plotted on the multigrid of Figure 1, and the parabola x2 − 2xy +
y2 − x − y + 2 = 0 can be plotted on a multigrid based on e1, e2, (1, 1)

T , and (−1, 1)T .
The quadratic terms in these second-degree equations determine orthogonal change of basis
matrices. These matrices will represent either rotations or reflections depending on whether
their determinants are 1 and −1, and provide an opportunity to illustrate differences between
right- and left-handed coordinate systems. Such discussions help stimulate student interest
and provide links to other areas of mathematics.

Jean H. Bevis
Georgia State University
Contributed



PART 5

Matrix Forms





Introduction

Matrices can be written in many forms. Among the familiar forms are the LU factorization,
the singular value decomposition and the Jordan Decomposition Theorem. There are also
canonical (or echelon) forms for various types of matrices. Equivalence, similarity, orthogonal
similarity, unitary similarity will all give matrix forms for certain types of matrices. A course
in linear algebra would not be complete without a discussion of at least some matrix forms.
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LU Factorization

The n-by-n matrix A is said to have an LU factorization if A may be written

A = LU

with L an n-by-n lower triangular and U an n-by-n upper triangular matrix. Such factoriza-
tion is useful in the solution of linear systems, especially in updating schemes for iterative
methods, and it can also be a convenient proof tool. The idea now frequently creeps into
elementary textbooks, but seldom is there a discussion of existence. Often it is useful to
require, additionally, that L or U , or both, be invertible, and all possibilities can occur. For

example,

[

0 1
1 0

]

has no LU factorization, and







0 0 0
0 0 1
1 0 0





 has no LU factorization with either

L or U invertible.

When, then, does an LU factorization exist? It is a familiar fact that A has an LU
factorization with L and U invertible if and only if the leading principal minors of A are
nonzero [1]. However, if we ask only that U be invertible [2], there is another nice and much
weaker condition: For each k, the vector occupying the first k entries of column k + 1 of A
must lie in the span of the columns of the leading k-by-k principal submatrix of A.

This, as with much else about LU factorization, may be seen from a partitioned point of
view. Let

A =

[

A11 A12

A21 A21

]

, with A11 k-by-k,

and consider the equation

A =

[

L11 0
L12 L22

] [

U11 U12

0 U22

]

,

with L and U partitioned conformally. Inductively, assume that k = n − 1. Then, if U11

is invertible, we must have A12 = L11U12 = L11U11U
−1
11 U12 = A11(U

−1
11 U12) in the column

space of A11. On the other hand, if A12 is in the column space of A11, A12 = A11x, and U11

is invertible (inductive hypothesis), then choose U12 = U11x, L12 = A21U
−1
11 , and U22 = 1

(solving for L22) to extend the factorization with U invertible. �

There is an analogous fact when L is asked to be invertible: The vector in the first k
entries of row k+ 1 of A must lie in the row space of the leading k-by-k principal submatrix
of A.
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The existence of an LU factorization with no invertibility requirement has long been an
open question. It was settled recently by C.R. Johnson and P. Okunev.

References
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1985.

2. C. Lau and T. Markham, LU Factorizations, Czechoslovak Math J. 29 (1979), 546–550.
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Singular Value Decomposition
The 2× 2 Case

Let A be a real n×n matrix. It is a fact that there exist real orthogonal matrices V and W
and a diagonal matrix Σ with nonnegative diagonal entries such that

A = WΣV T . (1)

The diagonal entries of Σ are the singular values of A, and the factorization (1) is called the
singular value decomposition of A.

We will prove that any 2× 2 nonsingular matrix admits such a factorization.
Let 〈·, ·〉 denote the usual inner product, and define

e1(θ) =

[

cos θ
sin θ

]

, e2(θ) =

[

− sin θ
cos θ

]

.

Note that 〈e1(θ), e2(θ)〉 = 0 for all θ.
Let A be a given 2× 2 nonsingular matrix, and let us define a function f : R→ R by

f(θ) = 〈Ae1(θ), Ae2(θ)〉.

First let us argue that there is some θ0 ∈ [0, π/2] for which f(θ) = 0. To see this, observe
that e1(π/2) = e2(0) and e2(π/2) = −e1(0), so that f(π/2) = −f(0). Thus if f(0) > 0
then f(π/2) < 0; and since f is a continuous function of θ, the intermediate value theorem
implies that there is some θ0 ∈ (0, π/2) for which f(θ0) = 0. A similar argument applies if
f(0) < 0, and if f(0) = 0 then of course we simply take θ0 = 0.

The existence of θ0 is the crux of the proof, for not only are e1(θ0) and e2(θ0) orthogonal
(in fact they are orthonormal), but so are Ae1(θ0) and Ae2(θ0). The significance of this
should become clear momentarily.

Let us proceed by setting v1 = e1(θ0), v2 = e2(θ0), σ1 = ‖Av1‖, σ2 = ‖Av2‖, w1 = Av1/σ1

and w2 = Av2/σ2. Note that w1 and w2 are orthonormal. Observe now that the matrices

V = [v1 v2] and W = [w1 w2]

are orthogonal.
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Finally, set

σ =

[

σ1 0
0 σ2

]

.

We then have
AV = [Av1 Av2] = [σ1w1 σ2w2]

= WΣ.
(2)

The proof is completed by postmultiplying both sides of equation (2) by V T to obtain

A = WΣV T .

Exercises

1. Let A be an n × n matrix, and for the sake of simplicity assume that A is non-
singular. Suppose that v1, v2, . . . , vn are given orthonormal vectors whose images
Av1, Av2, . . . , Avn are orthogonal. Show how to construct the singular value decompo-
sition in this case. (Exercise 2 is concerned with the existence of such v1, . . . , vn.)

2. This is for those familiar with the spectral theorem for real symmetric matrices. Prove
that one may take v1, v2, . . . , vn to be eigenvectors of ATA and that the singular values
of A are the nonnegative square roots of the eigenvalues of ATA.

Michael Lundquist
Brigham Young University
Contributed



A Simple Proof of the Jordan
Decomposition Theorem for Matrices

There are several proofs of the existence of the Jordan normal form of a square complex
matrix. For a discussion of these proofs and references, we refer the reader to the paper by
Väliaho [1].

In this note we present a new, simple and short proof of the existence of the Jordan
decomposition of an operator on a finite dimensional vector space over the complex numbers.
Our proof is based on an algorithm that allows one to build the Jordan form of an operator
A on an n-dimensional space if the Jordan form of A restricted to an n − 1 dimensional
invariant subspace is known.

Let A be a linear operator on a finite-dimensional vector space V over the complex
numbers. Recall that a subspace of V is called cyclic if it is of the form

span
{

ϕ, (A− λ)ϕ, . . . , (A− λ)m−1ϕ
}

with (A−λ)m−1ϕ 6= 0 and (A−λ)mϕ = 0. Such a subspace is A-invariant and has dimension
m. This follows immediately from the fact that if for some r(r = 0, 1, . . . , m− 1)

cr(A− λ)rϕ+ · · ·+ cm−1(A− λ)m−1ϕ = 0 and cr 6= 0,

then after an application of (A− λ)m−r−1 to both sides of this equality we obtain

cr(A− λ)m−1ϕ = 0.

Idea of the proof : The argument can be reduced to two cases. In one case there is a vector g
outside of an n− 1 dimensional A-invariant subspace F of V such that Ag = 0. In this case
V = F ⊕ span {g} and the solution is clear from the induction hypothesis on F . The difficult
case is when no such g exists. It turns out that one of the cyclic subspaces of the restriction
of A to F is replaced by a cyclic subspace of A in V which is larger by one dimension while
keeping the other cyclic subspaces unchanged.

Observation. Suppose W = H⊕span {ϕ,Aϕ, . . . , Am−1ϕ} with Am−1ϕ 6= 0, Amϕ = 0, where
H is an A-invariant subspace of V and AmH = {0}. Given h ∈ H, let ϕ′ = ϕ + h. Then

W = H ⊕ span
{

ϕ′, Aϕ′, . . . , Am−1ϕ′
}

,
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with Am−1ϕ′ 6= 0 and Amϕ′ = 0. This statement follows immediately from the fact that if
a linear combination of the vectors ϕ′, Aϕ′, . . . , Am−1ϕ′ belongs to H, then the same linear
combination of the vectors ϕ,Aϕ, . . . , Am−1ϕ also belongs to H.

Jordan Decomposition Theorem. Let V 6= (0) be a finite dimensional vector space over
the complex numbers and let A be a linear operator on V . Then V can be expressed as a
direct sum of cyclic subspaces.

Proof. The proof proceeds by induction on dimV . The decomposition is trivial if dimV = 1.
Assume that the decomposition holds for spaces of dimension n − 1. Let dimV = n. First
we assume that A is singular. Then the range R(A) of A has dimension at most n− 1. Let
F be an n− 1 dimensional subspace of V which contains R(A). Since AF ⊂ R(A) ⊂ F , the
induction hypothesis guarantees that F is the direct sum of cyclic subspaces

Mj = span
{

ϕj , (A− λj)ϕj , . . . , (A− λj)
mj−1ϕj

}

, 1 ≤ j ≤ k.

The subscripts are chosen so that dimMj ≤ dimMj+1, 1 ≤ j ≤ k−1. Define S = {j|λj = 0}.
Take g 6∈ F . We claim that Ag is of the form

Ag =
∑

j∈S

αjϕj + Ah, h ∈ F, (10)

if S 6= ∅. If S = ∅, then Ag = Ah. To verify (1), note that Ag ∈ R(A) ⊂ F . Hence Ag
is a linear combination of vectors of the form (A − λj)

qϕj, 0 ≤ q ≤ mj − 1, 1 ≤ j ≤ k. For
λj = 0, the vectors Aϕj, . . . , A

m−1
ϕj

, are in A(F ). If λj 6= 0, then from (A − λj)
mjϕj = 0

and from the binomial decomposition we get that ϕj is of the form
∑mj

m=1 bmA
mϕj . Thus all

vectors (A− λj)
qϕj belong to A(F ) and equation (1) holds.

Let g1 = g−h, where h is given in (1). Since g 6∈ F and h ∈ F, g1 6∈ F and from equation
(1),

Ag1 =
∑

j∈S

αjϕj. (11)

If Ag1 = 0, then span {g1} is cyclic and V = F ⊕ span {g1}. Suppose Ag1 6= 0. Let p be the
largest of the integers j in (2) for which αj 6= 0. Then for g̃ = (1/αp)g1,

Ag̃ = ϕp +
∑

j∈S,j<p

αj

αp
ϕj . (12)

Define
H =

∑

j∈S,j<p

⊕Mj .

The subspace H is A-invariant and since dimMj ≤ dimMp, j < p, it follows that
Amp(H) = {0}. Thus by the observation applied to H ⊕Mp and equality (3), we have

H ⊕Mp = H ⊕ span {Ag̃, . . . , Amp g̃} .
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Hence,
F =

∑

j 6=p

⊕Mj ⊕ span {Ag̃, . . . , Amp g̃} .

Since g̃ 6∈ F ,

V = F ⊕ span {g̃} =
∑

j 6=p

⊕Mj ⊕ span {g̃, Ag̃, . . . , Ampg̃} .

This completes the proof of the theorem under the assumption that A is singular. For
the general case, let µ be an eigenvalue of A. Then A−µ is singular and by the above result
applied to A− µ, it follows that V is the direct sum of cyclic subspaces for A. Q.E.D.

This proof shows how to extend a Jordan form for A on an n − 1 dimensional invariant
subspace F to an n-dimensional A-invariant subspace containing F .

Note that the proof of the theorem also holds if the field of complex numbers is replaced
by any algebraically closed field.

Illustrative Example. Let

A =















0 1 0 0 a
0 0 0 0 b
0 0 0 1 c
0 0 0 0 d
0 0 0 0 0















Then
Ae2 = e1, Ae1 = 0, Ae4 = e3, Ae3 = 0.

We take
F = span {e1, e2, e3, e4} = span {e2, Ae2} ⊕ span {e4, Ae4} .

Now e5 6∈ F and

Ae5 = ae1 + be2 + ce3 + de4 = be2 + de4 + A(ae2 + ce4).

If d 6= 0, take g̃ = e5 − ae2 − ce4/d. Then Ag̃ = e4 + (b/d)e2, A
2g̃ = e3 + (b/d)e1 and

C5 = span {e2Ae2} ⊕ span
{

g̃, Ag̃, A2g̃
}

.

If d = 0 and b 6= 0 take g̃ = e5 − ae2 − ce4/b. Then Ag̃ = e2 and Ae2 = e1. Hence

C5 = span
{

g̃, Ag̃, A2g̃
}

⊕ span {e4, Ae4} .

Finally, if d = b = 0 take g̃ = e5 − ae2 − ce4. then Ag̃ = 0 and

C5 = span {e2, Ae2} ⊕ span {e4, Ae4} ⊕ span {g̃} .
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Similarity of Matrices

It is well known that if A and B are n×n matrices and if they are similar over the complex
numbers then they are similar over the real numbers. Although this theorem is understand-
able to a beginning linear algebra student, its proof is usually part of the more advanced
theory of similarity invariants [2,p. 144], [1,p. 203]. The purpose of this note is to give an
elementary proof that requires only some simple facts about determinants and polynomials.
First, if detX 6= 0, then X is nonsingular. Second, a nonzero polynomial has only finitely
many roots.

Theorem. Let A and B be real n× n matrices. If A is similar to B over the complexes,
then A is similar to B over the reals.

Proof. Suppose that A = S−1BS, for some nonsingular complex matrix S. There are real
matrices P and Q such that S = P + iQ. Then (P + iQ)A = B(P + iQ); and since A,B, P ,
and Q are all real, we have PA = BP and QA = BQ. If either P or Q is nonsingular, then
we are finished. Even if both P and Q are singular, we are finished if there is a real number
r such that P + rQ is nonsingular. For then (P + rQ)A = B(P + rQ).

We know that the polynomial p(x) = det(P + xQ) is not identically zero since p(i) =
detS 6= 0. It follows that in any infinite set there is an element r such that p(r) 6= 0. In
particular there is a real number r such that p(r) 6= 0. But then P +rQ is a real nonsingular
matrix and we are finished.
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Classifying Row-reduced Echelon Matrices

One of the fundamental theorems of linear algebra states that the row-reduced echelon form
of a given m×n matrix is unique. Yet, there are many row-reduced echelon forms associated
with the set of all m×n matrices, for given m and n with n > 1. We shall characterize them
and count their number.

Recall that a matrix is said to be in row-reduced echelon form if the following conditions
are all satisfied:

(i) In each row that does not consist entirely of zeros, the first nonzero entry is a one
(known as a leading one).

(ii) In each column that contains a leading one of some row, all other entries are zero.
(iii) In any two rows with nonzero entries, the leading one of the higher row is farther to

the left.
(iv) Any row that contains only zeros is lower than all rows that have some nonzero entries.

In any row-reduced echelon matrix, we shall refer to the (positioned) zeros required by
conditions (i), (ii), and (iv) of the definition as forced zeros.

As an example, consider all possible 2× 3 row-reduced echelon matrices. Each of these
can be written as a special case of one of the following, where x and y are arbitrary.

[

0 0 0
0 0 0

]

,

[

1 x y
0 0 0

]

,

[

0 1 x
0 0 0

]

,

[

0 0 1
0 0 0

]

,

[

1 0 x
0 1 y

]

,

[

1 x 0
0 0 1

]

,

[

0 1 0
0 0 1

]

.

The displayed ones and zeros are leading ones and forced zeros. We shall refer to entries that
are neither leading ones nor forced zeros as undetermined entries. Thus, we have three types
of entries for each matrix.

Although there are infinitely many matrices represented above, there are only seven
different “classes” of them. To make this idea precise, we shall say that two row-reduced
echelon matrices are type-equivalent if each pair of corresponding entries is of the same type.
For example, the matrices







1 0 2 3
0 1 4 5
0 0 0 0





 and







1 0 1 0
0 1 8 1
0 0 0 0
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are type-equivalent, but the matrices
[

1 0 0
0 1 0

]

and

[

1 0 0
0 0 1

]

are not. In the latter case, the entries in the following positions are of different types:
(1, 2), (1, 3), (2, 2) and (2, 3).

The relation induced by “type-equivalence” is an equivalence relation—it is symmetric,
reflexive and transitive. It therefore partitions the set of all m × n row-reduced echelon
matrices into equivalence classes. The above pair of 3 × 4 matrices belongs to the same
equivalence class, whereas the above pair of 2 × 3 matrices does not. In this context, the
seven 2× 3 row-reduced echelon matrices displayed earlier are the seven equivalence classes
that partition the set of all 2× 3 row-reduced echelon matrices. Note that

7 =

(

3

0

)

+

(

3

1

)

+

(

3

2

)

.

In general, the number of distinct type-equivalent m × n matrices (that is, the number of
equivalence classes induced by the “type” relation) is given by

N(n,m) =
min(m,n)
∑

k=0

(

n

k

)

.

To verify this, first observe that the positions of the leading ones in any row-reduced
echelon matrix determine the type of all the entries in that matrix. (They determine the
positions of the forced zeros, and hence those of the undetermined entries.) Thus, all we
need show is that the number of ways that the leading ones can be arranged is given by
the formula above. Our approach will be to do this for matrices of rank k (that is, with k
nonzero rows in their reduced form) and then sum the results from rank 0 to rank min(m,n)
(the largest possible).

Suppose A is an m × n row-reduced echelon matrix of rank k. Then A has exactly k
leading ones. These leading ones, located in the first k rows of A, must occur in k distinct
columns. Once the columns are specified, the positions of the leading ones are completely

determined since they form “stair steps” down to the right. Since there are
(

n
k

)

ways of

choosing k objects from a collection of n distinct objects, there are
(

n
k

)

ways of positioning

the leading ones. Thus, there are exactly
(

n
k

)

equivalence classes for m × n row-reduced

echelon matrices of rank k. Summing over k = 0, 1, . . . ,min(m,n) completes the proof.
As an example, observe that the number of distinct type-equivalent 3 × 3 row-reduced

echelon matrices is

N(3, 3) =

(

3

0

)

+

(

3

1

)

+

(

3

2

)

+

(

3

3

)

= 8.

It is no coincidence that the answer turned out to be 23. Indeed, the number of distinct
type-equivalent square matrices of order n is equal to 2n. This follows immediately from

N(n, n) =
n
∑

k=0

(

n

k

)

,
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since (1 + x)n =
∑n

k=0

(

n
k

)

xk yields 2n =
∑n

k=0

(

n
k

)

.

Stewart Venit and Wayne Bishop
California State University, Los Angeles
College Mathematics Journal 17 (1986), 169–170





PART 6

Polynomials and Matrices





Introduction

One of the early connections between polynomials and matrices is the well known Cayley-
Hamilton Theorem. Polynomial equations in which the coefficients are matrices (so they are
called polynomial matrix equations) have been studied extensively in the past sixty or more
years. Many results exist both over the real and complex field as well as over finite fields.
Matrix methods have been applied to the row (and column) reduction of systems of linear
equations and to finding the g.c.d. of sets of polynomials. Indeed, the connections between
polynomials and matrices are many and varied.
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On the Cayley-Hamilton Theorem

Let A be an n-by-n matrix over an arbitrary field and let p(x) = det(xI − A) denote the
characteristic polynomial of A. Then

p(A) = 0.

Proof : Define F (x) = adj(xI − A), in which adj is the classical adjoint (or matrix of
cofactors). Then, F (x) is an n-by-n matrix, whose entries are polynomials in x of degree at
most n − 1. We have

F (x)(xI −A) = p(x)I.

It follows that

(a) every entry of F (x)(xI − A) is a polynomial divisible by p(x); and

(b) over the field of rational functions in x, F (x) is invertible, as F (x)−1 =
1

p(x)
(xI −A).

From (a) each entry of xF (x)− F (x)A is divisible by p(x). Thus, each entry of xF (x)A−
F (x)A2, or equivalently, x2F (x)−F (x)A2 is divisible by p(x). Continuing in the same way,
all entries of

xkF (x)− F (x)Ak

are divisible by p(x) for all positive integers k. Multiplication by the kth coefficient of p and
summing on k yields that

p(x)F (x)− F (x)p(A)

has all entries divisible by p(x). Thus all entries of F (x)p(A) are divisible by p(x). However,
all entries of F (x)p(A) are of degree at most n − 1 and, as p(x) has degree n, must be 0.
Finally, since by (b) F (x) is invertible, p(A) is 0. �

Robert Reams
University College, Galway (Ireland)
Contributed
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On Polynomial Matrix Equations

In his stimulating article “What Do I Know? A Study of Mathematical Self-Awareness”
[CMJ 16 (January 1985), 22-41], Phil Davis asked on page 26 if the equation

X3 +X2 +

[

0 1
0 0

]

X =

[

1 2
3 4

]

(1)

has a real 2× 2 matrix solution. I wrote Phil that of course it does, and (tongue-in-cheek)
pulled the rabbit out of the hat:

Let λ and µ be distinct real solutions of

(t3 + t2 − 1)(t3 + t2 − 4) + 3(t− 2) = 0, (2)

and set

P =

[

λ3 + λ2 − 4 µ3 + µ2 − 4
3 3

]

. (3)

Behold, a solution of (1):

X = P

[

λ 0
0 µ

]

P−1. (4)

This certainly seems like magic, and its explanation should provide some material for
enrichment projects and student research. (For a first exercise, prove that (2) has exactly
two real solutions.) Let us start by examining the class of problems of which (1) is an
example.

Let A0, A1, . . . , Ar (where Ar = I) be fixed n × n complex matrices and consider the
equation

r
∑

j=0

AjX
j = 0 (5)

for an n× n unknown matrix X. (Note that because matrices do not usually commute, (5)
is not the most general polynomial matrix equation; all powers of X are on the right. Ask
your students to experiment with

X3 + AX2 +B = 0, X3 +XAX +B = 0, X3 +X2A +B = 0
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for instance.)
To analyze equation (5), suppose we have a solution X. Since the complex square matrix

X has characteristic vectors, assume that Xv = λv for a nonzero column vector v and
complex number λ. Then Xjv = λjv for j = 0, 1, . . . , r. Hence, by (5),





r
∑

j=0

Ajλ
j



v = 0. (6)

Since v 6= 0, it follows λ is a solution of

det





r
∑

j=0

Ajt
j



 = 0. (7)

Because Ar = I , the determinant is a polynomial of degree nr in the (scalar) variable t.
Now let us try to piece together a matrix solution of (5). Suppose that λ1, λ2, . . . , λn are

n, not necessarily distinct, solutions of (7) and that v1, . . . ,vn are nonzero column vectors
such that





r
∑

j=0

Ajλ
j
i



vi = 0 (8)

for i = 1, 2, . . . , n. Such nonzero vectors exist because by (7), each matrix

r
∑

j=0

Ajλ
j
i

is singular. Next we define n × n matrices

P = [v1, . . . ,vn] and D =









λ1 0
. . .

0 λn









, (9)

and compute

PDj = [v1, . . . ,vn]









λj
i 0

. . .

0 λj
n









=
[

λj
1v1, . . . , λ

j
nvn

]

. (10)

It follows that
r
∑

j=0

AjPD
j =

r
∑

j=0

Aj

[

λj
1v1, . . . , λ

j
nvn

]

=





r
∑

j=0

Ajλ
j
1v1, . . . ,

r
∑

j=0

Ajλ
j
nvn



 .
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By (8), each column in this n × n matrix equals 0. Thus the n vector equations in (8) are
equivalent to the single neat matrix equation

r
∑

j=0

AjPD
j = 0 (11)

So far, the n vectors vi are nonzero; that is all. But suppose that somehow we can choose
λ’s and v’s satisfying (7) and (8), and such that v1, . . . ,vn are also linearly independent (a
big “suppose”). Then the matrix P in (9) is nonsingular; so we can multiply (11) by P−1 to
obtain

r
∑

j=0

Aj(PD
jP−1) = 0. (12)

But PDjP−1 = (PDP−1)j. Hence if we set

X = PDP−1, (13)

then
r
∑

j=0

AjX
j = 0. (14)

Thus X is a solution of (5).
To summarize: We wish to solve (5) for an n×n matrix X. We find n complex solutions

λ1, . . . , λn of (7), and corresponding nonzero column vector solutions v1,, . . . ,vn of (8). If
we can do this in such a way that v1, . . . ,vn are linearly independent, then the matrix X in
(13), where P and D are defined by (9), is a solution of (5). This discussion raises a lot of
questions, but first let us look at some examples.

Example 1. Consider Phil Davis’s equation (1) for 2 × 2 matrices. Equation (7) of our
analysis specializes to equation (2); so (2) really does come from analysis, not from a hat! It
turns out that (2) has precisely two real solutions (and they are simple):

λ1 ≈ −1.4834075 and λ2 ≈ 1.3794399.

The corresponding equation (8) for v1 is

[

−2.0637371 −3.4834075

−3.0000000 −5.0637371

]

v1 ≈ 0.

(The 2 × 2 matrix is indeed very close to singular.) Since v1 is only determined up to a
factor, we may choose

v1 ≈
[

−5.0637371

3.0000000

]

.
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This is surely accurate to 6 places. Similarly, we may choose

v2 ≈
[

0.5277290
3.0000000

]

.

Since v1 and v2 are linearly independent, P = [v1,v2] is nonsingular. It is now an interesting
(computer) exercise to calculate the X = PDP−1 in (13) and check that it solves (1) to
reasonable accuracy.

Example 2. Equation X2 − I = 0 for 2× 2 matrices. Equation (7) specializes to

(t2 − 1)2 = 0,

which has λ1 = −1 and λ2 = 1 as its only distinct solutions. In both cases λ2I − I = 0,
so v1 and v2 are arbitrary nonzero vectors. We have lots of linearly independent choices,
suggesting many solutions of X2 = I . How many in addition to I and −I?
Example 3. Equation X2 = 0 for 2× 2 matrices. Equation (7) becomes t4 = 0, with unique
solution λ = 0. The only solution X = PDP−1 this method produces is X = 0, because
D = 0. But there are lots of other 2× 2 matrices X such that X2 = 0:

[

0 a
0 0

]

,

[

0 0
b 0

]

, P

[

0 1
0 0

]

P−1.

Thus our method may fail to produce all solutions.

Example 4. For 3× 3 matrices, consider the equation

X2 =







0 0 1
0 0 0
0 0 0





 .

Equation (7) becomes t6 = 0, whose only solution is λ = 0. Thus the method fails to produce
any solution. But

X =







0 1 0
0 0 1
0 0 0







is a solution. Why does the method fail?

Example 5. Consider the equation

X2 =

[

0 1
0 0

]

for 2× 2 matrices. Again, our method fails to produce any solution. However, in this case,
there is none! Why? Do the ideas of this article help to prove this?

Further questions. The preceding problem can be used as a basis for student investigations
that go beyond the usual textbook exercises. We offer a few questions worth exploring.
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(i) Suppose equation (7) has nr distinct roots. Then does our method produce at least
one solution to (5)? All solutions?

(ii) Can we find conditions on equation (5) that guarantee failure of our method: no linearly
independent solutions of (8)?

(iii) Explore some examples in which (5) factors into commuting factors—as, for instance,
(X − I)(X − A) = 0.

For other material on the subject of matrix equations, the reader may consult the author’s
article “Analytic Solutions of Matrix Equations” [Linear and Multilinear Algebra 2 (1974)
241–243] and the treatise Matrix Polynomials by I. Gohberg, P. Lancaster, and L. Rodman
[Academic Press, 1982]; relevant material is found around pages 113 and 125.

Harley Flanders
Jacksonville University
College Mathematics Journal 17 (1986), 388–391





The Matrix Equation X2 = A

The purpose of this note is to give a useful procedure for solving the matrix equationX2 = A.
In response to the curiosity of sophomores in linear algebra courses I have accumulated a

number of exercises and theorems involving polynomial equations in matrices suitable for an
elementary course. Chapter 7 of a book [5] of C.C. MacDuffee provides a summary of basic
results and is a good source of references for matrix equations up to 1933. It is adequate for
enriching an elementary course. Matrix equations is still an active research field (cf. [2],[4],
for example) but I am unaware of a recent survey. According to [6, Chapter 2], the solution
of the matrix equation

∑n
i=0AiX

i = 0 is equivalent to the search for the right divisors Iλ−X
of
∑n

i=0 Aiλ
i. In this connection the paper [3] is of interest.

Returning to the simple quadratic X2 = A, a classical theorem [1, p. 299] ensures a
(nonsingular) solution to the equation if A is nonsingular. I now describe a method, once
suggested to me by W.E. Roth, that reduces the problem of solving X2 = A to linear
equations regardless of the rank of A.

If X is a solution of the equation (examples for which there is no solution are easily
devised), then

X2 − λ2I = A− λ2I ;

hence
(X − λI)(X + λI) = A− λ2I.

If φ(λ) denotes the characteristic function of a solution, then

φ(λ)φ(−λ) = det(A− λ2I) (∗)

and so the characteristic function of a solution, if one exists, must be a divisor of det(A−λ2I).
For each of the possible solutions φ(λ) of (∗) one secures the equation φ(X) = 0 in which all
even powers of X may be replaced by powers of the known matrix A to reduce the equation
to a linear matrix equation.

As an example, consider the equation

X2 =







9 0 −8

5 4 −5

0 0 0







For this A,

153



154 Part 6—Polynomials and Matrices

φ(λ)φ(−λ) = det(A− λ2I) = −λ2(λ2 − 9)(λ2 − 4)

and the possible characteristic functions of solutions are φ1(λ) = λ(λ − 3)(λ − 2), φ1(−λ),
φ2(λ) = λ(λ+ 3)(λ− 2), φ2(−λ), φ3(λ) = λ(λ+ 3)(λ+ 2), φ3(−λ), φ4(λ) = λ(λ− 3)(λ+ 2),
φ4(−λ). In this problem the solutions given by the last four functions are the solutions given
by the first four functions.

Consider

φ1(X1) = X3
1 − 5X1 + 6X1 = AX1 − 5A + 6X1 = (A+ 6I)X1 − 5A = 0.

This linear equation has the unique solution

X1 =









3 0 −8/3

1 2 −7/6

0 0 0









,

which satisfies the given equation. Similarly, φ2(X2) = 0 gives

X2 =









−3 0 8/3

−5 2 25/3

0 0 0









.

These two matrices and their negatives are the four solutions of the given quadratic equation.
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Where Did the Variables Go?

In the study of a branch of mathematical control theory called Liapunov stability theory,
the following matrix equation arises:

ATP + PA = −Q. (13)

In equation (1), A is a real n × n matrix, Q is an arbitrary real symmetric positive definite
n × n matrix, and P is a real symmetric n × n matrix to be determined. The unknown
elements pij of P are those on and above the principal diagonal, the remaining elements
then being obtained from the symmetric nature of P . There are therefore n unknowns
p11, p22, . . . , pnn on the principal diagonal, n − 1 unknowns p12, p23, . . . , pn−1,n on the line
parallel to this, and so on, ending up with the single element p1n. The total number of
unknowns is therefore

n+ (n− 1) + · · ·+ 2 + 1 =
1

2
n(n+ 1).

By equating elements in the same upper triangle (on and above the principal diagonal) on
both sides of (1) we produce exactly 1

2
n(n+1) linear equations to be solved for the 1

2
n(n+1)

unknown elements. These equations will have a unique solution if and only if there are no
eigenvalues λi, λj of A such that λi+λj = 0; this will certainly be satisfied if A is nonsingular,
so that all λi 6= 0. In applications it is of interest to determine when the λi all have negative
real parts, and this is the case if and only if P is positive definite. For further details,
including the situation when A has complex elements, see [1].

What is of interest here, however, is the somewhat surprising fact that P can be obtained
by solving only 1

2
n(n − 1) linear equations for 1

2
n(n − 1) unknowns, a reduction of n in the

number of variables—hence the title of this note. To see how this comes about, notice that
(PA)T = ATP T = ATP since P is symmetric, so we can write (1) as

(PA)T + PA = −Q,

or equivalently
(

PA+
1

2
Q
)T

+ PA+
1

2
Q = 0, (14)

where we have used Q = QT . It follows from (2) that

PA +
1

2
Q = S, (15)
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where S is a real skew symmetric matrix, which by definition satisfies ST = −S. Assuming
that A is nonsingular, we can rearrange equation (3) to give

P =
(

S − 1

2
Q
)

A−1. (16)

Next, multiply (3) on the left by AT to obtain

ATPA +
1

2
ATQ = ATS, (17)

and transpose both sides of this equation, producing

ATPA +
1

2
QA = −SA, (18)

where we have used the results
(

ATQ
)T

= QT
(

AT
)T

= QA,

(

ATS
)T

= ST
(

AT
)T

= −SA.

Finally, subtracting (6) from (5) gives

ATS + SA =
1

2

(

ATQ−QA
)

. (19)

Since the principal diagonal of a real skew symmetric matrix is identically zero, the upper
triangle of S contains n fewer unknown elements than for a symmetric matrix; that is

1

2
n(n+ 1) − n =

1

2
n(n− 1)

in total. Equation (7) therefore represents 1
2
n(n− 1) linear equations for the elements of S.

By the assumption that A is nonsingular these equations have a unique solution, and P is
then given by (4).
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A Zero-Row Reduction Algorithm
for Obtaining the gcd of Polynomials

The Euclidean algorithm is traditionally employed to find the gcd (greatest common divisor)
of two polynomials. Consider two polynomials, f(x) and g(x), where deg f ≥ deg g. The
Euclidean algorithm takes us through a sequence of polynomial divisions to obtain

f = gq1 + r1,
g = r1q2 + r2,

r1 = r2q3 + r3,
· · · ,

rm−1 = rmqm+1,

where deg g > deg r1 > · · · > deg rm.
The last division, which produces a zero remainder, yields rm as the gcd of f and g.

Since gcd(f1, f2, f3) = gcd(gcd(f1, f2), f3), this procedure can be extended to find the gcd
of a large number of polynomials. However, using the Euclidean algorithm in the fashion
illustrated above for a large set of polynomials of high degree would be tedious. In this note,
we present a zero-row reduction algorithm that is based on properties of the greatest common
divisor. These properties have been recognized and used in computing gcds of integers and
polynomials by Brown [2], Chrystal [3], and Knuth [4], among others.

Properties of gcds. Consider two polynomials

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

and
g(x) = b0 + b1x+ b2x

2 + · · ·+ btx
t

(1)

with real coefficients and with an 6= 0, bt 6= 0, t ≤ n. If d(x) is the gcd of f(x) and g(x), then
the following are true:

1. d(x) is the gcd of k1f(x) and k2g(x) for nonzero real k1, k2.

2. d(x) is the gcd of f(x) + kg(x) and g(x) for real k.

3. If a0 = 0 and b0 6= 0, then d(x) is the gcd of g(x) and the polynomial f(x)/x =
a1 + a2x+ a3x

2 + · · ·+ anx
n−1 + 0xn.
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4. If a0 = b0 = 0, then d(x) contains a factor x and d(x)/x is the gcd of f(x)/x and
g(x)/x.

Zero-row reduction algorithm. Given a pair of polynomials f(x) and g(x), we
apply the above properties to obtain another pair of polynomials having the same gcd as the
original pair. A systematic application of these properties, together with careful selection of
the nonzero factors k, k1, and k2, results in a sequence of polynomial pairs having decreasing
degrees (see property 3) and leading ultimately to a pair d(x) and 0. For computational
convenience, we will represent the pair of polynomials in (1) by the following 2 by n + 1
matrix C :

C =

[

a0 a1 · · · an

b0 b1 · · · bn

]

. (2)

We begin the gcd algorithm by removing any leading columns of zeros from the matrix
C to obtain a matrix C ′ whose first column is nonzero. If the first K columns of C are zero,
but the (K + 1)st column is nonzero, then xK is a factor of gcd(f(x), g(x)), and we can
compute the rest of the gcd by examining C ′ (property 4).

Now let us define the normalization of a row to be the operation that shifts a row to
the left as many positions as necessary in order to eliminate all leading zeros and then
divides the entire row by its leading (nonzero) coefficient. For example, the normalization of
(0,0,2,6,0,4,18,0) is (1,3,0,2,9,0,0,0). By properties 1 and 3, we can normalize each row in C ′

and the gcd of the polynomials represented by the rows of the new matrix will be the same
as gcd(f(x), g(x))/xK .

Property 2 can now be used to change the first entry in row 2 to zero by replacing row
2 with row 2 minus row 1. We now return to the normalization process and continue to
reduce the number of nonzero entries in the rows until one of the two rows consists entirely
of zeros. At that point, gcd(f(x), g(x))/xK is represented by the remaining nonzero row of
the matrix.

Pseudocode for Gcd2, the algorithm for finding the gcd of two polynomials, is presented
below:

Algorithm Gcd2(C)
C is the 2 by n+ 1 coefficient matrix of two given polynomials.

BEGIN

p=number of leading zeros in row 1 of C
q=number of leading zeros in row 2 of C
K=minimum (p, q)

(xK is a factor of the gcd)
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WHILE (both rows of C are nonzero)

Normalize both rows (shift each row left to remove all leading zeros and
divide each coefficient by the leading nonzero element).
Let row A be the row representing the polynomial with the smaller de-
gree (the row that has the maximum number of trailing zeros) and row
B, the other polynomial. Replace row B with row B−row A (element-
wise subtraction).

ENDWHILE

gcd is xK times the polynomial represented by the remaining nonzero
row (shift the nonzero row K places to the right).

END Gcd2.

Using Gcd2 and the fact that gcd(f1, f2, f3) = gcd(gcd(f1, f2), f3), we could devise an
iterative algorithm to find the gcd of a set of m polynomials, f1, f2, . . . , fm. However, a
more efficient algorithm can be devised, similar to the above algorithm Gcd2. Instead of an
iterative and sequential approach involving two polynomials at a time, we work on the entire
set of m polynomials and a matrix with m rows using an approach that can be characterized
as parallel (and, in fact implementable as such). The following annotated example serves to
explain the algorithm.

Example. Find the gcd of the polynomials

x2 + 3x3 + 3x4 + x5

x+ 2x2 + x3

x − x3

x+ x2.

1. Coefficient matrix

0 0 1 3 3 1

0 1 2 1 0 0

0 1 0 −1 0 0

0 1 1 0 0 0

2. Determine K : K = 1

0 0 1 3 3 1

0 1 2 1 0 0

0 1 0 −1 0 0

0 1 1 0 0 0

3. Normalize rows

1 3 3 1 0 0

1 2 1 0 0 0

1 0 −1 0 0 0

1 1 0 0 0 0

4. Switch lowest degree polynomial
with top row

1 1 0 0 0 0

1 2 1 0 0 0

1 0 −1 0 0 0

1 3 3 1 0 0
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5. Perform row reduction and
remove zero rows, if any

1 1 0 0 0 0

0 1 1 0 0 0

0 −1 −1 0 0 0

0 2 3 1 0 0

6. Normalize rows, switch lowest
degree polynomial with top row

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1.5 0.5 0 0 0

7. Perform row reduction

1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0.5 0.5 0 0 0

8. Remove zero rows, if any

1 1 0 0 0 0

0 0.5 0.5 0 0 0

9. Normalize rows, switch lowest
degree polynomial with top row

1 1 0 0 0 0

1 1 0 0 0 0

10. Perform row reduction

1 1 0 0 0 0

0 0 0 0 0 0

11. Remove zero rows

1 1 0 0 0 0

The gcd is x+ x2 = x(1 + x).
The algorithm is easy to implement on a computer. The details depend on the program-

ming language chosen. We used APL2 [1] because it supports nested arrays of mixed data
types and powerful operators to manipulate these arrays. Operations such as “remove all
zero rows from an array” can be executed with one or two lines of APL2 code without loop-
ing. A certain degree of parallelism is implicit in the APL2 language which encourages the
programmer to design and implement his/her algorithm in a way different from what might
result by using an inherently sequential language. At the machine level, multiprocessor sys-
tems can be programmed to automatically allocate all or some of the available processors to
perform the parallel tasks.
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PART 7

Linear Systems, Inverses and Rank





Introduction

The single most useful notion of linear algebra is that of a linear system. And, with linear
systems, we often associate the idea of rank of a matrix and the variety of ideas of inverses
and matrices.

The articles in this chapter study these concepts in their purest, simplest form—the
matrix equation Ax = b—and in a wide variety of significantly different variants, from
morphisms of categories to systems with interval data, to other numerical aspects of the
solution of linear systems. We note one article in this section discusses the fact that (in
friendly settings) Row and Column Rank Are Always Equal and the article by A.J. Berrick
and M.E. Keating, Rectangular Invertible Matrices, American Mathematical Monthly, 104
(1997), 297–302, which discusses among other things the fact that (in less friendly settings)
there can exist rectangular (nonsquare) matrices X and Y for which XY = I and Y X = I .
This interesting article is of a more advanced nature than others we have selected to appear.
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Left and Right Inverses

Theory for the existence and calculation of the right inverse of an n × n matrix A is well
developed in most elementary textbooks via row operations and reduced echelon form.
Uniqueness is often also explained. Though frequently mentioned, the fact that a right
inverse is also a left inverse is not often explained. Several of our colleagues (including Jim
Wahab and Alan Tucker) reminded us that this may also be done nicely, though with some
subtlety, via the technology of row reduction and the echelon form. The statement that B
is a right inverse of A (AB = I or B is a solution to AX = I) means that the augmented
matrix

[A I ] row reduces to [I B]. (1)

Equivalently, there is a product E of elementary matrices such that

E[A I ] = [I B] (2)

or
[EA E] = [I B]. (2′)

However, because of the reversibility of row operations and the unimportance of the arrange-
ment of columns, (1) implies that

[B I ] row reduces to [I A], (3)

which in turn means that BA = I or B is a left inverse of A. This may also be seen from
(2

′

) as E = B and EA = I .

The Editors
Contributed
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Row and Column Ranks Are Always Equal

The proofs I have seen in elementary linear algebra books that the row and column ranks of
an m×n matrix are always equal either depend on understanding the linear transformation
represented by the matrix, or involve consideration of the corresponding system of equations
with an attendant confusing array of subscripts, or both. The following proof is based only
on the definition of the ranks as dimensions of the row and column spaces. It makes use
of the two “important facts about matrix multiplication” given in the first section of this
volume—which facts, I agree, are extremely useful in the first linear algebra course. The
proof is based on a rank decomposition of A.

Theorem: If A is an m× n matrix, then the row rank of A is equal to the column rank of
A.

Proof: Let the row rank of A be r, and the column rank c. Then there is a set of c columns
of A that are linearly independent and that span the column space of A. Let B be an m× c
matrix with these columns. For j = 1, 2, . . . , n, the jth column of A may be written

Colj(A) = d1jCol1(B) + d2jCol2(B) + · · ·+ dcjColc(B) = Colj(BD),

where D = [dij ] is c× n. Hence A = BD, and so for i = 1, 2, . . . , m,

Rowi(A) = Rowi(BD) = bi1Row1(D) + bi2Row2(D) + · · ·+ bicRowc(D).

Hence each row of A is a linear combination of the rows of D, and so the dimension of the
row space of A does not exceed the number of rows of D; that is, r ≤ c. The same argument
may be applied to AT , so we also have c = row rank of AT ≤ column rank of AT = r. Thus
r = c.

Dave Stanford
College of William and Mary
Contributed
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A Proof of the Equality of
Column and Row Rank of a Matrix

Let A be an m×n complex matrix, A∗ its conjugate transpose, and let x and y denote n×1
matrices (column vectors).

Lemma 1. y∗y = 0 if and only if y = 0.

Lemma 2. Ax = 0 if and only if A∗Ax = 0.

Proof. If A∗Ax = 0, then y∗y = 0, where y = Ax. Hence, by Lemma 1, y = 0. The
converse is obvious.

Now let R(A) denote the range of A, i.e., the vector space {Ax; all x}. Note that column
rank (c.r.) A = dimR(A). We write r.r. A for the row rank of A.

Lemma 3. dimR(A) = dimR(A∗A).

Proof. By Lemma 2, Ax1, . . . , Axk are linearly independent if and only if A∗Ax1, . . . ,
A∗Axk are linearly independent.

Theorem. c.r. (A) = c.r. (A)∗ = r.r. (A).

Proof. c.r. (A) = c.r. (A∗A) = dim {A∗(Ax); all x} ≤ dim {A∗y; all y} = c.r. (A∗).
Thus also c.r. (A∗) ≤ c.r. (A∗∗) = c.r. (A), and so c.r. (A) = c.r. (A∗) = r.r. (A) = r.r. (A).
Of course, A is the entrywise conjugate of A.

Hans Liebeck
University of Keele
American Mathematical Monthly 73 (1966), 1114
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The Frobenius Rank Inequality

Given the product ABC of three rectangular matrices, the Frobenius inequality on rank
states that

rank AB + rank BC ≤ rank B + rank ABC.

Special cases of this inequality provide several familiar facts. For example, A = 0 implies
rank BC ≤ rank B; C = 0 implies rank AB ≤ rank B; and if B is the n × n identity
matrix, then rank A+ rank C ≤ n+ rank AC . Thus, in particular, Sylvester’s inequality is
a consequence of the Frobenius inequality. See, for example, [1] or [2].

The proof given below of this inequality is based upon three observations. First, if A is an
m×nmatrix over a field F with range R(A) = {AX|X ∈ F n}, then rank A = dimR(A), the
dimension of the range as a subspace of Fm. Second, if a linear transformation T : U → V
of dimensional vector space V over F with quotient space V/W of cosets ν + W , then
dim(V/W ) = dimV − dimW .

Proof of the Frobenius inequality. (Compare [3].) Let the product ABC of three matrices
over a field be defined. Since R(BC) ⊆ R(B),R(ABC) ⊆ R(AB), A(R(B)) ⊆ R(AB), and
A(R(BC)) ⊆ R(ABC), then

T :
R(B)

R(BC)
→ R(AB)

R(ABC)
; x+R(BC) |→ Ax+R(ABC)

is a linear transformation. Moreover, since R(AB) ⊆ A(R(B)), T is onto. Therefore,

rank B − rank (BC) = dim (R(B)/R(BC))

≥ dim(R(AB)/R(ABC))

= rank (AB)− rank (ABC).
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A New Algorithm for Computing the Rank of a Matrix

To determine the rank of a matrix A and a basis for its row space, students are usually
instructed to reduce A to echelon form by using elementary row operations. Then the
number of nonzero rows of the echelon matrix is the rank of A, and the rows of the echelon
matrix constitute a basis for the row space of A.

While this is quite correct, in practice the computations can become unwieldy. For
example, if A is an integer matrix there are two standard ways to proceed. In the first
approach we start by using elementary row operations (based on the division algorithm) to
eliminate all but one entry in the first column of A. In the second approach we first divide
the top row by the left-hand entry a11 (assuming a11 6= 0), then subtract suitable multiples
of the new top row from all the others; in either case the computation reduces matters to
considering an (m− 1) × (n − 1) matrix, whereupon the process is repeated.

The first approach has the advantage that all computations are performed with integers,
but a great many row operations are likely to be needed, and there may be some uncertainty
as to exactly which row operations should be used in order to minimize computation. In
the second approach denominators will immediately appear on the scene (unless A has been
specially designed to make computations easy, say by having lots of rows with leading entry 1
involved in the calculations), and the potential for error then increases dramatically. Indeed,
many texts make the appearance of nontrivial denominators especially likely by including
the requirement that each nonzero row of an “echelon” matrix have 1 as its first nonzero
entry. That requirement is irrelevant for rank and row space determinations. (Of course,
a leading 1 is important if the reduction is being done in order to solve a system of linear
equations.)

Our purpose here is to present a rank algorithm in which division is never needed. Like
the usual procedures, this one yields an echelon matrix (not necessarily with a leading 1 in
its nonzero rows) that is row-equivalent to the original, and whose nonzero rows constitute
a basis for the row space of A. But here there will be no uncertainty about how to proceed,
and denominators will not arise in the computations.

First we fix some notation. Let F be a field, and let Mm×n(F ) denote the set of m× n
matrices over F . For any matrix A = (aij) ∈Mm×n(F ) and any pair of indices i, j satisfying
2 ≤ i ≤ m and 2 ≤ j ≤ n, we define the 2× 2 subdeterminant

dij =

∣

∣

∣

∣

∣

a11 a1j

ai1 aij

∣

∣

∣

∣

∣

= a11aij − ai1a1j.

The following result provides the key to our procedure.
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Theorem. Let A = (aij) ∈Mm×n(F ), and suppose a11 6= 0. Then

rank A = 1 + rank









d22 · · · d2n
...

dm2 · · · dmn









.

Proof. Write ∼ for row equivalence of matrices. We first multiply rows 2 through m by
a11, obtaining

A ∼













a11 a12 · · · a1n

a11a21 a11a22 · · · a11a2n
...

a11am1 a11am2 · · · a11amn













.

Now we take this new matrix and, for each row index i satisfying 2 ≤ i ≤ m, we subtract
ai1 times row 1 from row i. This yields the row equivalence

A ∼













a11 a12 · · · a1n

0 d22 · · · d2n
...
0 dm2 · · · dmn













.

Because a11 6= 0, the first row of this last matrix is not a linear combination of the other
rows. The conclusion follows. �

An algorithm for rank computation. First note that if a given nonzero matrix
A = (aij) has a leading column of zeros, then the rank is unchanged when that column
is deleted; thus we may assume the first column to be nonzero. Moreover, by using an
elementary row operation (if necessary) we can assume without loss of generality that a11 6= 0.
Making use of these observations as needed, we now apply the theorem recursively until we
obtain a matrix with only one row or column, and then the solution is evident. (In practice,
the rank of a matrix with only two rows or two columns is usually evident.)

Examples.

(i) rank







3 −8 7
5 −4 9
2 3 6





 = 1 + rank

(

28 −8
25 4

)

= 2 + rank(312) = 3.

(ii) rank











4 3 −5 6
6 2 0 2
3 5 −12 5
2 2 −4 2











= 1 + rank







−10 30 −28
11 −33 2
2 −6 −4







= 2 + rank

(

0 288
0 96

)

= 3.
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Remarks. (a) The given matrix A is row-equivalent to the echelon matrix constructed
by stacking up the top rows of the matrices appearing in the rank computations, with the
understanding that leading zeros need to be prefixed to the rows that have fewer than n
entries. For example, the matrix A in Example (i) is row-equivalent to the echelon matrix







3 −8 7
0 28 −8
0 0 312





 ,

and the rows of this matrix constitute a basis of the row space of A. (Of course in this
example A is nonsingular, so its own rows are also a basis for the row space.) Similarly, in
Example (ii) the nonzero rows of the echelon matrix











4 3 −5 6
0 −10 30 −28
0 0 0 288
0 0 0 0











constitute a basis for the row space of A. In building up the echelon matrices in this way,
one must be careful to reinsert any columns of zeros that were deleted during the rank
computations.

(b) Let A be an n× n matrix. Each reduction from a k× k matrix to a (k− 1)× (k− 1)
matrix requires 2(k − 1)2 multiplications. Adding these numbers for k = 2, 3, . . . , n, gives a
total of (2n3 − 3n2 + n)/3 ≈ 2n3/3 multiplications, which has the same order of magnitude
as the number required to compute the determinant of A (see [1, pp. 479–480]).
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Elementary Row Operations and LU Decomposition

The purpose of this capsule is to show how to use the computer as a “matrix calculator,”
thereby enabling a greater emphasis on concepts rather than arithmetic. Our software is
MATRIXPAD, ver. 2.0, Morris Orzech, D.C. Heath, Lexington, MA, 1986. We could also
implement the lesson with any of several other matrix calculators now available (see [D.P.
Kraines and V.Y. Kraines, Linear algebra software for the IBM PC, College Mathematics
Journal 21 (1990), 56–64]).

At the start of a standard sophomore-level linear algebra course, much class and home-
work time is spent solving systems of linear equations by Gauss or Gauss-Jordan elimination,
using elementary row operations (ERO’s). The conceptual issues are often lost in the arith-
metic tedium. Most computer matrix packages have an option for finding the row echelon or
reduced row echelon form of a matrix. Overreliance on this single-key operation, however,
leads to the danger of the “black box” phenomenon; students press keys, record the outputs,
and learn nothing. A happy compromise is to have students instruct the computer to do
individual ERO’s; for example, add −5 times row 2 to row 4 or interchange row 1 and row
3.

MATRIXPAD has an individual ERO option. Its screen layout looks and works like a
four-register calculator, with two of the four entries (matrices of sizes up to 8× 8) displayed
at any time. Each operation, other than entry of a matrix, is a single keystroke; matrices
can be stored and recalled from a disk to save class time. MATRIXPAD allows both rational
(exact) and decimal (approximate) arithmetic. The default mode is rational, which avoids
the need to interpret answers such as 1.234 E-12.

Lesson. Discuss the matrix representation AX = B of the system of linear equations

3x+ 6y − 5z = 0

4x+ 7y − 3z = 9

3x+ 5y − z = 10.

Guide the students through the steps for solving such a system: Enter the augmented matrix
H = [A|B] (or save time by storing it on the disk before class and recalling it). Activate the
ERO mode, and use row operations to reduce H to row echelon form. The resultant system
can then be solved by backwards substitution.

Students quickly learn that the program will produce the row echelon form with one
keystroke; indeed, you will want to use that mode in class after the first few examples. ERO’s
will continue to play a significant role, however, when you take up the LU decomposition, an
important operation in numerical linear algebra that is often neglected in standard courses.
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The problem of LU decomposition is to find a lower triangular matrix L with 1’s along its
diagonal and an upper triangular matrix U (a row echelon form of A) so that A = LU . Try
to construct U by working from top to bottom, left to right, using only the add operation. If
this can be done, i.e., if no row exchanges are necessary, you can construct L in the following
way: On the blackboard, make a 3 × 3 array with 1’s along the diagonal and 0’s above.
Then record in the remaining positions the negative of each rational number multiplier. To
check the answer, move U up to the second register of the calculator and enter L from the
blackboard. Now exchange the positions of L and U (to make L the left factor), and multiply.
Check that the answer is A.

To test students’ understanding of ERO’s, give them a take-home problem to find the
LU decomposition of the 3 by 3 matrix whose entries are the digits of their Social Security
numbers.

David P. Kraines
Duke University

Vivian Kraines
Meredith College

David A. Smith
Duke University
College Mathematics Journal 21 (1990), 418–419



A Succinct Notation for Linear Combinations
of Abstract Vectors∗

A succinct, uncluttered notation for expressing linear combinations of abstract vectors is
presented. The notation is not to be confused with matrices.

1. Matrix background

Let y be an m-tuple, i.e. an m × 1 matrix. Let A be an m × n matrix. Let x be an
n-tuple. Let the columns of A be denoted by a1, a2, . . . , an. Using matrix partitioning,

A = (a1, a2, . . . , an) (1)

The equation
y = Ax (2)

has several interpretations. The interpretation which will concern us in this paper is: y is a
linear combination of the columns of A; this may also be expressed by

y =
n
∑

i=1

xiai (3)

However, (2) is a more succinct and less cluttered notation than (3).

2. The notation

An abstract vector space satisfies eight well known axioms. (See, for example, [1, pp.
6–7].)

Let
(v1v2 · · ·vn) (4)

be an ordered set of vectors in a given abstract vector space. (An n-tuple, of course, is a
special case of an abstract vector.) Let V be a succinct notational equivalent for (4). Thus

V = (v1v2 · · ·vn) (5)

∗“A Succinct Notation for Linear Combinations of Abstract Vectors” by Leon Katz, International Journal of

Mathematical Education in Science and Technology, vol. 18 (1977) pp. 47–50. Reprinted with permission by Taylor
and Francis Ltd. http://www.tandf.co.uk/journals.
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I intend (5) to have a formal resemblance to (1). Let

c =













c1
c2
...
cn













be an n-tuple.
Consider the linear combination of abstract vectors given by

w =
n
∑

i=1

civi (6)

This brings us to the crux of the matter. Let

w = Vc (7)

be a succinct way of writing the linear combination of the abstract vectors. Thus, by def-
inition (7) and (6) are equivalent. I intend, of course, (7) to have a formal resemblance to
(2). I trust that the reader will appreciate the succinctness and freedom from clutter of (7)
as compared with (6).

Provided one keeps in mind that V is not a matrix, there is a pedagogic and mnemonic
advantage to referring to v1,v2, . . . ,vn as the ‘columns’ of V.

It is useful to have a name for notation such as V. Let us call such a notation a matrixlike.
It is only one step further to write an equation such as

W = VA (8)

where W is a matrixlike having n ‘columns’, V is a matrixlike having m ‘columns’, and A
is an m × n matrix. For j = 1, 2, . . . , n, the jth ‘column’ of W is a linear combination
of the ‘columns’ of V; the jth column of A contains the coefficients used in this linear
combination. Thus, (8) is a very compact and uncluttered notation for denoting n linear
combinations of abstract vectors. It can be used in lieu of writing several equations which
contain ‘

∑

’ notation.
Now consider an abstract vector space with basis

(v1v2 · · ·vn)

Let
V = (v1v2 · · ·vn)

Then V is called a basis matrixlike. Consider an arbitrary abstract vector in the vector
space; let x be the n-tuple comprised of the coordinates of the arbitrary vector with respect
to the ‘columns’ of V. Then the arbitrary abstract vector, itself, is given simply by Vx.
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3. Applications
3.1 Linear transformations

Let u-space be an abstract vector space and let the ‘columns’ of U be a basis for u-space.
Let v-space be another abstract vector space and let the ‘columns’ of V be a basis for v-
space. Let T be a linear transformation from u-space into v-space. For j = 1, 2, . . . , n let the
jth column of matrix A contain the coordinates with respect to the basis in v-space of the
image under the transformation of the jth basis vector for u-space. Then the relationships
are clearly exhibited by using the matrixlike notation

T uj = Vaj

The n relationships can be collectively expressed by the equation

TU = VA (9)

Let x be the n-tuple comprised of the coordinates of a given arbitrary vector in u-space
(with respect to the basis for u-space). Postmultiply (9) by x to obtain

TUx = VAx (10)

which says that the coordinates (with respect to the basis for v-space) of the image of the
given arbitrary vector are given by Ax. (I have implicitly used the equality (VA)x =
V(Ax), which can be proved without difficulty by exploiting the formal resemblance to
matrix multiplication.) Equations (9) and (10) give the essence of the role of matrices in
linear transformations.

3.2. Change of basis

Let the ‘columns’ of W be a basis for an abstract vector space and let the ‘columns’ of
V be another basis for the same space. Let A be the matrix which gives the coordinates of
the vectors in one basis with respect to the other basis; specifically,

W = VA (11)

Let x be the n-tuple comprised of the coordinates of a given arbitrary vector with respect
to the basis given by the ‘columns’ of W. Postmultiply (11) by x to obtain

Wx = VAx (12)

which says that the n-tuple Ax contains the coordinates of the given arbitrary vector with
respect to the basis given by the ‘columns’ of V. Equations (11) and (12) give the essence
of the role of matrices in change of basis.
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3.3. Mystery theorem

As a challenge to the reader—and to illustrate the power of the notation—a well known
theorem concerning abstract vectors is given below. Only the essence of the hypotheses and
only the essence of the proof are given.

THEOREM (condensed)

1. TV = VA
2. TW = WB

3. W = VC

→ B = C−1AC

PROOF (condensed)

T VC = VAC (by Hypothesis 1)
T VC = VCB (by Hypotheses 2 and 3)
0 = V(AC−CB) (by subtraction)
0 = AC−CB (by linear independence)
CB = AC
B = C−1AC Q.E.D.

The challenge for the reader is to interpret the hypotheses.

4. Motivation

The matrixlike notation enables us to write and manipulate very simple equations which
express the non-simple relationships of matrices to abstract vector spaces.

I confess to having experienced extreme difficulty in understanding the relationships
of matrices to abstract vector spaces. All explanations seem to contain verbose English
sentences and numerous, elusive equations containing cluttered ‘

∑

’ summations. I always
get lost. Expressing linear combinations of abstract vectors in a manner which parallels that
of n-tuples seemed natural and led me to formulate the matrixlike notation. It was only
through use of the notation that I was able to comprehend the relationships of matrices to
abstract vector spaces. I trust that the matrixlike notation will prove beneficial to others.

5. Printing/handwriting suggestion

It may sometimes be helpful (although I have not shown it here) to use a special under-
lining to distinguish the appearance of abstract vectors from n-tuples and to distinguish the
appearance of matrixlikes from matrices. Ordinary underlining is not recommended because
it is often used to indicate n-tuples.
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Why Should We Pivot in Gaussian Elimination?

The Gaussian elimination procedure for solving a system of n linear equations in n unknowns
is familiar to most precalculus students: (1) Write the system as an augmented matrix,
(2) reduce the system to upper triangular form by the elementary row operations, and
(3) solve for the variables by back substitution. The method is simple and terminates in
a finite number of steps, with either the exact answer or the information that there is no
unique solution. This straightforward procedure seems ideal for computer implementation.
As long as we pivot (that is, interchange rows) to avoid division by zero, what can possibly
go wrong? Well, almost everything can go wrong, as illustrated by the following examples.

Example 1. Consider the matrix equation






ε 1 1
1 −1 1
.5 1 1













x1

x2

x3





 =







2
1

2.5





 ,

where ε is a constant. When epsilon = 0, a standard “naive” Gaussian elimination algorithm,
which pivots only to avoid division by zero, will yield the exact solution (x1, x2, x3) = (1, 1, 1).
When ε is positive but much smaller than 0.5, the answer should remain near to this solution:
this system is “well-conditioned” for such ε in the sense that small changes in the coefficients
give rise to small changes in the answer. Indeed, we see this from the exact solution

(

x1, x2, x3

)

=
(

1 +
4ε

2− 4ε
, 1 +

ε

2− 4ε
, 1− 3ε

2− 4ε

)

. (20)

However, an implementation of the algorithm on an Apple Macintosh in the binary version
of Microsoft Basic (which stores real numbers with 24 bit mantissas—about seven significant
decimal digits) produced the following results for small values of ε:

ε = 2−23

ε = 2−23.5

ε = 2−24

ε = 2−25

(x1, x2, x3) = (1.000 000, 0.999 9999, 1.000 000)
(x1, x2, x3) = (2.828 427, 0.999 9998, 1.000 000)
(x1, x2, x3) = (0.000 000, 2.000 000, 0.000 000)
(x1, x2, x3) = doesn’t exist, as the coefficient matrix is computed

to be singular!

Notice that for ε ≈ 0, the coefficient matrix is not even close to being singular, since the
system is well-conditioned. In fact, for ε = 0, the coefficient matrix and its inverse are given
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by

A =







0 1 1
1 −1 1
.5 1 1





 and A−1 =







−1 0 2
−0.5 −0.5 1

1.5 0.5 −1





 .

Very different and even more startling things happen to the exact solution when ε is close
to 0.5, for then the coefficient matrix is nearly singular. (If ε = 0.5, then the first and third
rows of our original matrix are identical.) In order to analyze this case, let ε = 0.5+δ, where
δ is a small nonzero constant. Then the exact solution of our matrix equation is

(x1, x2, x3) =
(

− 1

2δ
, − 1

8δ
+

3

4
,

3

8δ
+

7

4

)

. (21)

Observe, for example, the exact solution corresponding to each of the values δ:

δ = 2−24 (x1, x2, x3) = (−8 388 608,−2 097 151.25, 6 291 457.75)

δ = −2−24 (x1, x2, x3) = (8 388 608, 2 097 152.75,−6 291 454.25).

These spectacular changes in the exact solution are typical of ill-conditioned (that is, non
well-conditioned) systems. Surprisingly, the same program that performed so erratically for
ε ≈ 0 performed beautifully for ε ≈ .5, as we will see in Table 2.

The tremendous changes in the exact solution can be explained geometrically in terms of
the “tipping” of one of the two nearly parallel planes given by the first and third equations:
Think of holding a long board on the palms of your hands just above a desktop. If you
drop your right hand down slightly, the plane of the board will intersect the plane of the
desktop to the right of the desktop. Then if you drop your other hand down, the line of
the intersection will move to the other side of the desktop. A small change in the balancing
of the board results in a large change in the line of the intersection between the planes of
the board and the desktop. In the well-conditioned case considered earlier, these two planes
intersect at an angle of about 20◦. The figures illustrate the situation in two dimensions.
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board

desktop

A well-conditioned system: a
small change in the coefficients
produces a small change in the
point of intersection.

An ill-conditioned system: a small change
in the coefficients (tipping the board down
on the left or right slightly) produces a
large change in the point of intersection.
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The well-conditioned case, ε ≈ 0. What can account for the wide diversity of incorrect
answers we see when ε ≈ 0? An obvious answer is, “round-off errors caused by computer
arithmetic.” Although there are such errors, this does not adequately explain our solution
results nor does it help us to alleviate the difficulties. A less obvious, but correct, explanation
is that when we used the first equation to eliminate x1 from the second and third equations,
we divided by a small, nearly zero “pivot” (namely, ε). Unfortunately, many numerical
analysis textbooks go no further than making this observation. There are at least three
compelling reasons to pursue this observation further. Not doing so (i) leaves students with
the impression that dividing by a small number, in and of itself, causes roundoff errors,
(ii) it does not adequately account for the results above, and (iii) stopping at this point
misses a valuable opportunity to underline the most common causes of roundoff errors and
the interplay between them—namely, the subtraction of almost equal quantities (the most
common source of devastating roundoff errors) and the addition of a small, important number
to a large, relatively unimportant number.

Our intent here is to pursue this observation and demonstrate how small pivots may
result in:

1. loss of significant figures due to subtraction of almost equal quantities during the back
substitution process,

2. loss of significant figures due to the addition of large and small quantities and subse-
quent subtraction of almost equal quantities during the forward elimination procedure.

The first of these problems can be easily illustrated by the following.

Example 2. Solve
[

ε 1
1 −1

] [

x1

x2

]

=

[

1
0

]

.

Naive Gaussian elimination tells us to replace row 2 by row (row 2)−1/ε (row 1), yielding

[

ε 1 1
1 −1 0

]

→




ε 1 1

0 −1− 1

ε
−1

ε



 .

If 1/ε is so large that the computer replaces −1 − (1/ε) by −1/ε, then x2 will be as-
signed the value 1. This is quite accurate (taking ε = 10−8, for example, we see that
x2 = −108/(−1 − 108) = .999 999 990 . . . .) Note, however, that the assignment x2 = 1 re-
sults in the computation x1 = 0. This is very bad since, in fact, x1 = x2; there are no
significant figures left in the computed solution. The loss of significance occurred during the
back substitution process when almost equal quantities (namely, 1 and x2) were subtracted.

Let’s consider the general solution of












a11 a12 · · · a1n

a22 · · · a2n

0 . . .
...
ann

























x1

x2
...
xn













=













b1
b2
...
bn













,
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where the reduced upper triangular matrix has been obtained by elimination. Then the back
substitution formula for xi is

xi =

bi −
n
∑

j=i+1

aijxj

aii
,

where the xj (i + 1 ≤ j ≤ n) have already been computed by back substitution. If aii is
small, then its reciprocal is large. If xi is not large, then the numerator, bi −

∑n
j=i+1 aijxj,

must be small. Finally, if bi is not small, then it must follow that
∑n

j=i+1 aijxj and bi must
be nearly equal. Therefore, a small pivot aii may result in the loss of significant digits due
to subtraction of almost equal quantities during the back substitution process. This is what
occurred in Example 2, for i = 1.

Remark. There is more than one way to compute xi. We may first compute
∑n

j=1+i aijxj and
then subtract it from bi, as suggested above. We may also start with bi and subtract each
of the terms aijxj, one at a time. The author obtained the same results by both methods,
but this may vary somewhat on different computers.

Example 2 continued. If we interchange the first two rows of the original augmented matrix,
the pivot will no longer be small, and subtraction of almost equal quantities will no longer
occur:

[

1 −1 0
ε 1 1

]

→
[

1 −1 0
0 1 + ε 1

]

.

Then back substitution yields

x2 =
1

1 + ε
≈ 1 if ε is very small ,

and
x1 = x2 ≈ 1.

To see what may go wrong during the elimination phase of the algorithm, we need an
example with three equations and three unknowns.

Example 1 revisited. If we apply naive Gaussian elimination to the augmented matrix in
Example 1, we get

















ε 1 1 2

0 −1− 1

ε
1− 1

ε
1− 2

ε

0 1− .5

ε
1− .5

ε
2.5− 1

ε

















. (22)

If 1/ε is large, then all the entries with a division by ε involve the subtraction of a large
number from a (relatively) small number. If the computer replaces all these entries by the
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larger number, the resulting matrix is
















ε 1 1 2

0 −1

ε
−1

ε
−2

ε

0 − .5
ε
− .5
ε
−1

ε

















.

Applying elimination one more time yields the matrix:












ε 1 1 2

0 −1

ε
−1

ε
−2

ε
0 0 0 0













,

so the computer reports that there is no unique solution. This is evidently what was observed
earlier with ε = 2−25.

If the computer does not replace entries such as −1− (1/ε) by −1/ε, then continuing the
elimination from the augmented matrix labeled (3) would yield:



























ε 1 1 2

0 −1− 1

ε
1− 1

ε
1− 2

ε

0 0
(

1− .5

ε

)

−









1− .5

ε

−1− 1

ε









(

1− 1

ε

) (

2.5− 1

ε

)

−









1− .5

ε

−1− 1

ε









(

1− 2

ε

)



























.

The computations in the third row may result in a loss of significant digits due to the
subtraction of almost equal quantities. There are at least two possibilities:

(i) x3 is computed with fewer significant digits than desired, and consequently the compu-
tations of x2 and x1 during the back substitution process also have fewer digits than desired.
When we let ε = 2−24, the last entry in column four was computed to be zero, and the
resulting computations were

x3 = 0, x2 =
−2/ε

−1/ε
= 2, and x1 = 0.

(ii) x3 is computed as nearly 1, and x2 is also computed as nearly 1. However, x1 is
computed by the back substitution formula, x1 = (2− x2 − x3)/ε, to be far from 1 because
of the subtraction of almost equal quantities. When we let ε = 2−23.5, this is exactly what
happened. (Curiously, x1 was computed to be 2

√
2; perhaps 2 − x2 − x3 was computed to

be 2−22 rather than 2−23.5.) Here we are seeing the same back substitution phenomena as
illustrated in Example 2.

The strategy that should be employed is now fairly evident:
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Before eliminating below a diagonal element, first interchange (if necessary) the
row containing the diagonal element with a row below it that will make the absolute
value of the diagonal element as large as possible.

This will greatly reduce the number of times nearly equal quantities are subtracted. This
commonly used strategy is called “partial (or column) pivoting.” (“Complete pivoting” in-
volves both row and column interchanges to secure the pivot with maximal absolute value
among all remaining candidates. This is much less frequently used.)

Let’s illustrate partial pivoting for Example 1. Since 1 is the largest entry in the first
column, we interchange rows and 1 and 2 in the original augmented matrix to obtain







1 −1 1 1
ε 1 1 2
.5 1 1 2.5





 .

Applying elimination yields






1 −1 1 1
0 1 + ε 1− ε 2− ε
0 1.5 .5 2





 .

Since ε is small, continuing the elimination process will not result in subtractions of almost
equal quantities. In particular, if ε is so small that the computer drops it, the augmented
matrix becomes







1 −1 1 1
0 1 1 2
0 1.5 .5 2







Since 1.5 is the largest entry in column 2 on or below the diagonal, partial pivoting requires
us to interchange rows 2 and 3. This gives







1 −1 1 1
0 1.5 .5 2
0 1 1 2





 .

Assume, for simplicity, that the computer uses seven decimal digits for the mantissas. Then
the elimination will yield







1 −1 1 1
0 1.5 .5 2
0 0 .6666667 .6666667





 .

Therefore, back substitution now gives x3 = 1, x2 = 1, and x1 = 1, all of which are close to
true answers given in equation (1).
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Computer Experiments

The author coded a fairly standard algorithm for Gaussian elimination on an Apple Macin-
tosh in Microsoft’s binary version of Basic. (The algorithm was adapted from the Fortran
in [1,pp. 220–223].) The results are summarized in the following tables.

Example 1 one more time. All of the different types of behavior described above were
observed for different values of ε. In Table 1, the values obtained with pivoting are correct
to the seven digits shown (in each case); the error reported is just the difference between the
results obtained with pivoting and those obtained without pivoting. The table is in order of
decreasing ε, so the worst case is last.

Table 1. The well-conditioned case: ε ≈ 0

Without pivoting With pivoting Error w/o pivoting

ε = 2−5 x1 1.066666 1.066667 .000 001

x2 1.016666 1.016667 .000 001
x3 0.9500005 0.9500000 −.000 0005

ε = 2−13 x1 1.000000 1.000244 .000 244

x2 0.9998779 1.000061 .000 1831
x3 1.000000 0.9998168 −.000 1832

ε = 2−23.5 x1 2.828427 1.000000 −1.828 427

x2 0.9999998 1.000000 .000 0002
x3 1.000000 0.9999997 −0.000 0003

ε = 2−24 x1 0.000000 1.000000 1.000 000
x2 2.000000 1.000000 −1.000 000
x3 0.000000 1.000000 1.000 000

ε = 2−25 x1 no solution 1.000000 —
x2 no solution 1.000000 —
x3 no solution 1.000000 —

The ill-conditioned case, ε ≈ .5. Ill-conditioned systems are a lot tougher to handle than
well-conditioned ones. However, since the coefficient matrix of an ill-conditioned system is
nearly singular, it makes sense to believe that no matter what pivoting strategy is employed,
all the coefficient entries in the last row of the final augmented matrix will be nearly zero.
Hence a small pivot will be difficult to avoid, and roundoff errors may easily destroy any
confidence we have in the computed solution.

To see what happens in the ill-conditioned case, we ran the program using δ = 2−24 and
δ = −2−24 (recall that ε = .5 + δ). These numbers were chosen so that ε could be entered
without roundoff.

Examination of the numbers in Table 2 shows a remarkable result:

The usual pivoting strategy gave much poorer results!
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Table 2. The ill-conditioned case: ε ≈ .5

Without pivoting With pivoting True solution

δ = 2−24 x1 −8, 388, 608 −11, 184, 810 −8, 388, 608
x2 −2, 097, 151 −2, 796, 201 −2, 097, 151.25

x3 6, 291, 457 8, 388, 608 6, 291, 457.75

δ = −2−24 x1 8, 388, 608 11, 184, 810 8, 388, 608
x2 2, 097, 153 2, 796, 204 2, 097, 152.75

x3 −6, 291, 455 − 8, 388, 608 −6, 291, 454.25

The reason for this result is that interchanging rows 1 and 2 and doing the elimination yields






1 −1 1 1
0 1.5 + δ .5− δ 1.5− δ
0 1.5 .5 2





 .

Now the 2×2 system in the bottom two rows is very nearly singular; continuing the elimina-
tion procedure results in the loss of significant digits due to the subtraction of almost equal
quantities.

On the other hand, solving the system without pivoting yields the matrix (3) in Example
1, after elimination in the first column:

















ε 1 1 2

0 −1− 1

ε
1− 1

ε
1− 2

ε

0 1− .5

ε
1− .5

ε
2.5− 1

ε

















(3)

As ε = .5 + δ ≈ .5, the second row is computed without loss of significance. Although the
third row involves the subtraction of almost equal quantities, hardly any loss of significance
occurs since

.5

ε
=

1

1 + 2δ
= 1− 2δ + 4δ2 − · · · ≈ 1− 2δ,

yielding

1− .5

ε
≈ 2δ.

This is very close to the actual value of δ/(.5+ δ). Similarly, the other entries can be written
in terms of δ yielding







.5 + δ 1 1 2
0 −3 + 4δ −1 + 4δ −3 + δ
0 2δ 2δ .5 + 4δ





 .

The 2× 2 system in the bottom two rows is no longer ill-conditioned since the two lines in
the x2x3-plane are not nearly parallel. In order to continue the elimination and to model the
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behavior of a computer, third-order terms will be omitted and, in each computation below
only the two lowest-order terms will be retained; that is, a+bδ+cδ2 will be replaced by a+bδ
and (a/δ) + b + cδ will be replaced by (a/δ) + b. Let’s continue the elimination, replacing
row 3 by

(row 3) − 2δ

−3 + 4δ
(row 2) = (row 3)− 2δ

−3









1

1− 4δ

3









(row 2)

≈ (row 3) +
2δ

3

(

1 +
4δ

3

)

(row 2)

= (row 3) +

(

2δ

3
+

8δ2

9

)

(row 2)

to obtain












.5 + δ 1 1 2
0 −3 + 4δ −1 + 4δ −3 + 8δ

0 0
4δ

3
+

16δ2

9
.5 + 2δ













.

Back substitution gives

x3 =
1

4δ

3
+

16δ2

9

(.5 + 2δ) ≈ 3

8δ
+ 1

x2 =
−3 + 8δ + (1− 4δ)x3

−3 + 4δ
≈ 1

8δ
+ 1

x1 =
2− x2 − x3

.5 + δ
≈ 1

2δ
+ 1,

which are in remarkable agreement with both the exact answer given in equation (2) and
the computed answer given in Table 2.

Should we conclude from this example that we shouldn’t pivot when solving ill-conditioned
problems? No! For if we had started with the first two rows interchanged and then solved
the system with or without pivoting, we would get exactly the same poor results. We can
only conclude that ill-conditioned systems are hard to solve accurately with finite precision
and a fixed strategy.

Postscript. Proper use of partial pivoting requires that the coefficients in different rows be
somewhat comparable in size. For example, if we multiply the first equation in Example 2
by 1/ε, then we would not be required to pivot, since each entry in the first column would be
one. However, if we were to carry out the elimination and back substitution on the resulting
system, we’d observe again that x2 = 1 and x1 = 0. One should start Gaussian elimination
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with a division of each row by the coefficient in that row which is largest in absolute value.
This procedure is called scaling, and it makes the absolute value of the largest entry in each
row equal to 1. Our examples were chosen so that scaling was unnecessary.

The classic treatment of rounding errors is by J.H. Wilkinson [3]. A thorough treatment
of matrix computation can be found in [2].
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The Gaussian Algorithm for Linear Systems
with Interval Data

Introduction

The best known method for the solution of linear systems of simultaneous equations is the
Gaussian algorithm. Using the fact that the set of real numbers form a field, the given
system is first transformed to an equivalent system (that is, to a system that has the same
solution) with an upper triangular form. This system can easily be solved for the unknowns
by using again the fact that the reals form a field. Subsequently we demonstrate that
the Gaussian algorithm can also be used to enclose the solution set of a linear system for
which the elements of the coefficient matrix and of the right-hand side are allowed to vary
independently of each other in given real compact intervals. This holds despite the fact that
the set of real compact intervals endowed with the so-called interval operations does not
form a field.

All results of this presentation are well known and can be found in the books [2],[6], and
[7], for example. The discussion is on an elementary level. Therefore the results can be
taught in a course on elementary linear algebra nearly simultaneously with the “normal”
Gaussian algorithm.

Interval Operations

We denote the set of real numbers as usual by R and its elements by a, b, . . . , x, y, z. If
x1, x2 ∈ R, x1 ≤ x2, then the set [x1, x2] = {x|x1 ≤ x ≤ x2} is called a real compact interval.
For ease of notation or if the explicit notation of the bounds is not essential, we write [x]
instead of [x1, x2].

The set of real compact intervals is denoted by IR, its elements by [a], [b], . . . , [x], . . . .
In IR we define four basic operations (the so-called interval operations), namely addition,
subtraction, multiplication and division, by

[x] ∗ [y] = {x ∗ y|x ∈ [x], y ∈ [y]} , [x], [y] ∈ IR, ∗ ∈ {+,−, ·, /} . (1)

We assume that 0 6∈ [y] in the case of division. When applying these operations it is
important that the result [x] ∗ [y] is again in IR and that its bounds can be expressed by

197
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the bounds of [x] and [y]. Let [x] = [x1, x2] and [y] = [y1, y2]. Then we have the rules:

[x] + [y] = [x1 + y1, x2 + y2]

[x]− [y] = [x1 − y2, x2 − y1]

[x] · [y] = [min {x1y1, x1y2, x2y1, x2y2} ,max {same products}]

[x]/[y] =

[

min

{

x1

y1
,
x1

y2
,
x2

y1
,
x2

y2

}

,max {same quotients}
]

, 0 6∈ [y].

R is considered as the subset of elements of IR for which the lower and the upper bounds
coincide. The four operations for reals coincide with the interval operations if R is considered
as a subset of IR endowed with the interval operations. It is a basic fact that the reals R
endowed with the operations of addition and multiplication form a field; That is, with respect
to addition, R forms an abelian group; with respect to multiplication, R\0 forms an abelian
group, and the distributive law holds. Subtraction and division are then introduced via the
group properties. The unique solution of the equation b + x = 0 is denoted by x = −b and
the subtraction a − b is defined to be a + (−b). Similarly if b 6= 0 then 1/b is the unique
solution of the equation bx = 1 and the division a/b is defined to be a · (1/b).

In the case of IR we cannot proceed in this manner. Consider first the equation [b]+[x] =
0 for a given nondegenerate [b] = [b1, b2] and an unknown [x] = [x1, x2]. It follows that
b1 + x1 = 0, b2 + x2 = 0 or

x1 = −b1, x2 = −b2. (2)

However, since [b] ∈ IR we have b1 < b2 ([b] is nondegenerate) and therefore x1 = −b1 >
−b2 = x2. Hence the “solution” (2) does not define an element of IR. In other words, if
b1 6= b2, the equation [b] + [x] = 0 has no solution in IR. Similarly, if b1 6= b2, then the
equation [b][x] = 1 has no solution in IR. Therefore in IR, subtraction and division have to
be introduced independently from addition and multiplication.

In addition, the distributive law does not hold in general. Instead we have the so-called
subdistributive law

[a] ([b] + [c]) ⊆ [a][b] + [a][c]. (3)

We illustrate this by an example. Let [a] = [2, 3], [b] = [−2,−1], and [c] = [1, 3]. Then

[a] ([b] + [c]) = [2, 3] ([−2,−1] + [1, 3])

= [2, 3][−1, 2] = [−3, 6]

and

[a][b] + [a][c] = [2, 3][−2,−1] + [2, 3][1, 3]

= [−6,−2] + [2, 9] = [−4, 7].

Another property of the interval operations that is fundamental for all applications is the
so-called inclusion monotonicity :

If [a] ⊆ [c] and [b] ⊆ [d] then [a] ∗ [b] ⊆ [c] ∗ [d] for all ∗ ∈ {+,−, ·, /} .
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An (n, n) interval matrix is a square array [A] = ([a]ij) whose entries [a]ij are elements
of IR. An interval vector [a] = ([a]i) is defined similarly. The set of interval matrices and
the set of interval vectors are denoted by Mn(IR) and Vn(IR), respectively. Real matrices
A = (aij), aij ∈ R, are special elements of Mn(IR). The analogue holds for real vectors
a = (ai), ai ∈ R.

In Vn(IR) addition and subtraction are defined by

[a]± [b] = ([a]i ± [b]i).

Similarly, in Mn(IR) we define addition and subtraction of two elements by

[A]± [B] = ([a]ij ± [b]ij)

and multiplication by

[A][B] =





n
∑

j=1

[a]ij[b]jk



 .

The product of the interval matrix [A] and the interval vector [x] is

[A][x] =





n
∑

j=1

[a]ij[x]ij



 .

A set of laws that hold for these operations can be found in [2], Chapter 10.

The Gaussian Algorithm

Let [A] be an interval matrix and [b] an interval vector. We assume that the inverse A−1

exists for all A ∈ [A]. Then we define the solution set S (of [A] and [b]) as

S = {x|Ax = b, A ∈ [A], b ∈ [b]} .

S is a compact set. A more detailed characterization of the shape of S can be found in [4],
where it is proved that in every orthant S is a convex polytope. See also [7]. Our goal is to
enclose S by an interval vector [x] that has this property: if [A] and [b] are shrinking to a
real matrix A and a real vector b, respectively, then [x] will shrink to A−1b.

Starting with the so-called extended coefficient tableau








[a]11 · · · [a]1n [b]1
...

...
...

...
[a]n1 · · · [a]nn [b]n









we form a new tableau












[a]′11 [a]′12 · · · [a]′1n [b]′1
0 [a]′22 · · · [a]′2n [b]′2
...

...
...

...
0 [a]′n2 · · · [a]′nn [b]′n
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by the formulae






















[a]
′

1j = [a]1j j = 1, . . . , n, [b]
′

1 = [b]1
[a]

′

ij = [a]ij − [a]1j ([a]i1 / [a]11), i, j = 2, . . . n

[b]
′

i = [b]i − [b]1 ([a]i1 / [a]11), i = 2, . . . , n
[a]i1 = 0, i = 2, . . . , n.

(4)

provided 0 6∈ [a]11.

We set [A]′ = ([a]′ij), [b]
′ = ([b]′i) and show that for the solution set

S ′ =
{

x|A′x = b′, A′ ∈ [A]′ , b′ ∈ [b]′
}

we have S ⊆ S ′. In order to prove this consider the real system Ax = b where A = (aij) ∈
[A], b = (bi) ∈ [b] are arbitrary but fixed. We are now eliminating the unknown x1 from the
second to the last equation and get a new system A′x = b′ which has the same solution as
the original one. The elements of A′ = (a′ij) and b′ = (b′i), respectively, are computed by the
formulae of the first step of the Gaussian algorithm:



















a′1j = a1j, j = 1, . . . , n, b′1 = b1
a′ij = aij − a1j(ai1/a11), i, j = 2, . . . , n
b′i = bi − b1(ai1/a11), i = 2, . . . , n
ai1 = ai1 − a11(ai1/a11) = 0), 1 = 2, . . . , n.

(5)

Of course computation in the last line is not performed since the result a′i1 = 0 is known
in advance. However, this line expresses the idea of the Gaussian elimination applied to
systems with real coefficients: By using the existence of inverses with respect to addition
and multiplication we are able to eliminate x1 from row two to row n.

We cannot argue in the same manner when starting with the system with interval data.
At first glance, setting [a]′i1 = 0, i = 2, . . . , n, in (4) seems to make no sense. Recall that
in general IR there exist no inverses with respect to addition and multiplication. Hence
[a]′i1 = 0 cannot be achieved by an eliminating process. However, taking into account the
inclusion monotonicity of the interval operations we have by (5)and (4) that A′ ∈ [A]′, b′ ∈ [b]′

and therefore that S ⊆ S ′.
Proceeding in this manner, the original coefficient tableau is transformed to the form









˜[a]11 · · · ˜[a] [̃b]1
. . .

...
...

0 ˜[a]nn [̃b]n









after n − 1 steps (provided all steps are feasible). Let ˜[A] =
(

˜[a]ij

)

and [̃b] =
(

˜[b]1

)

. Then

we have by induction

S ⊆ S̃ =
{

x|Ãx = b̃, Ã ∈ ˜[A], b̃ ∈ ˜[b]
}

.
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If 0 6∈ ˜[a]nn then, using the formulae

[x]n = ˜[b]n/
˜[a]nn

[x]i =




˜[b]i −

n
∑

j=i+1

˜[a]ij [x]j /
˜[a]ii



 , i = n− 1, . . . , 1,

we obtain an interval vector [x] = ([x]i) satisfying

S ⊆ S̃ ⊆ [x].

The property S̃ ⊆ [x] follows again by the inclusion monotonicity.

Example 1.

Let [A] =

(

[2, 4] [−2, 0]
[−1, 0] [2, 4]

)

; [b] =

(

[−2, 2]
[−2, 2]

)

. See [3]. Then applying the Gaussian

algorithm yields

[x]1 = [−4, 4] , [x]2 = [−3, 3] .
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Figure 1. Optimality of the Gaussian algorithm



202 Part 7—Linear Systems, Inverses and Rank

Figure 1 shows the solution set S (= the shaded region) and the interval vector [x], which is
in this case optimal, that is, there is no interval vector properly contained in [x] and enclosing
S.

Example 2.

If we change the right-hand side to [b] =

(

[1, 2]
[−2, 2]

)

(see [3]), then the Gaussian algorithm

delivers

[x]1 =
[

−3

2
, 4
]

, [x]2 = [−2, 3]

which in this case is not an optimal enclosure of S. See Figure 2. The solution set S can for
this example already be found in [5].
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Figure 2. Nonoptimality of the Gaussian algorithm

Remarks

1) In applying the Gaussian algorithm to the given system with interval data, we assumed
that all matrices A ∈ [A] are nonsingular. As a consequence of this, there is at least one
element [a]i1 of the first column of [A], which does not contain zero. Hence, after an eventually
necessary exchange of rows the formulae (4) are applicable. However, it cannot be proved
that this is also the case for the next steps. In other words, nonsingularity of all A ∈ [A]
does not guarantee the feasibility of the Gaussian algorithm, even if one allows row and/or
column exchanges. This can be proved by counterexamples for the case n ≥ 3. For n = 2,
the feasibility is always guaranteed under the assumption mentioned. There exists a series
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of sufficient criteria for feasibility. See [1] and [5], for example. However, in general this
problem is unsolved.

2) An interesting question is how well S is included by the result [x] of the Gaussian
algorithm. In general there are smaller interval vectors [y] than [x] with the property S ⊆ [y].
However, if [A] is a so-called interval M-matrix and the right-hand side [b] has a certain sign-
distribution, then [x] is the smallest interval vector for which S ⊆ [x]. See Examples 1 and
2 and the discussion in [3].

3) More details and a complete overview on properties of the Gaussian algorithm known
prior to 1992 can be found in the survey article [5].

4) We mention two simple applications of the Gaussian algorithm for linear systems with
interval data:

a. If a real system has to be solved by the Gaussian algorithm, then usually the given
data cannot be represented exactly on a computer with a given floating point system. If one
encloses the data by the smallest representative intervals, then one has a linear system with
interval data on the computer. Performing the Gaussian algorithm and taking into account
the rounding errors, by rounding the exact bounds outwards to the nearest floating point
numbers one computes an interval vector that contains the exact solution of the given real
system.

b. If the solution of a nonlinear system is computed by the so-called interval Newton
method, then the Gaussian algorithm for linear systems with interval data has to be per-
formed in every step. For more details and additional applications see [2],[6], and [7].
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On Sylvester’s Law of Nullity

When one extends Sylvester’s Law of Nullity∗ from square matrices over a field to rectangular
matrices over a field, the question arises which are the most general conditions. The answer
is as follows.

Sylvester’s Law of Nullity. The nullity of AB is less than or equal to the sum of the
nullities of A and B. It is greater than or equal to the nullity of A; it is greater than or equal
to that of B provided A does not have more columns than it has rows.

Proof. Let R(M) and N(M) denote the rank and the nullity of the matrix M , and let A
and B be m× n and n× p matrices respectively.

(a) Following standard procedure [1], choose non-singular m×m and n × n matrices P
and Q such that the m× n matrix PAQ = A∗ is diagonal, having the entries of an identity
matrix of rank r = R(A) in the left upper corner and zeros elsewhere. Set B∗ = Q−1B,
then A∗, B∗, A∗B∗ = PAB are equivalent to and therefore have the ranks and nullities of
A,B, and AB, respectively. The first rows of A∗B∗ are those of B∗, and the remaining
m − r rows consist of zeros; hence A∗B∗, which lacks n − r possible independent rows of
B∗, has a rank of at least R(B∗) − (n − R(A∗)). Therefore N(A∗B∗) = m − R(A∗B∗) ≤
m− R(A∗) + n −R(B∗) = N(A∗) +N(B∗).

(b) The null space of A is clearly a subspace of that of AB, hence N(A) ≤ N(AB).
(c) Since R(AB) ≤ R(B), we have N(B) ≤ m − R(B) ≤ N(AB) provided n ≤ m. We

may have N(AB) < N(B) if n > m, as is shown by the example

A =
[

1 0
]

, B =

[

1 0
0 0

]

, AB = A, N(AB) = 0, N(B) = 1.

Reference

1. G. Birkoff and S. MacLane, A Survey of Modern Algebra, revised edition, New York,
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Kurt Bing
Rensselaer Polytechnic Institute
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∗Editors’ Note: Sylvester’s Law of Nullity: Let T : U → V and S : V → W be linear
mappings of finite-dimensional vector spaces. Then nullity(ST ) ≤ nullity(T ) + nullity(S).
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Inverses of Vandermonde Matrices

It is frequently useful to be able to produce the inverse of a Vandermonde matrix for curve
fitting, numerical differentiation, and difference equations. Explicit formulas have been given
in [1], and this note simplifies those formulas to the point where pencil and paper calculation
for the inverse of a matrix of order six takes about twenty minutes.

Let V (n) be the Vandermonde matrix

V (n) =















1 1 · · · 1
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

. . . . . . . . . . . . . . . . . . . . . .
xn−1

1 xn−1
2 · · · xn−1

n















We define F (x) to be a polynomial whose roots are xi, i = 1, 2, . . . , n, and fk(x) to be
the reduced polynomial when the factor xk − x is taken from F (x). Thus

F (x) =
n
∏

i=1

(xi − x), and fk(x) = F (x)/(xk − x).

A useful result follows immediately, namely that

(1) fk(xj) = 0 for j 6= k, and fk(xk) = −F ′(xk)

where ′ indicates the first derivative. The first part of this result follows from the definition
of fk(x) (only the factor (xk−x) is taken from F (x)). F ′(x) will be the sum of n terms, each
one of which contains n − 1 factors, and each term except one contains the factor xk − x.
When x = xk, this nonzero term is precisely −fk(xk), which establishes the second part.

To form the inverse, write the co-efficients of −fk(x)/F
′(xk), in row k, k = 1, 2, . . . , n

to form the matrix M . We see that the element in row k, column j of MV is precisely
−fk(xj)/F

′(xk), and result (1) establishes that M is the required inverse.
In actual practice, we can calculate F (x), then divide synthetically by x1 − x to find a

vector orthogonal to each of the column vectors of V (n) except the first. This vector can
be normalized by dividing each element by −f1(x1). The remaining rows can be quickly
calculated in a similar manner.
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On One-sided Inverses of Matrices

Standard texts in linear algebra discuss at some length the notion of invertibility of a matrix
with n rows and n columns. Very little, if anything, is usually said about one-sided inverses
of a non-square matrix. The purpose of this article is to provide complete answers to the
following questions:

(a) What are necessary and sufficient conditions for a matrix to possess a left (right)
inverse?

(b) How can we compute all left (right) inverses of a matrix once we know that they exist?

Our discussion uses for a point of departure several standard definitions and theorems
from linear algebra. We describe some of them in the next paragraph. No proofs are given,
since the reader should be able to find them in most introductory linear algebra texts.

The rank of matrix A = [aij]m,n over a field of scalars F , symbolically r(A), is the
dimension of the vector space spanned by its column vectors. It is a theorem that the rank
of A equals the dimension of the vector space spanned by its row vectors (row rank). A
matrix A = [aij]n,n is invertible if and only if there exists a matrix B = [bij]n,n such that
AB = BA = In, where In is the identity matrix with n rows and n columns. The Kronecker
delta δij is defined as follows: δij = 1 if i = j and δij = 0 if i 6= j. If the rank of A = [aij]m,n

is k, then there exist invertible matrices P and Q such that PAQ = [cij]m,n, where cij = δij

if j ≤ k and cij = 0 otherwise. The matrix [cij]m,n described in the preceding sentence is
called the normal form of A. A matrix B is a left inverse of A = [aij]m,n if and only if
B is a solution of the matrix equation XA = In. Similarly, a right inverse of A = [aij]m,n

is a solution of the equation AY = Im. We use the symbol Â` (Âr) to denote the set of
all left (right) inverses of A. If a matrix A is invertible, then for any matrices B and C
r(AB) = r(B) and r(CA) = r(C), whenever the compositions AB,CA make sense.

Next we address ourselves to the solution of our problem. It will be understood that all
matrices under consideration have their entries selected from a fixed field of scalars F .

Theorem 1. Consider the matrix A = [aij]m,n with m rows and n columns. Then

(a) A has a left inverse if and only if r(A) = n,

(b) A has a right inverse if and only if r(A) = m.
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Proof.

(a) Suppose r(A) = n. We assert that for i = 1, 2, . . . , n there exist scalars xi1, xi2, . . . , xim

such that

xi1 ·













a11

a12
...
a1n













+ xi2 ·













a21

a22
...
a2n













+ . . . + xim ·













am1

am2
...

amn













=













δi1

δi2
...
δin













The truth of our assertion becomes apparent if we note that the row rank of A = n ≤ m
and observe that the vectors













aj1

aj2
...
ajn













j = 1, 2, . . . , m

are just the row vectors of A written in column form. Now letX = [xij]n,m. ThenXA =
[δij]n,m = In because of the way each xij was selected. To prove the converse, suppose
there is a matrix X = [xij]n,m such that XA = In. Let A1, A2, . . . , An denote the
column vectors of A and suppose there are scalars c1, c2, . . . , cn such that

∑n
j=1 cjAj = 0.

Since X is a left inverse of A, its ith row vector Xi has the property XiAj = 0, if i 6= j
and XiAi = 1. Multiplying the equation

∑n
j=1 cjAj = 0 successively by X1, X2, . . . , Xn

we find that c1 = c2 = · · · = cn = 0. Hence the set {A1, A2, . . . , An} is linearly
independent and r(A) = n.

(b) Recall that for a matrix A = [aij]m,n it transpose At = [a∗ij]n,m where a∗ij = aji for
each i and j. It is a theorem that (AB)t = BtAt whenever the composition AB makes
sense. Using part (a) we reason that A has a right inverse B implies AB = Im. Hence
BtAt = Im. From part (a), m = r(At) = r(A). Conversely, if r(A) = m, then
r(At) = m. Consequently there is a matrix D such that DAt = Im. Taking transposes,
we obtain ADt = Im which shows that A has a right inverse.

Some easy consequences of this theorem, applied to the matrix A = [aij]m,n, are:

(a) If r(A) < m, then A has no right inverse.

(b) If r(A) < n, then A has no left inverse.

(c) If n < m, then A has no right inverse.

(d) If m < n, then A has no left inverse.
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(e) If r(A) < n ≤ m or r(A) < m ≤ n, then A has neither a right nor a left inverse.

Let us now attack the problem of finding all left inverses of A = [aij]m,n, given that
r(A) = n.

Theorem 2. Suppose A = [δij]m,n and r(A) = n (that is, A is in normal form). Then
B = [bij]n,m is a left inverse of A if and only if bij = δij for i, jε {1, 2, . . . , n}.
Proof. From r(A) = n it follows that n ≤ m. Let BA = [cij]n,n with cij =

∑m
k=1 bikδij. Since

In = [δij]n,n, we conclude that BA = In if and only if bij = δij for i, jε {1, 2, . . . , n}.
Example.

Let A =







1 0
0 1
0 0





. According to Theorem 2, B ∈ Âe if and only if B =

[

1 0 x
0 1 y

]

for

arbitrary scalars x and y. Hence we have solved the matrix equation XA = I2.

Theorem 3. Let A = [aij]m,n be a matrix with r(A) = n. Let P and Q be invertible

matrices such that PAQ = [δij]m,n. Then B ∈ Â` if and only if B = QDP where D is a left
inverse of [δij]m,n.

Proof. If B ∈ Â`, then Q−1BP−1[δij]m,n = Q−1BP−1(PAQ) = In. We have shown now that
D = Q−1BP−1 is a left inverse of [δij]m,n. It follows that B = QDP . On the other hand, if
D is a left inverse of [δij]m,n and B = QDP , then

BA = B
(

P−1[δij]m,nQ
−1
)

= (QDP )
(

P−1[δij]m,nQ
−1
)

= In.

The significance of Theorem 3 becomes apparent if we consider that, according to our
introductory remarks, if r(A) = n, invertible matrices P and Q do exist such that PAQ =
[δij]m,n. Thus Theorem 3 in conjunction with Theorem 2 provides us with a computational
tool for solving the matrix equation XA = In, provided we can find invertible matrices P
and Q such that PAQ = [δij]m,n. However, the latter task is well known and a computational
procedure is given in most texts on linear algebra.

Example.

Let us solve the matrix equation

XA = I3 where A =











1 0 1
2 1 1
3 0 1
0 1 1











.

We find that r(A) = 3 and conclude that the given equation has solutions. Next we find
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invertible matrices P and Q such that PAQ = [δij]4,3. The technique is displayed as follows.











1 0 0 0 1 0 1
0 1 0 0 2 1 1
0 0 1 0 3 0 1
0 0 0 1 0 1 1











−3R1 +R3

−2R1 +R2

-











1 0 0 0 1 0 1
−2 1 0 0 0 1 −1
−3 0 1 0 0 0 −2

0 0 0 1 0 1 1











−R2 +R4

-











1 0 0 0 1 0 1
−2 1 0 0 0 1 −1
−3 0 1 0 0 0 −2

2 −1 0 1 0 0 2











−1/2R3

-











1 0 0 0 1 0 1
−2 1 0 0 0 1 −1
3/2 0 1/2 0 0 0 1

2 −1 0 1 0 0 2











−R3 +R1

R3 +R2

−2R3 +R4

-











−1/2 0 1/2 0 1 0 0
−1/2 1 −1/2 0 0 1 0

3/2 0 −1/2 0 0 0 1
−1 −1 1 1 0 0 0
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Thus we can choose

P =











−1/2 0 1/2 0
−1/2 1 −1/2 0

3/2 0 −1/2 0
−1 −1 1 1











and Q = I3.

The reader should convince himself that in general if A = [aij]m,n and r(A) = n, then there
exists an invertible matrix P such that PA = [δij]m,n. According to Theorem 2, every left
inverse of [δij]4,3 has the form







1 0 0 x1

0 1 0 x2

0 0 1 x3





 .

Using Theorem 3 we conclude that B ∈ Â` if and only if

B =







1 0 0 x1

0 1 0 x2

0 0 1 x3





 · P, that is

B =







−1/2− x1 −x1 1/2 + x1 x1

−1/2− x2 1− x2 −1/2 + x2 x2

3/2− x3 −x3 −1/2 + x3 x3







where x1, x2, x3 are any scalars.
This ends our discussion on left inverses of a matrix. The important facts on right inverses

are stated in our next theorem.

Theorem 4. Let A = [aij]m,n with r(A) = m. Suppose P and Q are invertible matrices

such that PAQ = [δij]m,n. Then B ∈ Âr if and only if B = QDP where D is a right inverse
of [δij]m,n. A matrix C is a right inverse of [δij]m,n if and only if C t is a left inverse of [δij]n,m.

Proof. Let B ∈ Âr. [δij]m,n · Q−1BP−1 = (PAQ)(Q−1BP−1) = Im. Hence D = Q−1BP−1

is a right inverse of [δij]m,n. It follows that B = QDP . Conversely, if B = QDP with
[δij]m,n · D = Im, then AB = (P−1[δij]m,nQ

−1) (QDP ) = Im. The last statement of the
theorem follows readily if we observe that [δij]

t
m,n = [δij]n,m.

The reader should observe that Theorem 4 in conjunction with Theorem 2 provides us
with means to solve the matrix equation AX = Im. An instructor searching for a worthwhile
project in linear algebra could ask his students to flow-chart a procedure for finding left or
right inverses of matrices. A successfully run computer program should enhance the student’s
interest in linear algebra while requiring him to display his understanding of the underlying
theory.

Elmar Zemgalis
Highline Community College
College Mathematics Journal 2 (1971), 45–48





Integer Matrices Whose Inverses
Contain Only Integers

If a square matrix and its inverse contain only integers, the matrix will be called nice. A
simple method for constructing nice matrices will be given and some of the uses of nice
matrices will be discussed. Then a proof of the validity of the method will be given. Finally
it will be shown that this method does in fact generate all nice matrices

The following method shows how to construct nice matrices.
(1) Form a triangular integer matrix A with all zero entries below (or above) the main

diagonal, with elements on the main diagonal chosen so their product is ±1; for example,

A =







1 −2 3
0 −1 4
0 0 1





 .

(2) Let θ be an elementary row or column operation other than multiplying any row or
column by a constant 6= ±1. Any such operation may be applied to the initial matrix and
may be followed by a similar operation as often as desired.

Example 1. Let θ1: multiply row 1 by row 2 and add to row 2. Then

θ1(A) =







1 −1 3
2 −5 10
0 0 1





 = B.

Let θ2: multiply row 1 by −1 and add to row 3. then

θ2(B) =







1 −2 3
2 −5 10
−1 2 −2





 = C, etc.

Matrices A,B, and C are all nice matrices.

Example 2. Consider

A =











1 0 0 0
3 −1 0 0
0 1 −1 0
2 4 3 1











.
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Let θ1: add 2 times row 4 to row 1 to get

θ1(A) =











5 8 6 2
3 −1 0 0
0 1 −1 0
2 4 3 1











= B.

Then let θ2: add −3 times column 1 to column 4 to get

θ2(B) =











5 8 6 −13
3 −1 0 −9
0 1 −1 0
2 4 3 −5











= C.

This method will provide many examples of nice matrices quickly and easily.

As students quickly learn, most matrices are not invertible, let alone nice. Thus an
easily constructible supply of nice matrices can be most useful for students and teachers.
For example, if the coefficients for the variables in a system of linear equations with integer
constants form a nice matrix, the solutions to the system will be integers and easy to check.
Moreover, the arithmetic of the solution, whether found by elimination and substitution, row
reduction of the augmented matrix, or matrix inverse methods, will involve mostly integers.
Thus the student can concentrate more on the technique being learned with less chance for
computational errors.

In learning to calculate the inverse of a nonsingular matrix, nice matrices are excellent
tools. The inverse will be computationally easy to find and easy to check. Students can also
generate their own nice matrices and find the corresponding inverses to develop individual
message coding-decoding systems as in the following example.

Individual letters, words, and symbols are assigned arbitrary integer values; for example,

A = 1, B = −1, C = 2, D = −2, . . . , Z = −13, space = 0.

A nice matrix A is chosen as an encoder, and its inverse A−1 will be the decoder, say

A =







1 −2 3
2 −5 10
−1 2 −2





 A−1 =







10 −2 5
6 −1 4
1 0 1





 .

A message like “COME HOME” would be represented first as

2, 8, 7, 3, 0,−4, 8, 7, 3.

The message would then be encoded by premultiplying each set of three integers by matrix
A.







1 −2 3
2 −5 10
−1 2 −2





 ·







2
8
7





 ,







3
0
−4





 ,







8
7
3





 =







7
34
0





 ,







−9
−34

5





 ,







3
11
0





 .
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The coded message would be

7, 34, 0, 15,−34,−5, 3, 11, 0.

To decode the message each set of three coded numbers would be premultiplied by A−1 and
checked against the initial integer assignment. Here







10 −2 5
6 −1 4
1 0 1





 ·







7
34
0





 =







2
8
7





 , etc.

Here is the reason this method for generating nice matrices works:

A−1 =
1

DetA
(AdjA),

where AdjA is the transpose of the matrix obtained by replacing each element aij of A by
its cofactor cij. Since cij = (−1)i+j times the determinant of the submatrix of A obtained by
deleting row i and column j, each cij is an integer if A contains only integers. Hence AdjA
will contain only integers if A does; and A will contain all integers if 1/(DetA) is +1 or −1.
Now the determinant of a triangular matrix equals the product of the elements on the main
diagonal. Thus the determinant of the original matrix chosen will equal +1 or −1. It is also
true that any elementary row operation preserves the determinant. Hence A will consist of
only integer entries.

A proof that all nice matrices are generated by this method will now be given. Let B
be an arbitrary nice matrix of dimensions n × n. For matrices P and Q define P ∼ Q
if there exists a finite sequence θ1, θ2, . . . , θt of operations θ given in (2) above such that
θt(· · · (θ2(θ1(P ))) · · · ) = Q. It is easy to see that ∼ is an equivalence relation. It will be
shown that there is a triangular matrix A of initial form (1) above such that B ∼ A. Thus
A ∼ B and the proof will be complete.

The first column of B must contain some nonzero integers else DetB = 0 and B would be
singular. Let row i contain a nonzero integer of least absolute value in column 1. By adding
proper multiples of row i to the other rows, the absolute values of the integers in column 1
will be reduced. This process can be continued using other rows till after a finite number of
steps only one nonzero integer remains in column 1. After a row interchange one has

B ∼













k1 ∗ · · · ∗
0 ∗ · · · ∗
...
0 ∗ · · · ∗













.

Applying the same technique to successively smaller submatrices leads finally to

B ∼















k1 ∗ ∗ · · · ∗
0 k2 ∗ · · · ∗
0 0 k3 · · · ∗
· · ·
0 0 0 · · · kn















= A.
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SinceB and B−1 are integer matrices and since Det(B·B−1) = DetB·DetB−1 = DetI = 1,
it follows that DetB = ±1. Now if P ∼ Q then DetP = DetQ. Thus DetA = DetB or
k1k2 · · · kn = ±1, and the matrix A has the desired initial form.

In closing we note that

(1) the initial generating matrix for a given nice matrix is clearly not unique, and
(2) all nice matrices could actually be generated from diagonal matrices with ±1 on the main
diagonal. Thus the set of all nice matrices of dimension n× n is the equivalence class of all
matrices equivalent to In under the equivalence relation ∼ indicated above.

Robert Hanson
James Madison University
College Mathematics Journal 13 (1982), 18–21



PART 8

Applications





Introduction

Linear algebra has applications in almost every area of mathematics as well as in numerous
disciplines outside of mathematics. Many textbooks now contain a variety of applications to
other fields such as biology, chemistry, computer science, engineering, operations research,
physics, and statistics. Within mathematics, linear algebra is used in fields such as analysis,
combinatorics, control theory, geometry, linear programming, and numerical analysis. The
papers included in this part describe applications within mathematics.

221





The Matrix-Tree Theorem

When one examines the standard textbooks for a first course in linear algebra (such as
[1],[6]), one finds an introductory chapter dealing with the concept and properties of deter-
minants. Then the determinant is usually tied to the major theme of the matrix through
the relationship: An n × n matrix A is invertible if and only if the determinant of A is not
zero. Often Cramer’s Rule is then introduced as a method for solving a system of n linear
(independent) equations in n unknowns via determinants. And so the student finds himself,
or herself, evaluating some 2× 2, 3× 3, or maybe even 4× 4 determinants.

Larger determinants seem to be avoided. After all, where do linear systems (larger
than three equations in three unknowns) come about in realistic situations? Depending
upon his or her background, the student may feel that such systems only arise as textbook
exercises—rather tedious efforts in computational boredom, at best. However, recent changes
in curriculum and technology show why and how larger determinants should be examined.
In particular,

(1) Structures from discrete mathematics can be naturally brought into the introductory
algebra course and provide some ideas that involve determinants.

(2) The use of a computer algebra system, such as MAPLE, can drastically reduce the time
spent on the drudgery of computing large determinants.

In order to accomplish our goal we shall use some ideas from graph theory. We shall introduce
some of the basic ideas and refer the reader to [4] for additional reading (if necessary).

The Matrix-Tree Theorem

The Matrix-Tree Theorem is not a new result—in fact, it has been around for well over
fifty years. It was apparently first discovered in 1940 by Brooks, Smith, Stone, and Tutte
from results in the study of electrical networks—some results going back to the 1847 paper
of Kirchhoff. The theorem tells us how to determine the number of spanning trees for an
undirected graph by means of a determinant. Those interested in a formal proof of the result
should consult [2] or [5].

An undirected graph G = (V,E) consists of a nonempty set V of vertices and a set
E of unordered pairs {x, y} (= {y, x}), called edges, where x, y ∈ V and x 6= y. In
Figure 1(a) we have the undirected graph G = (V,E) where V = {1, 2, 3, 4, 5} and E =
{{1, 2} , {1, 3} , {1, 5} , {2, 3} , {3, 4} , {4, 5}}. Figures 1(b) and (c) provide two connected
subgraphs of G, where all of the vertices in V are used, and where no cycle of edges ap-
pears. In G, the edge sets {{1, 2} , {2, 3} , {3, 1}} and {{1, 3} , {3, 4} , {4, 5} , {5, 1}} provide
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examples of cycles. The subgraphs in Figures 1(b) and (c) are examples of spanning trees of
G.

(a) (b) (c)

1 2

3

4

5

1 2

3

4

5

1 2

3

4

5

Figure 1

Note: These spanning trees are nonidentical because they gave different edge sets. However,
they are isomorphic: Correspond vertex 1 in (b) with vertex 3 in (c), 2 with 2, 3 with 1, 4
with 5, and 5 with 4.

Our objective here is to count all of the nonidentical spanning trees of G. In order to
do so we represent the graph G by means of its adjacency matrix A(G). Here A(G) is a
symmetric 5× 5(0, 1)-matrix, where the rows and columns are indexed by the set V—fixed
as 1,2,3,4,5. That is,

A(G) = (aij)5×5, where aij = 1 if {i, j} is an edge in G, and aij = 0, otherwise.

Consequently,

A(G) =

(1) (2) (3) (4) (5)
(1)
(2)
(3)
(4)
(5)















0 1 1 0 1
1 0 1 0 0
1 1 0 1 0
0 0 1 0 1
1 0 0 1 0















and D(G) =

(1) (2) (3) (4) (5)
(1)
(2)
(3)
(4)
(5)















3 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 2















where D(G) = (dij)5×5 is called the degree matrix of G. For D(G) we have

dij =

{

the number of edges that contain vertex i, when i = j
0, otherwise.

Then from the Matrix-Tree Theorem one learns that the number of nonindentical spanning
trees for any connected labeled undirected graph G, where |E| ≥ 1, is given by the value of
any cofactor of the matrix D(G) −A(G). Here
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D(G) − A(G) =















3 −1 −1 0 −1
−1 2 −1 0 0
−1 −1 3 −1 0

0 0 −1 2 −1
−1 0 0 −1 2















and if we use the (3, 1)-cofactor, then the theorem tells us that G has

(−1)3+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 −1 0 −1
2 −1 0 0
0 −1 2 −1
0 0 −1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

spanning trees.

Using the computer algebra system MAPLE, the code given in Figure 2 evaluates (the
determinant of) the cofactor above as 11 and tells us that the graph in Figure 1(a) has 11
nonidentical spanning trees.

〉

q1 := matrix(5, 5, [3,−1,−1, 0,−1,−1, 2,−1, 0, 0,−1,−1, 3,−1, 0, 0, 0,−1, 2,−1,

−1, 0, 0,−1, 2]) :

〉 (−1)ˆ(3 + 1) ∗ det(minor(q1, 3, 1));

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

〈 11

Figure 2

Now the reader may feel that the preceding example could have been solved just as readily
(if not, more easily) by simply drawing all of the 11 nonidentical spanning trees. And then
there would be no need to consider determinants, cofactors, or any of the other mathematical
ideas we mentioned. In order to put such skepticism in its place, consider the graph shown
in Figure 3(a). This graph arises throughout the study of graph theory and is called the
Petersen graph. In Figure 3(b) we have the matrix D(G) − A(G) for this graph.
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1

2

34

5

6

7

8
9

10











































3 −1 0 0 −1 −1 0 0 0 0
−1 3 −1 0 0 0 −1 0 0 0

0 −1 3 −1 0 0 0 −1 0 0
0 0 −1 3 −1 0 0 0 −1 0
0 0 −1 3 −1 0 0 0 −1 0

−1 0 0 −1 3 0 0 0 0 −1
−1 0 0 0 0 3 0 −1 −1 0

0 −1 0 0 0 0 3 0 −1 −1
0 0 −1 0 0 −1 0 3 0 −1

0 0 0 −1 0 −1 −1 0 3 0
0 0 0 0 −1 0 −1 −1 0 3











































(a) (b)

Figure 3

When we evaluate the (7, 3)- and (2, 9)-cofactors of D(G) − A(G), using the MAPLE
code shown in Figure 4, we see that the Petersen graph has 2000 nonidentical spanning
trees—and we have demonstrated this by computing two cofactors, although only one need
to be computed. We certainly would not want to solve this problem by simply drawing the
2000 nonidentical spanning trees.

〉 r1 := [3,−1, 0, 0,−1,−1, 0, 0, 0, 0] :

〉 r2 := [−1, 3,−1, 0, 0, 0,−1, 0, 0, 0] :

〉 r3 := [0,−1, 3,−1, 0, 0, 0,−1, 0, 0] :

〉 r4 := [0, 0,−1, 3,−1, 0, 0, 0,−1, 0] :

〉 r5 := [−1, 0, 0,−1, 3, 0, 0, 0, 0,−1] :

〉 r6 := [−1, 0, 0, 0, 0, 3, 0,−1,−1, 0] :

〉 r7 := [0,−1, 0, 0, 0, 0, 3, 0,−1,−1] :

〉 r8 := [0, 0,−1, 0, 0,−1, 0, 3, 0,−1] :

〉 r9 := [0, 0, 0,−1, 0,−1,−1, 0, 3, 0] :

〉 r10 := [0, 0, 0, 0,−1, 0,−1,−1, 0, 3] :

〉 q2 := array([r.(1..10)]) :

〉 (−1)ˆ(7 + 3) ∗ det(minor(q2, 7, 3));

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

〈 2000

〉 (−1)ˆ(2 + 9) ∗ det(minor(q2, 2, 9));

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
〈 2000

Figure 4
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Directed Graphs and Rooted Spanning Trees

In this section we provide a directed version of our earlier work. Here we reexamine a directed
graph, or digraph, G = (V, E), where the nonempty set V contains the vertices of G and the set

E contains the directed edges in G. Such a directed edge has the form (x, y) where x, y ∈ V with
x 6= y and (x, y) 6= (y, x). Figure 5(a) provides an example of a directed graph G = (V, E), where

V = {1, 2, 3, 4, 5} and E = {(1, 2), (1, 4), (1, 5), (2, 3), (2, 4), (3, 1), (4, 3), (5, 4)}. The subgraphs in
Figures 5(b) and (c) provide two of the nonidentical directed spanning trees of G—rooted at vertex
1. How many such spanning trees are there?

1

2

34

5

(a)

1

2

34

5

1

2

34

5

(b) (c)

Figure 5

The adjacency matrix of G is now defined by A(G) = (aij)5×5, where aij = 1 if (i, j) ∈ E, and
aij = 0, otherwise. The degree matrix D(G) from the previous section now becomes the indegree
matrix; that is, D(G) = (dij)5×5, where

dij =

{

the number of edges that terminate at vertex i, for i = j,
0, for i 6= j.

Comparable to the Matrix-Tree Theorem, here we find that the number of nonidentical directed

spanning trees for G—rooted at vertex i—is the value of the cofactor associated with the minor of
D(G)−A(G) obtained by deleting row i and column i from D(G)−A(G). For the directed graph

in Figure 5(a) one finds that

A(G) =

(1) (2) (3) (4) (5)

(1)
(2)

(3)
(4)

(5)















0 1 0 1 1
0 0 1 1 0

1 0 0 0 0
0 0 1 0 0

0 0 0 1 0















and D(G) =

(1) (2) (3) (4) (5)

(1)
(2)

(3)
(4)

(5)















1 0 0 0 0
0 1 0 0 0

0 0 2 0 0
0 0 0 3 0

0 0 0 0 1















.

To answer the question posed here we examine the cofactor for the minor obtained when the first

row and first column are deleted from D(G) − A(G). The computation in Figure 6 tells us that
for the directed graphs in question, the number of nonidentical directed spanning trees—rooted at

1—is
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〉

q3 := matrix(5, 5, [1,−1, 0,−1,−1, 0, 1,−1,−1, 0,−1, 0, 2, 0, 0, 0, 0,−1, 3, 0, 0, 0, 0,

−1, 1]) :

〉 (−1)ˆ(1 + 1) ∗ det(minor(q3, 1, 1));

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
〈 6

Figure 6

(−1)1+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 −1 0
0 2 0 0
0 −1 3 0
0 0 −1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 6.

The reader who wishes to see more on the material presented in this section should examine
Chapter 3 of [3].

Spanning Trees for the Wheel Graphs

This final section will provide another opportunity to apply what we have learned via
the Matrix-Tree Theorem. It should appeal to those readers who have had a first course in
discrete or combinatorial mathematics where some of the properties of the Fibonacci and
Lucas numbers were studied.

In Figures 7(a), (b), and (c) we have drawn the graphs of the wheels W3,W4, and W5,
respectively. In general, for n ≥ 3, we can describe the undirected wheel graph Wn =
(V,E) as the graph with V = {1, 2, 3, . . . , n, n+ 1} and E = {{2, 3} , {3, 4} , . . . , {n, n+ 1} ,
{n+ 1, 2}} ∪ {{1, 2} , {1, 3} , . . . , {1, n} , {1, n+ 1}}.

(a) (b) (c)

1 2

3

4

1
2

3

4

5

1

2

34

5

6

Figure 7
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Using the ideas and notation given in the first section, we find D(G)−A(G) for W3,W4,
and W5 to be respectively











3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3











,















4 −1 −1 −1 −1
−1 3 −1 0 −1
−1 −1 3 −1 0
−1 0 −1 3 −1
−1 −1 0 −1 3















, and





















5 −1 −1 −1 −1 −1
−1 3 −1 0 0 −1
−1 −1 3 −1 0 0
−1 0 −1 3 −1 0
−1 0 0 −1 3 −1
−1 −1 0 0 −1 3





















.

Evaluating the (1, 1)–cofactor for each of these matrices, as shown by the inputs and outputs
in Figure 8, we find that the number of nonidentical spanning trees for each of W3,W4 and

〉 q4 := matrix(4, 4, [3,−1,−1,−1,−1, 3,−1,−1,−1,−1, 3,−1,−1,−1,−1, 3]) :

〉 (−1)ˆ(1 + 1) ∗ det(minor(q4, 1, 1));

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
〈 16

〉

q5 := matrix(5, 5, [4,−1,−1,−1,−1,−1, 3,−1, 0,−1,−1,−1, 3,−1, 0,−1, 0,−1, 3,
−1,−1,−1, 0,−1, 3]) :

〉 (−1)ˆ(1 + 1) ∗ det(minor(q5, 1, 1));

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

〈 45

〉

q6 := matrix(6, 6, [5,−1,−1,−1,−1,−1,−1, 3,−1, 0, 0,−1,−1,−1, 3,−1, 0, 0,−1,

0,−1, 3,−1, 0,−1, 0, 0,−1, 3,−1,−, 1,−1, 0, 0,−1, 3]) :

〉 (−1)ˆ(1 + 1) ∗ det(minor(q6, 1, 1));

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

〈 121

Figure 8
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W5 is 16, 45, and 121, respectively. In order to conjecture a formula for the number t(Wn)
of nonidentical spanning trees for Wn in general, we observe that

t(W3) = 16 = 18− 2 = L6 − 2
t(W4) = 45 = 47− 2 = L8 − 2
t(W5) = 121 = 123− 2 = L10 − 2,

where Ln denotes the nth Lucas number.

Note: The Lucas numbers are defined recursively by L0 = 2, L1 = 1, and Ln = Ln−1 +
Ln−2, n ≥ 2. The first 11 Lucas numbers are 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123.

It can be shown that in general

t(Wn) = L2n − 2, n ≥ 3.

Sometimes one finds the result expressed as

t(Wn) = F2n+2 − F2n−2 − 2, n ≥ 3,

where Fn denotes the nth Fibonacci number.

Note: The Fibonacci numbers are defined recursively by F0 = 0, F1 = 1, and Fn = Fn−1 +
Fn−2, n ≥ 2. The first 11 Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

The reader who wishes to see more in the way of a formal proof for the formula for t(Wn)
should examine [7].
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Algebraic Integers and Tensor
Products of Matrices

A complex number is called an algebraic integer if it is a zero of a monic (i.e., the coefficient
of the term with the highest exponent is one) polynomial with integer coefficients. Let C
denote the complex numbers. A set S ⊆ C is called a subring if 1 ∈ S, and for every
a, b ∈ S, a + b ∈ S and a · b ∈ S. It is well-known that the set of algebraic integers forms a
subring of the complex numbers (see [3]). The aim of the present note is to show that this
result follows easily from basic facts about tensor products of matrices.

First we will need some notation. The set of n× n matrices over a subring R is denoted
by Mn(R). The set of polynomials with integer coefficients is denoted by Z[x], x an inde-
terminate. If A ∈ Mn(R), then pA(x) = det(xIn − A) is the characteristic polynomial of
A. Since the operations involved in computing the determinant of A are multiplication and
addition, it is readily verified that if A ∈Mn(Z), then pA(x) is a monic polynomial in Z[x].
Recall that if λ is a zero of pA(x), then λ is called an eigenvalue of A.

The following result will establish the relationship between algebraic integers and matri-
ces.

Lemma 1. Let λ be a complex number. Then λ is an algebraic integer if and only if λ is an
eigenvalue of a square matrix with integer coefficients.

Proof. If λ is an eigenvalue of A ∈ Mn(Z), then pA(x) is a monic polynomial in Z[x], and
pA(λ) = 0. Thus λ is an algebraic integer. To prove the converse, assume that f(λ) = 0,
where f(x) is a monic polynomial in Z[x], say f(x) = xn + c1x

n−1 + · · ·+ cn−1x+ cn. Let A
be the companion matrix of f(x), i.e.

A =

















0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
−cn −cn−1 · · · −c2 −c1

















.

Expanding pA(x) by the first column and using a simple induction argument, it follows that
pA(x) = f(x), and this fact can be found in [1; pp 230–231]. Therefore λ is an eigenvalue of
A and A ∈Mn(Z).
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Definition 2. If A = [aij] is an m × n matrix and B = [bij] is a p × q matrix then the
Kronecker or tensor product of A and B, denoted A⊗ B, is the mp× nq matrix defined as
follows:

A⊗ B =









a11B · · · a1nB
...

. . .
...

am1B · · · amnB









.

Note that if A and B have integer entries, then so does A⊗B. From the above definition
it is easy to verify that if A,B,C,D ∈Mn(R), then

(A⊗ B)(C ⊗D) = AC ⊗BD.

Vectors in Cn may be identified with n× 1 matrices over C , so the above definition may be
used to define tensor products x ⊗ y with x ∈ Cn and y ∈ Cm. The following proposition
establishes a part of the well-known results that identify the eigenvalues of tensor products
see, e.g., [2; pp 242–245]. We provide an easy proof for completeness.

Proposition 3. Let A ∈ Mn(Z), B ∈ Mm(Z), let λ be an eigenvalue of A, and let µ be an
eigenvalue of B. Then

(a) λµ is an eigenvalue of A⊗ B,

(b) λ+ µ is an eigenvalue of (A⊗ Im) + (In ⊗ B).

Proof. There exist non-zero vectors x ∈ Cn and y ∈ Cm such that Ax = λx and By = µy.
It follows immediately that

(A⊗B)(x⊗ y) = λµ(x⊗ y),

and
((A⊗ Im) + (In ⊗ B)) (x⊗ y) = (λ + µ)(x⊗ y).

This proves the proposition.
Notice that if A ∈ Mn(Z), B ∈ Mm(Z), then A⊗ B ∈ Mmn(Z). Hence, if two algebraic

integers, α, β are given, the tensor product is a useful tool for determining the existence of
an integral matrix, for which α · β or α + β is an eigenvalue. We summarize this in the
following theorem.

Theorem 4. The set of algebraic integers forms a subring of the ring of complex numbers.

The proof follows directly from Lemma 2 and Proposition 4.
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On Regular Markov Chains

The following basic theorem concerning regular Markov Chains is often presented in
courses in finite mathematics.

Theorem. Let P be the transition matrix for a regular Markov chain, then

(i) P n → W as n→∞,

(ii) each column of W is the same probability vector w which has positive components,

(iii) if p is a probability vector, pnp→ w,

(iv) w = Pw.

Since, generally speaking, students in such courses know little mathematics beyond high
school algebra, the proof of the theorem is usually omitted. In this note we present an
elementary proof in the case when P is a 2× 2 matrix.

Recall that a probability vector has nonnegative components that sum to 1, a transition
matrix is a square matrix whose columns are probability vectors, and a transition matrix
for a regular Markov chain has the property that some power of the matrix has all positive
entries.

A regular 2× 2 transition matrix can be written in the form

P =

[

1− a b
a 1− b

]

,

where 0 < a ≤ 1, 0 < b ≤ 1, a + b < 2. Before computing powers of P , we write P = I + S,
where

S =

[

−a b
a −b

]

.

Letting r = −(a+b), we find S2 = rS, and Sn = rn−1S for n ≥ 2. Computing the powers
of P we find

P 2 = (I + S)2 = I + 2S + S2 = I + [1 + (1 + r)]S,

P 3 = I + [1 + (1 + r) + (1 + r)2]S,

...

P n = I [1 + (1 + r) + · · ·+ (1 + r)n−1]S = I +
1− (1 + r)n

1− (1 + r)
S.

235



236 Part 8—Applications

Since −1 < 1 + r < 1, we find

P n → W = I +
1

a+ b
S =











b

a + b

b

a+ b

a

a + b

a

a+ b











.

This proves parts (i) and (ii) of the theorem; the other parts follow easily.
Finally we note that another way of computing P n is to use the binomial theorem:

P n = (I + S)n =
n
∑

i=0

(

n

i

)

Si = I +
n
∑

i=1

(

n

i

)

S

= I +
1

r

[

n
∑

i=1

(

n

i

)

ri

]

S

= I +
1

r
[(1 + r)n − 1]S.

Nicholas J. Rose
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Integration by Matrix Inversion

The integration of several functions using differential operators was considered by Osborn
[1]. The integration of these and certain other functions by matrix inversion can furnish an
application of several aspects of matrix theory of interest to the student of matrix algebra.

Let V be the vector space of differentiable functions. Let the n-tuple f be a basis spanning
a subspace S of V which is closed under differentiation. Then differentation comprises a linear
transformation T of S into itself. If the matrix A represents T relative to f , then when A is
nonsingular the elements of fA−1 yield antiderivatives of the elements of f .

To integrate eax sin bx and eax cos bx consider f = (eax sin bx, eax cos bx). Then

fT = (aeax sin bx+ beax cos bx,−beax sin bx+ aeax cos bx)

and

A =

(

a −b
b a

)

.

Furthermore

A−1 =
1

a2 + b2

(

a b
−b a

)

and then

fA−1 =
(

eax

a2 + b2
(a sin bx− b cos bx) ,

eax

a2 + b2
(b sin bx+ a cos bx)

)

yields antiderivatives of the elements of f .
To derive the formula

(1)
∫

xnexdx = ex
[

xn − nxn−1 + n(n − 1)xn−2 − · · ·+ (−1)nn!
]

for positive integers n consider f = (ex, xex, x2ex, . . . , xnex). Then

fT =
(

ex, ex + xex, . . . , nxn−1ex + xnex
)

237



238 Part 8—Applications

and there follows the interesting matrix

A =



































1 1 0 · · · 0 0 0
0 1 2 · · · 0 0 0
0 0 1 · · · 0 0 0
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
0 0 0 · · · 1 n − 1 0
0 0 0 · · · 0 1 n
0 0 0 · · · 0 0 1



































.

Since only an antiderivative of the last element of f is required, one is only interested in
the last column of A−1. Due to the peculiar form of A the inverse is easily deduced. One
surmises that the last column of A−1 is the transpose of the row

(2)

(

(−1)nn!, (−1)n−1n!, (−1)n−2n!

2!
, . . . , n(n− 1),−n, 1

)

.

That this supposition is correct may be verified by induction on n. In this connection it
is useful to consider the (n + 2) rowed matrix corresponding to A as a partitioned matrix
containing A as a principal submatrix. Finally, one notes that multiplication of (2) by f
yields the required formula (1).
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Some Explicit Formulas
for the Exponential Matrix

In a recent paper, E.J. Putzer [1] described two methods for calculating exponential
matrices of the form etA, where t is a scalar and A is any square matrix. Putzer’s methods
are particularly useful in practice because they are valid for all square matrices A and
require no preliminary transformations of any kind. All that is needed is the factorization
of the characteristic polynomial of A, that is, a knowledge of the eigenvalues of A and their
multiplicities. Both methods are based on the fact that etA is a polynomial in A whose
coefficients are scalar functions of t that can be determined recursively by solving a simple
system of first-order linear differential equations.

A purely algebraic method for computing etA is given by the Lagrange-Sylvester interpola-
tion formula described on pp. 101–102 of Gantmacher’s Theory of Matrices [2]. This formula
requires knowledge of the factorization of the minimal polynomial of A and is usually more
complicated than Putzer’s methods.

Another algebraic method for computing etA was developed recently by R.B. Kirchner [3]
who gave an explicit formula for calculating etA in terms of A and the factorization of the
characteristic polynomial of A. Kirchner’s method requires the inversion of a certain matrix
polynomial q(A), although as Kirchner points out, this inversion can sometimes be avoided.

General methods often have the disadvantage that they are not the simplest methods to
use in certain special cases. The purpose of this note is to point out that explicit formulas
for the polynomial etA can be obtained very easily (a) if all the eigenvalues of A are equal,
(b) if all the eigenvalues of A are distinct, or (c) if A has two distinct eigenvalues, exactly
one of which has multiplicity 1. We state these formulas in the following three theorems.

Theorem 1. If A is an n× n matrix with all its eigenvalues equal to λ, then we have

(1) etA = eλt
n−1
∑

k=0

tk

k!
(A− λI)k.

Proof. Since the matrices λtI and t(A− λI) commute, we have

etA = eλtIet(A−λI) = (eλtI)
∞
∑

k=0

tk

k!
(A− λI)k.

The Cayley-Hamilton Theorem implies that (A − λI)k = 0 for k ≥ n, so the theorem is
proved.
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Note. If (A−λI)m = 0 for some m < n, then the same proof shows that we can replace
n− 1 by m− 1 in the upper limit of summation in (1).

Formula (1) is precisely the result obtained by applying Putzer’s second method or Kirch-
ner’s explicit formula. The foregoing proof seems to be the simplest and most natural way
to derive this result.

Theorem 2. If A is an n× n matrix with n distinct eigenvalues λ1, λ2, · · · , λn, then we
have

etA =
n
∑

k=1

etλkLk(A),

where the Lk(A) are Lagrange interpolation coefficients given by

Lk(A) =
∏

j=1

j 6=k

A− λjI

λk − λj

for k = 1, 2, · · · , n.

Proof. Although this theorem is a special case of the Lagrange-Sylvester interpolation
formula, the following alternate proof may be of interest.

Define a matrix-valued function of the scalar t by the equation

(2) F (t) =
n
∑

k=1

etλkLk(A).

To prove that F (t) = etA we show that F satisfies the differential equation F ′(t) = AF (t)
and the initial conditions F (0) = I . From (2) we see that

AF (t)− F ′(t) =
n
∑

k=1

etλk(A− λkI)Lk(A).

By the Cayley-Hamilton Theorem we have (A−λkI)Lk(A) = 0 for each k, so F satisfies the
differential equation F ′(t) = AF (t). Since

F (0) =
n
∑

k=1

Lk(A) = I,

this completes the proof.

Note. My colleague Professor John Todd points out that another simple proof of Theo-
rem 2 can be based on the fact that F satisfies the functional equation F (s+ t) = F (s)F (t).

The next theorem treats the case when A has two distinct eigenvalues, exactly one of
which has multiplicity of 1.
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Theorem 3. Let A be an n × n matrix (n ≥ 3) with two distinct eigenvalues λ and µ,
where λ has multiplicity n− 1 and µ has multiplicity 1.Then we have

etA = eλt
n−2
∑

k=0

tk

k!
(A− λI)k

+

{

eµt

(µ − λ)n−1
− eλt

(µ − λ)n−1

n−2
∑

k=0

tk

k!
(µ − λ)k

}

(A− λI)n−1.

Proof. As in the proof of Theorem 1 we write

etA = eλt
∞
∑

k=0

tk

k!
(A− λI)k = eλt

n−2
∑

k=0

tk

k!
(A− λI)k + eλt

∞
∑

k=n−1

tk

k!
(A− λI)k

= eλt
n−2
∑

k=0

tk

k!
(A− λI)k + eλt

∞
∑

r=0

tn−1+r

(n− 1 + r)!
(A− λI)n−1+r.

Now we evaluate the series over r in closed form by using the Cayley-Hamilton Theorem.
Since A−µI = A−λI−(µ−λ)I , we find (A−λI)n−1(A−µI) = (A−λI)n−(µ−λ)(A−λI)n−1.
The left member is 0 by the Cayley-Hamilton Theorem so

(A− λI)n = (µ − λ)(A− λI)n−1.

Using this relation repeatedly we find

(A− λI)n−1+r = (µ − λ)r(A− λI)n−1.

Therefore the series over r becomes
∞
∑

r=0

tn−1+r

(n− 1 + r)!
(µ− λ)r(A− λI)n−1 =

1

(µ− λ)n−1

∞
∑

k=n−1

tk

k!
(µ − λ)k(A− λI)n−1

=
1

(µ− λ)n−1

{

et(µ−λ) −
n−2
∑

k=0

tk

k!
(µ− λ)k

}

(A− λI)n−1.

This completes the proof of Theorem 3.
The explicit formula in Theorem 3 can also be deduced by applying Putzer’s method or

by using Kirchner’s formula, but the details are much more complicated.
The explicit formulas in Theorems 1, 2, and 3 cover all matrices of order n ≤ 3. Since

the 3× 3 case is often discussed in the classroom, the formulas in this case are listed below
for easy reference.

1. If a 3× 3 matrix A has eigenvalues λ, λ, λ, then

etA = eλt
{

I + t(A− λI) +
1

2
t2(A− λI)2

}

.
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2. If a 3× 3 matrix A has distinct eigenvalues λ, µ, ν, then

etA = eλt (A− µI)(A− νI)
(λ− µ)(λ− ν) + eµt (A− λI)(A− νI)

(µ− λ)(µ − ν) + eνt (A− λI)(A− µI)
(ν − λ)(ν − µ)

.

3. If a 3× 3 matrix A has eigenvalues λ, λ, µ, with λ 6= µ, then

etA = eλt {I + t(A− λI)}+
eµt − eλt

(µ− λ)2
(A− λI)2 − teλt

µ− λ(A− λI)2.
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Avoiding the Jordan Canonical Form
in the Discussion of Linear Systems

with Constant Coefficients

Consider the differential equation

(1) ẋ = Ax; x(0) = x0; 0 ≤ t ≤∞,

where x and x0 are n-vectors and A is an n×n matrix of constants. In this paper we present
two methods, believed to be new, for explicitly writing down the solution of (1) without
making any preliminary transformations. This is particularly useful, both for teaching and
applied work, when the matrix A cannot be diagonalized, since the necessity of discussing
or finding the Jordan Canonical Form (J.C.F. ) of A is completely bypassed.

If eAt is defined as usual by a power series it is well known (see [1]) that the solution of
(1) is

x = eAtx0,

so the problem is to calculate the function eAt. In [2], this is done via the J.C.F. of A. In
[1], it is shown how the J.C.F. can be bypassed by a transformation which reduces A to a
triangular form in which the off diagonal elements are arbitrarily small. While this approach
permits a theoretical discussion of the form exp {At} and its behavior as t becomes infinite
(Theorem 7 of [1]), it is not intended as a practical method for calculating the function. The
following two theorems suggest an alternate approach which can be used both for calculation
and for expository discussion. It may be noted that the formula of Theorem 2 is simpler
than that of Theorem 1 since the ri are easier to calculate than the qi.

In order to state Theorem 1 simply, it will be convenient to introduce some notation.
Let A be an n× n matrix of constants, and let

f(λ) ≡ |λI − A| ≡ λn + cn−1λ
n−1 + · · ·+ c1λ+ c0

be the characteristic polynomial of A. Construct the scalar function z(t) which is the solution
of the differential equation

(2) z(n) + cn−1z
(n−1) + · · · + c1ż + c0z = 0

with initial conditions

(3) z(0) = ż(0) = · · · = z(n−2)(0) = 0; z(n−1)(0) = 1.
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We observe at this point that regardless of the multiplicities of the roots of f(λ) = 0,
once these are obtained it is trivial to write down the general solution of (2). Then one
solves a single set of linear algebraic equations to satisfy the initial conditions (3). Since
the right member of each of these equations is zero except for the last, solving them entails
only finding the cofactors of the elements of the last row of the associated matrix. It is not
necessary to invert the matrix itself. For teaching purposes, the point is that the form of the
general solution of (2) can be obtained quickly and easily by elementary methods.

Now define

Z(t) =













z(t)
ż(t)

...
z(n−1)(t)













, and C =

















c1 c2 · · · cn−1 1
c2 c3 · · · 1
... . .

.
0

cn−1 1
1

















We then have the following

Theorem 1.

(4) eAt =
n−1
∑

j=0

qj(t)A
j,

where q0(t), · · · , qn−1(t) are the elements of the column vector

(5) q(t) = CZ(t).

Before we prove this, a remark is in order as to what happens when f(λ) has multiple roots
but the minimal polynomial of A has distinct factors so that A can in fact be diagonalized.
It appears at first glance that our formula will contain powers of t, yet we know this cannot
be the case. What occurs, of course, is that the powers of t in (4) just cancel each other
out. This is the nice feature of formula (4); it is true for all matrices A, and we never have
to concern ourselves about the nature of the minimal polynomial of A, or its J.C.F., and no
preliminary transformations of any kind need be made.

Proof. We will show that if

(6) Φ(t) =
n−1
∑

j=0

qj(t)A
j

then dΦ/dt = AΦ and Φ(0) = I , so Φ(t) = eAt. Since only q0(t) involves z(n−1)(t), qj(0) = 0
for j ≥ 1. Clearly, q0(0) = 1. Thus, Φ(0) = I .

Now consider (dΦ/dt) − AΦ. Differentiating (6), and applying the Hamilton-Cayley
Theorem

An +
n−1
∑

j=0

cjA
j = 0,
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we obtain
dΦ

dt
− AΦ = (q̇0 + c0qn−1) +

n−1
∑

j=0

(q̇j − qj−1 + cjqn−1)A
j.

It will suffice, therefore, to show that

q̇0(t) ≡ −c0qn−1(t),

q̇j(t) ≡ qj−1(t)− cjqn−1(t) j = 1, · · · , (n− 1).

From the definition (5),

(7) qj(t) ≡
n−j−1
∑

k=1

ck+jz
(k−1) + z(n−j−1).

Therefore q̇j(t) ≡
∑n−j−1

k=1 ck+jz
(k) + z(n−j).

But qn−1 ≡ z, so we have

(8) q̇j + cjqn−j ≡
n−j−1
∑

k=0

ck+jz
(k) + z(n−j) for j = 0, 1, · · · , n− 1.

If j = 0, this yields

q̇0 + c0qn−1 ≡
n−1
∑

k=0

ckz
(k) + z(n)

which is zero because of (2).
If j ≥ 1, replace j by j− 1 in (7) and change the summation index from k to k+1 to get

(9) qj−1(t) ≡
n−j−1
∑

k=0

ck+jz
(k) + z(n−j).

Comparing (9) and (8) we have q̇j + cjqn−1(t) ≡ qj−1(t) for j = 1, 2, · · · , n− 1.
Students will want to see the formula (4) derived. One merely presents the proof back-

ward, beginning with the observation that because of the Hamilton-Cayley theorem, exp {At}
should be expressible in the form (6). Regarding the qj as unknowns, and applying the dif-
ferential equation which exp {At} satisfies, leads directly to (4).

A second explicit formula for exp {At}, which also holds for all matricesA, is the following:
Let λ1, λ2, · · · , λn be the eigenvalues of A in some arbitrary but specified order. These are
not necessarily distinct. Then

Theorem 2. eAt =
∑n−1

j=0 rj+1(t)Pj, where

P0 = I ; Pj =
j
∏

k=1

(A− λkI), (j = 1, · · · , n),
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and r1(t), · · · , rn(t) is the solution of the triangular system















ṙ1 = λ1r1

ṙj = rj−1 + λjrj (j = 2, · · · n)

r1(0) = 1; rj(0) = 0 (j = 2, · · · n).

Proof. Let

(10) Φ(t) ≡
n−1
∑

j=0

rj+1(t)Pj

and define r0(t) ≡ 0. Then from (10) and the equations satisfied by the rj(t) we have, after
collecting terms in rj ,

Φ̇ − λnΦ =
n−2
∑

0

[Pj+1 + (λj+1 − λn)Pj ] rj+1.

Using Pj+1 ≡ (A− λj+1I)Pj in this gives

Φ̇− λnΦ = (A− λnI)(Φ− rn(t)Pn−1)

= (A− λnI)Φ − rn(t)Pn.

But Pn ≡ 0 from the Hamilton-Cayley Theorem, so Φ̇ = AΦ. Then since Φ(0) = I it follows
that Φ(t) = eAt.

Example. If one desires a numerical example for class presentation an appropriate matrix
A can be prepared in advance by arbitrarily choosing a set of eigenvalues, a Jordan Canonical
Form J and a nonsingular matrix S and calculating

A = SJS−1.

Then beginning with A, one simply calculates the set {qi(t)} and/or {ri(t)}. Consider
the case of a 3× 3 matrix having eigenvalues (λ, λ, µ). There are two subcases; the one in
which the normal form of A is diagonal, and the one in which it is not. These two subcases
are taken care of automatically by the given formula for exp {At}, and do not enter at all
into the calculation of the {qi} or {ri}.

As an example we will explicitly find the sets {qi} and {ri} for the case of a 3× 3 matrix
with eigenvalues (λ, λ, λ). We note that aside from the trivial case in which the normal form
(and hence A itself) is diagonal, there are two distinct nondiagonal normal forms that A
may have. As above, these do not have to be treated separately.

From Theorem 1,

f(x) ≡ (x− λ)3 = x3 − 3λx2 + 3λ2x− λ3
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so c1 = 3λ2, c2 = −3λ. Obviously z(t) = (a1 + a2t+ a3t
2)eλt. Applying the initial conditions

to find the ai yields z = 1
2
t2eλt, so

Z(t) =
1

2
eλt









t2

λt2 + 2t

λ2t2 + 4λt+ 2









.

Then since

C =









3λ2 −3λ 1

−3λ 1 0

1 0 0









q = CZ(t) =
1

2
eλt









λ2t2 − 2λt+ 2

−2λt2 + 2t

t2









.

Thus

(11) eAt =
1

2
eλt

{

(λ2t2 − 2λt + 2)I + (−2λt2 + 2t)A+ t2A2
}

for every 3× 3 matrix A having all three eigenvalues equal to λ. The corresponding formula
from Theorem 2 is obtained by solving the system











ṙ1 = λr1
ṙ2 = r1 + λr2
ṙ3 = r2 + λr3

with the specified initial values. This immediately gives

r1 = eλt; r2 = teλt; r3 =
t2

2
eλt

so

(12) eAt =
1

2
eλt

{

2I + 2t(A− λI) + t2(A− λI)2
}

.

Of course, if we collect powers of A in (12) we will obtain (11).
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The Discrete Analogue of the Putzer Algorithm

In differential equations, the Putzer algorithm can be used to represent solutions of the form
eAt. Here, we introduce an analogous algorithm to compute An and then use it to solve a
difference equation.

For a k × k matrix A, denote the eigenvalues of A by λ1, . . . , λk. For any nonnegative
integer n, we look for a representation of An in the form

An =
k
∑

j=1

uj(n)Mj−1, (1)

where the uj(n) are scalar functions to be determined later, and

Mj = (A− λjI)Mj−1, M0 = 1. (2)

Thus, Mj =
j
∏

i=1

(A− λiI). Applying the Cayley-Hamilton Theorem, one may conclude that

Mk =
k
∏

i=1

(A− λiI) = 0.

For n = 0 in formula (1) we have

A0 = I = u1(0)I + u2(0)M1 + · · ·+ uk(0)Mk−1.

This equation is satisfied if

u1(0) = 1, and u2(0) = u3(0) = · · · = uk(0) = 0. (3)

Now, from formula (1),

k
∑

j=1

uj(n+ 1)Mj−1 = An+1 = AAn

= A





k
∑

j=1

uj(n)Mj−1



 =
k
∑

j=1

uj(n)AMj−1.
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Using equation (2), one obtains

k
∑

j=1

uj(n+ 1)Mj−1 =
k
∑

j=1

uj(n) [Mj + λjMj−1] . (4)

Comparing the coefficients of Mj in equation (4), and applying condition (3), we have

u1(n+ 1) = λ1u1(n), u1(0) = 1
uj(n + 1) = λjuj(n) + uj−1(n), uj(0) = 0, j = 2, 3, . . . , k

}

. (5)

The solutions of Equations (5) are given by

u1(n) = λn
1 , uj(n) =

n−1
∑

i=0

λn−1−i
j uj−1(i), j = 2, 3, . . . , k.

Equations (2) and (5) together constitute an algorithm for computing An.

Example. Find the solution of the difference system x(n+ 1) = Ax(n), where

A =







4 1 2
0 2 −4
0 1 6





 .

Solution: The eigenvalues of A may be obtained by solving the characteristic equation
det(A− λI) = 0. Now

det







4− λ 1 2
0 2− λ −4
0 1 6− λ





 = (4− λ)(λ− 4)2 = 0.

Hence, the eigenvalues of A are λ1 = λ2 = λ3 = 4. So

M0 = I, M1 = 4I =







0 1 2
0 −2 −4
0 1 2





, and M2 = (A− 4I)M1 =







0 0 0
0 0 0
0 0 0





 .

Now,
u1(n) = 4n

u2(n) =
n−1
∑

i=0

(

4n−1−i
) (

4i
)

= n
(

4n−1
)

u3(n) =
n−1
∑

i=0

4n−1−i
(

i4i−1
)

= 4n−2
n−1
∑

i=0

i =
n(n− 1)

2
4n−2.
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Using equation (1), we have

An = 4n







1 0 0
0 1 0
0 0 1





+ n4n−1







0 1 2
0 −2 −4
0 1 2





+
n(n − 1)

2
4n−2







0 0 0
0 0 0
0 0 0







=











4n n 4n−1 2n 4n−1

0 4n − 2n 4n−1 −n 4n

0 n 4n−1 4n + 2n 4n−1











.

The solution of the difference equation is given by

x(n) = Anx(0) =











4nx1(0) + n 4n−1x2(0) + 2n 4n−1x3(0)

(4n − 2n 4n−1)x2(0) − n 4nx3(0)

n 4n−1x2(0) + (4n + 2n 4n−1)x3(0)











where x(0) = (x1(0), x2(0), x3(0))
T
.

Exercises

In Exercises 1–4, use the discrete Putzer algorithm to evaluate An.

1. A =

(

1 1
−2 4

)

ans.





2n+1 − 3n 3n − 2n

2n+1 − 2(3n) 2(3n)− 2n





2. A =

(

−1 2
3 0

)

3. A =







1 2 −1
1 0 1
4 −4 5





 ans.















2n+1 − 3 −2 + 2n+1 1

2
− 1

2
3n

−2 + 3n 2− 2n −1

2
− 1

2
3n

−2n+2 + 4(3n) 4− 2n+2 −1 + 2(3n)















4. A =







2 1 0
0 2 1
0 0 2







5. Solve the system

x1(n+ 1) = −x1(n) + x2(n), x1(0) = 1,

x2(n+ 1) = 2x2(n), x2(0) = 2.
ans.







1

3

[

2n+1 + (−1)n
]

2n+1
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6. Solve the system

x1(n+ 1) = x2(n),
x2(n+ 1) = x3(n, ),
x3(n+ 1) = 2x1(n)− x2(n) + x3(n).

.

7. Solve the system

x(n+ 1) =







1 −2 −2
0 0 −1
0 2 3





 x(n), x(0) =







1
1
0





. ans.







3− 2n+1

2 (1− 2n−1)
2 (−1 + 2n)







8. Solve the system

x(n+ 1) =











1 3 0 0
0 2 1 −1
0 0 2 0
0 0 0 3











x(n).

9. Verify that this matrix satisfies its characteristic equation (Cayley-Hamilton Theorem).

A =

(

2 −1
1 3

)

.

10. Let ρ(A) = max {|λ| : λ is an eigenvalue of A}. Suppose that ρ(A) = ρ0 < β.

(a) Show that |uj(n)| ≤ βn

(β − ρ0)
, j = 1, 2, . . . , k. [Hint: Use equation (5).]

(b) Show that if ρ0 < 1, then uj(n)→ 0 as n→∞. Conclude that An → 0 as n→∞.

(c) If α < min {|λ| : λ is an eigenvalue of A}, establish a lower bound for |uj(n)|.
11. If a k × k matrix A has distinct eigenvalues λ1, λ2, . . . , λk, then one may compute

An, n ≥ k, using the following method. Let p(λ) be the characteristic polynomial of
A. Divide λn by p(λ) to obtain λn = p(λ)q(λ) + r(λ), where the remainder r(λ) is a
polynomial of degree at most (k − 1). Thus one may write An = p(A)q(A) + r(A).

(a) Show that An = r(A) = a0I + a1A + a2A
2 + · · ·+ ak−1A

k−1.

(b) Show that λn
1 = r(λ1), λ

n
2 , . . . , λ

n
k = r(λk).

(c) Use part (b) to find a0, a1, . . . , ak−1.

12. Extend the method of Exercise 11 to the case of repeated roots. [Hint: If λ1 = λ2 = λ
and λn = a0 +a1λ+a2λ

2 + · · ·+ak−1r
k−1, differentiate to get another equation nλn−1 =

a1 + 2a2λ+ · · ·+ (k − 1)ak−1λ
k−2.]

13. Apply the method of Exercise 11 to find An for

(a) A =

(

1 1
−2 4

)

, (b) A =







1 2 −1
1 0 1
4 −4 5





 .



Elaydi: The Discrete Analogue of the Putzer Algorithm 253

ans. (a)





2n+1 − 3n 3n − 2n

2n+1 − 2(3n) 2(3n)− 2n



 (b) Same as Exercise 3.

14. Apply the method of Exercise 13 to find An for

A =







4 1 2
0 2 −4
0 1 6





 .

Saber Elaydi
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The Minimum Length of a Permutation
as a Product of Transpositions

The intent of this note is to present results on minimal expressions of permutations as
products of transpositions in a way that takes advantage of the linear algebra inherent in
viewing permutations as orthogonal transformations. The known result that the minimum
number of transpositions required is determined by the number of disjoint cycles in the
permutation [1]-[4] is derived here using Gram-Schmidt orthogonalization. We rely only on
elementary linear algebra in proofs and do not employ arguments based on case by case
multiplication cycles. The transpositions that do occur in a minimal representation of a
permutation will be shown to be linearly independent, in a sense to be made precise.

We view elements σ of the symmetric group Sn as acting on the Euclidean space Rn

by σei = eσ(i), where e1, e2, . . . , en denotes the natural basis of Rn. This action extends
to a linear transformation that preserves the Euclidean length of vectors. Thus σ defines a
real orthogonal linear transformation with (σx, σy) = (x, y), for all x, y in Rn, where (x, y)
denotes the usual inner product.

In this setting, transpositions act as reflections through hyperplanes. In particular, the
transposition τ = (i, j) can be identified with the reflection through the (n− 1)-dimensional
subspace (hyperplane) orthogonal to the vector ei − ej. This is so since τ sends the normal
vector ei − ej to its negative ej − ei, and also τ fixes pointwise the collection of vectors
{ek|k 6= i, j} ∪ {ei + ej} which form a basis for the hyperplane.

By the fixed point space of σ, and of any linear transformation, we mean the set of vectors
x in Rn with σ(x) = x. Provided it is non-trivial, this is the eigenspace of σ corresponding
to the eigenvalue λ = 1 and we denote it Vσ. It is not difficult to see that the fixed point
space is determined by the cycle structure of the permutation. If σ is written as a product of
r disjoint cycles, including trivial cycles containing only one point, then Vσ is r-dimensional
with each cycle of σ contributing a basis element in a natural way to Vσ.

For example, the permutation σ = (2, 5, 3)(1, 6) in Sτ has a four-dimensional fixed point
space in R7 that has the vectors e2 + e5 + e3, e1 + e6, e4, and e7 for a basis.

We read products of permutations from right to left. For example, (1, 2, 3, 4, 5) =
(1, 5)(1, 4)(1, 3)(1, 2) expresses a five-cycle as a product of four transpositions. In like fashion,
an s-cycle can be written using s−1 transpositions. Thus, a permutation in Sn consisting of
r cycles can be written as a product of n− r transpositions. A well-known result says that
no fewer number of transpositions can be employed. The proof we give takes advantage of
the linear algebraic bent with which we view permutations. Note that in counting cycles of
a permutation we always include one-element cycles.
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Theorem. A permutation in Sn cannot be written as the product of fewer than n − r
transpositions, where r is the number of disjoint cycles in the permutation.
Proof : Suppose σ in Sn is written as σ = τ1τ2 · · · τk, where the τi’s are transpositions.
Viewing transpositions as reflections through hyperplanes, let vi, 1, 2, . . . , k, be a non-zero
vector orthogonal to the hyperplane determined by τi. The Gram-Schmidt orthogonalization
process guarantees the existence of at least n − k linearly independent vectors that are
orthogonal to the subspace spanned by the vi’s. These n−k vectors thus lie in the intersection
of the k hyperplanes determined by the transpositions and are thus pointwise fixed by each
of the transpositions. Thus these vectors are fixed by σ, and so dimVσ ≥ n − k. But,
dimVσ = r = number of cycles in σ. The result k ≥ n − r follows. �

Whenever σ = τ1τ2 · · · τk, a product of transpositions, and k is the minimum number
allowed by Theorem 1, we refer to this as a minimal representation of σ. Further, given the
transposition τ = (i, j) in Sn, i < j, we call the vector ei− ej in Rn the vector associated to
τ .

For any σ in Sn, we always have the direct sum decomposition Rn = Vσ ⊕ V ⊥σ , where
V ⊥σ denotes the orthogonal complement in Rn of the fixed point space Vσ. If σ = τ1τ2 · · · τk
is a minimal representation, then dimVσ = n − k. Now the vectors vi, i = 1, 2, . . . , k,
associated to the transpositions τi are normal vectors to hyperplanes Hi. Since τi fixes
Hi pointwise, the intersection

⋂k
i=1 Hi is a subspace contained in Vσ. Elementary results

concerning solution spaces of systems of equations show that dim
(

⋂k
i=1Hi

)

≥ n − k, with

equality occurring exactly when the normal vectors v1, v2, . . . , vk are linearly independent.
We thus have the result that if σ = τ1τ2 · · · τk is a minimal representation, then the associated
vectors v1, v2, . . . , vk are linearly independent and form a basis for v⊥σ .

For example, (1, 6)(3, 4)(4, 6)(1, 3) could not be a minimal representation due to the
dependence relation e1 − e6 = (e3 − e4) + (e4 − e6)− (e3 − e1).

Other reasonably intuitive results about minimal products of transpositions can be de-
rived using this approach. For example, a minimal representation σ = τ1τ2 · · · τk must respect
the cycle structure of σ. For, suppose that some transposition τi = (a, b) was such that a
and b belonged to different cycles of σ. Then the vector v = ea − eb would not have inner
product zero with the vector w =

∑

eα, where α ranges through the elements of the cycle of
σ containing a. But this contradicts our result that w is in Vσ, while the associated vector
v is in V ⊥σ . In particular, no transposition τi = (a, b) can have either a or b belonging to a
trivial one-element cycle of σ.
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PART 9

Other Topics





Introduction

The topics of linear algebra cannot be limited to those that fit into the previous eight topics.
This section contains such items, which are none the less of value to instructors (and students)
of linear algebra. They could fit into a variety of linear algebra courses depending on the
emphasis of a particular course.
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Positive Definite Matrices

Historically, positive definite matrices arise quite naturally in the study of n-ary quadratic
forms and assume both theoretic and computational importance in a wide variety of appli-
cations. For example, they are employed in certain optimization algorithms in mathematical
programming, in testing for the strict convexity of scalar-valued vector functions (here, pos-
itive definiteness of the Hessian provides a sufficiency check), and are of basic theoretic
importance in construction of the various linear regression models. These are only a few of
the specific applications which may be added to the abstract interest of such matrices. We
now concentrate specifically on the properties of the matrices themselves.

Definition: An n × n real matrix A, where n is a positive integer, is called positive
definite if (x,Ax) = xTAx > 0 for all nonzero column vectors x in Euclidean n-dimensional
space.

We shall designate the set of all such matrices (which forms a subset of all n×n matrices)
as
∏

n.

Classically, it is customary to require also symmetry in the definition of positive definite,
and we shall often concentrate on that proper subset of

∏

n which consists of only the
symmetric members of

∏

n. We shall designate this subset as
∑

n, but at times we shall allow
ourself to consider the more general case.

It will become clear that the classical concentration on
∑

n is convenient since it is much
richer in algebraic properties, but also, from the standpoint of testing arbitrary matrices, it
suffices to consider the theory of

∑

n. As is well known, any square matrix A can be written
as the sum of a symmetric and a skew-symmetric matrix, A = B+C , where B = (A+AT )/2
and C = (A− AT )/2. We call B the symmetric and C the skew-symmetric part of A, in an
unambiguous manner.

(1) Remark. An n×n matrix A is positive definite if and only if the symmetric part of A
is positive definite. (Actually, we show that any quadratic form is equivalent to a symmetric
quadratic form.)

Proof. If C is the skew-symmetric part of A, then (x, Cx) = (CTx, x) = (−Cx, x) =
−(Cx, x) implies (x, Cx) = 0. Therefore, (x,Ax) = (x, (B+C)x) = (x,Bx), where B is the
symmetric part of A. Thus, in a certain sense (e.g., that of testing for positive definiteness),
it suffices to study the subset

∑

n. The possibility of generalizing some of the results to
∏

n

will also be discussed.
We first characterize positive definiteness (

∑

n) in terms of a basic matrix invariant.
(2) Theorem. If A is n× n symmetric, then A ∈ ∑n if and only if all eigenvalues of A

are positive.
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Proof. We first note that since A is symmetric, A may be diagonalized by some orthog-
onal matrix B,BTAB = D where BT = B−1 and D is diagonal with the necessarily real
eigenvalues of A (Principal Axis Theorem, see e.g., Zelinsky, [3]). Let the eigenvalues of A
be λ1, . . . , λn.

If all λi > 0, let y = BTx so that x = By. Then xTAx = (By)TA(By) = yT (BTAB)y > 0
if x 6= 0.

If A is positive definite, let vi be an eigenvector corresponding to λi normalized so that
(vi, vi) = 1. Then 0 < vT

i Avi = (λivi, vi) = λi and all λi > 0.

(3) Corollary. If A ∈ ∑n, then det(A) > 0.

Proof: det(A) = λ1 · · · λn > 0, by (2).
To facilitate the following comments, we let S ⊂ {1, 2, · · · , n}, properly, be an index set.

Then, let AS, where A is an n × n matrix, be the matrix obtained from A by eliminating
the rows and columns indicated by S, thus reducing the size of A.

(4) Theorem. If A ∈ ∏

n, then AS is positive definite for any S. In particular, the
diagonal elements of A are > 0.

Proof: Let x 6= 0 be an n-vector with zeros as the components indicated by S and
arbitrary components elsewhere. If xS is the vector obtained from x by eliminating the
(zero) components indicated by S, then xT

SASxS = xTAx > 0. Since xS 6= 0 is arbitrary, AS

is positive definite.
As a special case, we may let S = {1, · · · , i− 1, i+ 1, · · · , n} to show that the ith diagonal

element of A is > 0.
We are now in a position to characterize positive definiteness in another manner which

may be viewed as a test, the familiar determinant criteria. For this we employ the following
abbreviations. If S is of the form {i+ 1, i+ 2, · · · , n}, we denote AS as Ai, i.e., Ai is the
i× i matrix formed from the “intersection” of the first i rows and columns of A.

(5) Theorem. If A is n × n symmetric, then A ∈ ∑n if and only if det(Ai) > 0 for
i = 1, · · · , n.

Proof. If A ∈ ∑n, then Ai ∈
∑

i by (4) and because Ai is symmetric. Therefore det(Ai) >
0 by (3).

Unfortunately, there are not thoroughly pleasing proofs of the converse proposition, but
the Inclusion Principle for eigenvalues (Franklin, [1]) will aid in the proof. We note that if
α1 ≥ · · · ≥ αn are the n eigenvalues of A, and β1 ≥ · · · ≥ βn−1 are the n − 1 eigenvalues of
An−1, then α1 ≥ β1 ≥ α2 ≥ β2 · · · ≥ αn−1 ≥ βn−1 ≥ αn. Now, if det(Ai) > 0 for i = 1, · · · , n,
we may inductively show A ∈ ∑n. Since det(A1) > 0, A1 ∈

∑

1. If Ak ∈
∑

k for k < n, all
eigenvalues of Ak are > 0, and thus by the Inclusion Principle, all eigenvalues of Ak+1 are
greater than 0, except perhaps the smallest. But, let α1 ≥ · · · ≥ αk+1 be the eigenvalues of
Ak+1; then αk+1 = det(Ak+1)/α1 · · ·αk as in the proof of (3), and αk+1, the quotient of two
positive reals, is positive. Thus, Ak+1 ∈

∑

k+1, and A = An ∈
∑

n by induction.
We choose to state here without full proof a result which applies in a much more general

setting than
∏

n, but which is important in applications of positive definite matrices.

(6) Theorem. If A ∈ ∏n, then A has a unique factorization A = LR into triangular
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factors where L is lower triangular with 1’s on the diagonal and R is upper triangular with
nonzero diagonal elements.

Comments. This is a consequence of the more general theorem (e.g., see [1], p. 204)
that A has such a factorization if and only if det(Ai) 6= 0 for i = 1, · · · , n. Since A ∈ ∏n,
each Ai ∈

∏

i by (4). Thus det(Ai) 6= 0, for otherwise Ai would be singular and not positive
definite. Since L and R are obviously invertible (with easily computed inverses), this theorem
is helpful, for instance, in exhibiting solutions x to Ax = y.

We now have three rather concrete characterizations of
∑

n. With little difficulty we may
add a fourth which is not quite so concrete.

(7) Lemma. IF A ∈ ∑n, then there exists an invertible matrix P such that P TAP = I,
the identity matrix. Also PP T = A−1 which exists.

Proof: We know there exists an orthogonal B, such that BTAB = C , where C is diagonal
with the eigenvalues of A. If we let D = +C−1/2, then D is well defined. Now let P = BD.
Then, P is invertible since B and D are, and P TAP = DTBTABD = DCD = CD2 =
CC−1 = I . Also, P TAPP T = P T and APP T = I since P T is invertible. Therefore,
A−1 = PP T .

As an aside, (7) points out that any symmetric positive definite quadratic form xTAx (in
fact, any positive definite quadratic form by (1)), is equal to (y, y) under a suitable change
of coordinates.

(8) Theorem. A ∈ ∑n if and only if ∃Q invertible such that A = QTQ.

Proof. If A = QTQ and y = Qx, then xTAx = xTQTQx = yTy = (y, y) > 0 if x 6= 0 since
Q is assumed invertible.

If A ∈ ∑n, then A = (P T )−1P−1, with P invertible by (7). Let Q = P−1; then QT =
(P−1)T = (P T )−1.

We now mention a few less fundamental but still important results which deal with the
positive definiteness of some functions of positive definite matrices.

(9) Theorem. The matrix A belongs to
∑

n if and only if BTAB belongs to
∑

m for each
n×m matrix B such that By = 0 implies y = 0.

Proof. If the condition is satisfied, let m = n and choose B = I . Then ITAI = A ∈ ∑n.

Conversely, let A ∈ ∑

n and suppose B satisfies the conditions of the theorem. Then
yT (BTAB)y = (By)TA(By) > 0 unless By = 0, that is, y = 0. Hence, BTAB is symmetric
and in

∑

m.

(10) Theorem. If A ∈ ∑n then

(a) cA ∈ ∑n for c > 0 any real scalar;
(b) (A+B) ∈ ∑n if B ∈ ∑n;
(c) Am ∈ ∑n for m any integer;
(d) an A1/p exists ∈ ∑n for p a positive integer (by A1/p we mean a matrix B such that

Bp = A);
(e) an Ar exists ∈ ∑n for r any rational number.
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Proof.

(a) cA is symmetric, and xT (cA)x = c(xTAx) > 0 if c > 0 and x 6= 0.

(b) xT (A+B)x = xT (Ax+Bx) = xTAx+ xTBx > 0 if x 6= 0. Also, A+B = (A+B)T is
symmetric.

(c) (Am)T = (AT )m = Am is symmetric. If m = 0, Am = I ∈ ∑

n. If m > 0 and
CTAC = D is an orthogonal diagonalization of A, then A = CDCT and Am =
(CDCT )(CDCT ) · · · (CDCT ) = CDmCT . Thus Am is diagonalizable to Dm, and,
therefore, has all eigenvalues > 0. Therefore, Am ∈ ∑n. If m = −1, then Am exists in
∑

n by (7) and (8). If m < −1,−m > 0, Am = (A−1)−m, and Am ∈ ∑n.

(d) As before, we may write A = CDCT , where C is orthogonal and D diagonal with
positive diagonal elements. Define A1/p = CD1/pCT , where D1/p is diagonal with
diagonal elements the positive real pth roots of the diagonal elements of D. Then
(A1/p)p = A, A1/p is symmetric and has n positive real eigenvalues and is thus positive
definite.

(e) Follows from (c) and (d).

The theorem, (10), might give us hope that a nontrivial algebraic structure might be
imposed on

∑

n (or, perhaps,
∏

n) so that it could be characterized as one of the more
familiar algebraic objects. Unfortunately, however, this does not seem to be the case.

We may not employ an additive group structure since inverses do not exist in
∑

n. If A
is positive definite, not only is −A not positive definite, but it has essentially the opposite
properties of A (such a matrix is called negative definite). Also, there is no additive identity
in
∑

n or
∏

n. Of course, both
∑

n and
∏

n are closed and associative under addition.
The situation is interestingly different but only a little more well behaved if we attempt

a multiplicative group structure on
∑

n. We have the identity matrix I ∈ ∑n and inverses
exist in

∑

n by (10). Also, the multiplication is associative. But
∑

n is not closed under
matrix multiplication. Not only is the product of two members of

∑

n not symmetric if they
do not commute, but it may not even be positive definite as the following example in

∑

2

shows. Let

A =

(

1 3
3 10

)

and B =

(

1 −3
−3 10

)

.

Both A and B are in
∑

2 by (5). However,

AB =

(

−8 27
−27 91

)

6∈ ∏2

by (4). In fact, AB is neither positive nor negative definite.
About all we can say, then, is that

∏

n forms a semigroup under matrix addition. Since
the other common algebraic structures are fundamentally more complex than the group,
they are also precluded.

Some generalizations may be made without great difficulty on the proofs exhibited thus
far. For instance, in the “only if” part of (2) our hypothesis is unnecessarily strong. If A is
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n × n, it need only have n real eigenvalues. The proof is easily seen to depend only on the
positive definiteness of A and the existence of n real eigenvalues with associated eigenvectors.
Thus we may validly formulate the amending statement:

(2.1) Theorem. If A is n × n and has n real eigenvalues, then A ∈ ∏n implies all the
eigenvalues of A are positive.

An entirely analogous statement may be made about the corollary, (3).
We may not, however, drop the requirement that A is real diagonalizable from (2.1) since

a matrix may be positive definite and have complex characteristic roots as the following
example shows. Let

A =

(

2 1
−1 2

)

.

Then A ∈ ∏2 by (1) since the symmetric part of A is

(

2 0
0 2

)

.

However, the characteristic polynomial of A is λ2 − 4λ + 5 with roots 2 ± i. It should be
clear, though, that under no circumstances may a member of

∏

n have a nonpositive real
eigenvalue; for then we could choose a nonzero eigenvector to violate the definition of

∏

n.
Thus, to generalize slightly on (7), a member of

∏

n must always have nonzero determinant
and be invertible.

In (10) parts (a) and (b) may clearly be generalized to all of
∏

n, but part (c) is not
always valid in

∏

n. For instance, if

A =

(

1 −4
2 10

)

,

A ∈ ∏2 by (1) and (5). But

A2 =

(

−7 −44
22 92

)

which is not positive definite by (4). Also, this example should caution us to note that a
matrix may have all its eigenvalues real and positive but not belong to any

∏

n. A2 has
eigenvalues {81, 4}.

If we allow complex-entried matrices and then define
∑H

n to be the Hermitian matrices
which are positive definite, it is clear also that our results concerning

∑

n may be modified
to remain valid in

∑H
n . In addition we should note that our notion of

∏

n has no consistent
analog in the complex-entried matrices. For instance, a matrix A ∈ ∏n with respect to real
vectors may not even have x∗Ax real when complex vectors are allowed (∗ means “conjugate
transpose”).

We have thus far formulated a theory of positive definite matrices. It is clear that we
may analogously define another (disjoint) set of matrices by replacing “>” with “<” in
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the definition of positive definite. Such matrices are usually termed negative definite, and,
suggestively, we might designate this set as −∏n since A ∈ ∏n if and only if −A ∈ −∏n.
This, of course, is the key to the development of a theory of negative definite matrices which
would proceed analogously (allowing for the peculiarities of negative numbers).

Positive (negative) semi-definite matrices may be defined by allowing the possibility of
equality in the definition of

∏

n (or −∏n). Their theory proceeds similarly, but modified by
allowance for 0 eigenvalues.

In the positive definite case, we have succeeded in establishing four characterizations
through theorems: by eigenvalues ((2)); by determinants ((5)); by triangular decomposition
((6)); and by QTQ decomposition ((8)). This, plus the additional properties commented
on, is largely sufficient to both mathematically describe and usefully apply positive definite
matrices.
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Quaternions

In this section we study the Hamiltonian quaternions and examine their relationship to a
subset of M4(R), the set of real 4×4 matrices. The set of quaternions is an algebraic system
that was first described by the Irish mathematician Sir William Rowan Hamilton (1805–
1865). Hamilton, who at the age of five could read Latin, Greek, and Hebrew, studied the
works of Clairaut and Laplace as a boy. Young Willliam’s mathematical career began by
finding a mistake in Laplace’s Mécanique céleste. While still an undergraduate at Trinity
College, Dublin, he was appointed Professor of Astronomy there. He discovered the quater-
nions at the age of 38 while on a walk with his wife. Hamilton later described the discovery
with these words, “. . . I then and there felt the galvanic circuit of thought closed, and the
sparks which flew from it were the fundamental equations between I,J,K . . . ” [1].

Hamilton believed that his discovery was as important as calculus and that it would
become an indispensable tool in mathematical physics. Even though the quaternions were
applied in optics and mechanics, the work did not enjoy wide spread acceptance in the
physics community. However, the quaternions proved to be enormously important in algebra.
Additionally, the quaternions proved to be a very important example—one that shares many
algebraic properties of the real numbers but has a non-commutative multiplication.

The set of quaternions, denoted by H, is

{

a + bi+ cj + dk|a, b, c, and d are real numbers, i2 = j2 = k2 = −1
}

.

Addition of two quaternions, a + bi+ cj + dk and e+ fi+ gj + hk, is defined by

(a + bi+ cj + dk) + (e+ fi+ gj + hk) =
(a+ e) + (b+ f)i+ (c+ g)j + (d+ h)k.

Multiplication of two quaternions, a + bi+ cj + dk and e+ fi+ gj + hk, is defined by

(a+ bi+ cj + dk)(e+ fi+ gj + hk) =
(ae− bf − cg − dh) + (af + be+ ch− dg)i+
(ag − bh+ ce+ df)j + (ah+ bg − cf + de)k.

It is easily shown that the units i, j, and k obey the following rules of multiplication:

ij = k, jk = i, ki = j, ik = −j, kj = −i, ji = −k
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The quaternions are an extension of the real numbers (take b = c = d = 0 in the defini-
tion of H) and the complex numbers (take c = d = 0 in the definition of H). H and R,
enjoy many of the same properties. Some of these are associativity of addition and multipli-
cation; commutativity of addition; additive and multiplicative identities; additive inverses;
and multiplicative inverses for non-zero elements. However, multiplication in H is clearly
not commutative as the above calculations with i, j, and k demonstrate. Another anomaly
that occurs is that an nth degree polynomial equation in H can have more than n solutions
in H. Indeed it is possible to have a polynomial equation in H which has infinitely many
solutions. Such a thing could not occur in R or C.

The formula for quaternion addition is quite easy to implement. To the contrary, the
formula for quaternion multiplication is very tedious. We shall see that quaternions can be
represented by 4× 4 real matrices and this representation will facilitate calculations. To do
this we state a number of results which we hope some of you will prove.

H is a real 4-dimensional vector space having {1, i, j, k} as a basis. Consider M4(R), the
real vector space of 4× 4 matrices and define L : H→ M4(R) by

L(a+ bi+ cj + dk) =











a b c d
−b a −d c
−c d a −b
−d −c b a











.

L is a one-to-one linear transformation that also preserves multiplication, i.e.,

L((a+ bi+ cj + dk)(e+ fi+ gj + hk)) =
L(a + bi+ cj + dk)L(e + fi+ gj + hk)

.

The range of L,Rng(L), is a 4-dimensional subspace of M4(R). Indeed, H and Rng(L)
are “isomorphhic” as vector spaces—that is to say, from a vector space point of view, H and
Rng(L) are indistinguishable.

If z = a + bi+ cj + dk is a quaternion, then the conjugate of z, denoted by z, is defined
by

z = a− bi− cj − dk.

The norm denoted by N(z), is defined by

N(z) = zz.

It is clear that
z = z.

Note that

L(a + bi+ cj + dk) =











a b c d
−b a −d c
−c d a −b
−d −c b a











T

.
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Here the superscript “T” denotes the transpose operator.

The following exercises are quite appropriate from a pedagogical point of view, but may
be outside of the scope of a sophomore linear algebra course. Hopefully this caveat will not
deter you from attempting these exercises.

∗ Prove that H is a real vector space of dimension four.

∗ Prove that H is a complex vector space of dimension two.

∗ Prove that L is a linear transformation.

∗ Prove that L preserves multiplication.

For a further discussion of quaternions, see [2].

Exercise Set

Use the relationship between H and Rng(L) to give matric solutions to the following
problems. Express your answer in the form a + bi+ cj + dk when appropriate.

Let a = 5 +4i+ 2j − k, b = 6 + 3i− 9j − 4k, c = 2 + 2i+ 3j + 6k, and d = 1 + 7i− j+ k.
In exercises 1–5 perform the indicated calculation.

1. a. a+ b
b. c− d

2. a. 4a− 6b
b. −11c+ 10d

3. a. a−1

b. c−1

4. dN(d)−1

5. N ((dN(d)−1))
6. Compute dd and dd. Compare and comment on the results.
7. Compute bc and bc. Compare and comment on the results.
8. Computer b− a and b− a. Compare and comment on the results.
9. Compute ab−1 and ba−1. Compare and comment on the results.
10. Compute a(aa)−1 and a−1 (see 3a). Compare and comment on the results.
11. Compute a−1da and a−1d−1a. Compare and comment on the results.
12. Compute a−1 and a−1 Compare and comment on the results.

Solve the following equations for x. Check the accuracy of your answer using an equivalent
matric equation and your favorite computer algebra system.

13. ax− a = d−1b

14. −
(

xb−1 − b
)

= ((a− c) d−1)
−1

In the following exercises let x = 2i/3 − j/3 + 2k/3, y = 2i/7 − 3j/7 − 6k/7, z = −4i/9 +
j/9− 8k/9.
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16. Compute each of the following.
a. x2

b. y2

c. z2

17. What is the algebraic significance of your calculations in Exercise 16.
[Hint: Consider the equation w2 + 1 = 0.]

18. Can you see a pattern for the coefficients of x, y, and z that relates to
geometric ideas? [Hint: Consider the sphere with center at the origin
and radius one.]

19. In light of your response to Exercise 18 make a conjecture about the
solutions to w2 + 1 = 0. What justification can you give for your
conjecture?
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Bionomial Matrices

One aim of this paper is to interconnect bionomial coefficients with matrix algebra and
thereby obtain “new wine in new bottles.” Another purpose is to exhibit a non-trivial class
of matrices whose tth power can be obtained at sight, for all rational numbers t.

Consider the following table:

Table 1

col. 0 col. 1 col. j

row 0 1

row 1 x y

x2 2xy y2

row r xr
(

r
1

)

xr−1y
(

r
2

)

xr−2y2
(

r
3

)

xr−3y3
(

r
j

)

xr−jyj

Observe that the top row in the above table is labeled row 0 and the leftmost column is
labeled column 0. The entries in the cells of row r are the successive terms in the binomial
expansion of (x+ y)r; the entry in row r, column j is

(

r
j

)

xr−jyj. By definition, a Bionomial

Matrix of order k is obtained by taking the rows and columns of the above table, consecu-
tively, from 0 through (k − 1). We denote such a matrix by Bk(x, y). (Whenever the order
is of no importance, or clear from the context, we drop the subscript k.)

We use the symbol Pk to denote the special case where x = y = 1, i.e.

Pk = Bk(1, 1).

Observe that Pk corresponds to the first k rows and columns of Pascal’s triangle. Note
further that the jth column of B(x, y) begins with j zeros, followed by the successive terms
in the “negative bionomial expansion” of yj(1− x)−j−1.

Next, consider Table 2 below. This is a table of coefficients, a well-known symmetric
form of Pascal’s triangle which we call the S-table.
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Table 2

Column Number
..............................................i
j 0 1 2 3 4 r

0 1 1 1 1 1
(

r
r

)

1 1 2 3 4 5
(

r + 1
r

)

2 1 3 6 10 15
(

r + 2
r

)

3 1 4 10 20 35
(

r + 3
r

)

4 1 5 15 35 70
(

r + 4
4

)

r
(

r
0

) (

r + 1
1

) (

r + 2
2

) (

r + 3
3

) (

r + 4
4

) (

2r
r

)

We define the Sk matrix as consisting of the first k rows and columns of the S-table.
Observe that the entry in row i, column j of the S-table is equal to the entry in row (i+ j),

column j of Pascal’s triangle, namely
(

i+j
j

)

.

As an illustration of the relationship of these matrices, we have

Theorem 1. PkP
T
k = Sk, for each integer k > 0. (P T

k denotes the transpose of Pk).
To illustrate this result, consider

P3P
T
3 =







1 0 0
1 1 0
1 2 1













1 1 1
0 1 2
0 0 1





 =







1 1 1
1 2 3
1 3 6





 = S3.

We point out that P3P
T
3 does not equal P T

3 P3.
By the definition of matrix multiplication, Theorem 1 follows from the combinatorial

identity
(

i

0

)(

j

0

)

+

(

i

1

)(

j

1

)

+

(

i

2

)(

j

2

)

+ · · ·+
(

i

i

)(

j

i

)

=

(

i+ j

j

)

, for i ≤ j. (1)

This identity follows from examination of the polynomial identity

(1 + x)i(1 + x−1)j = (1 + x)i(1 + x)jx−j = x−j(1 + x)i+j (2)

If we equate the constant term in the left-hand side of Equation (2) with the constant
term in the right-hand side, then Equation (1) follows immediately.
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In relation to general matrix theory, Theorem 1 is incidental. (Observe, however, certain
interesting exercises, e.g. det(Sn) = 1.)

The following results seem to be of more general interest:

Theorem 2. Binomial matrix multiplication satisfies:

Bk(x, y)Bk(w, z) = Bk(x+ yw, yz) for each k = 1, 2, . . . .

Observe that the entry in row r, column j of the above matrix product is the dot product
of vectors (a) and (b) below:

(a)

(

r

0

)

xr,

(

r

1

)

xr−1y, . . .,

(

r

j

)

xr−jyj,

(

r

j + 1

)

xr−j−1yj+1, . . .,

(

r

r

)

yr, 0, . . . 0.

(b)

(

0

j

)

,

(

1

j

)

, . . .,

(

j

j

)

zj,

(

j + 1

j

)

wzj , . . .,

(

r

j

)

wr−jzj, . . . .

Since
(

k
j

)

= 0 for all k < j, this dot product equals

(

r

j

)(

j

j

)

xr−1yjzj +

(

r

j + 1

)(

j + 1

j

)

xr−j−1yj+1wzj + · · ·+
(

r

r

)(

r

j

)

yrwr−jzj. (3)

It is simple to verify the identity
(

r

j + t

)(

j + t

j

)

=

(

r

j

)(

r − j
t

)

.

Accordingly, we can rewrite Equation (3) as
(

r

j

)

yjzj

[(

r − j
0

)

xr−j +

(

r − j
1

)

xr−j−1(yw) + · · ·+
(

r − j
r − j

)

(yw)r−j

]

=

(

r

j

)

(yz)j [x+ yw]r−j ,

which establishes Theorem 2.
Remark: As an example of Theorem 2 let

B(x, y) =

(

1 0
x y

)

and B(w, z) =

(

1 0
w z

)

.

By direct multiplication,

B(x, y)B(w, z) =

(

1 0
x+ yw yz

)

.
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Corollary 2.1. If y 6= 0, then B(x, y) is invertible and

[B(x, y)]−1 = B(−xy−1, y−1).

Proof. By Theorem 2, we have

B(x, y)B(−xy−1, y−1) = B(0, 1) = Ik,

(the k × k identity).
In particular,

B(x, 1)−1 = B(−x, 1) and

B(1, y)−1 = B(−y−1, y−1).

Corollary 2.2. B(x, y) and B(w, z) commute if and only if x(1− z) = w(1− y).
This follows from comparing

B(x, y)B(w, z) = B(x+ yw, yz)

and
B(w, z)B(x, y) = B(w + zx, zy).

Whenever x + y = 1, we call B(x, y) generalized stochastic. A generalized stochastic
matrix will be said to be strictly stochastic, or simply stochastic if x and y are non-negative.

The following corollary is an immediate consequence of Theorem 2:
Corollary 2.3. Any two generalized stochastic binomial matrices commute.
Since, by L’Hospital’s rule

lim
y→1

(

1− yt

1− y

)

= t,

we use the convention that (1− yt/1− y) = t whenever y = 1.
Theorem 3. [B(x, y)]n = B(x [(1− yn/1− y)] , yn), for any integer n > 0.
From Theorem 2 it follows that

[B(x, y)]2 = B(x[1 + y], y2),

which shows that Theorem 3 holds when n = 2 (in either case, y 6= 1 or y = 1). Assume the
theorem true for all integers less than or equal to (n− 1).
(a) If y 6= 1 then

[B(x, y)]n = [B(x, y)]n−1 · B(x, y) = B

(

x

[

1− yn−1

1− y

]

, yn−1

)

· B(x, y)

= B

(

x

{[

1− yn−1

1− y

]

+ yn−1

}

, yn

)

= B

(

x

[

1− yn

1− y

]

, yn

)

.
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(b) If y = 1, then (as remarked above, or directly from Theorem 2)

B(x, 1)B(x, 1) = B(2x, 1).

By induction, it follows that

B(x, 1)n = B(nx, 1),

which, when using our convention, is the statement of Theorem 3 for y = 1.
Observe that Theorem 3 is also true for n = 0 (unless y = 0), since both sides reduce to

Ik.
We now extend Theorem 3 to be valid for any integer n:

Theorem 4. B(x, y)n = B(x[(1− y)n/(1− y)], yn) for any integer n, provided y 6= 0.
We have already proved this for n positive or zero. Now let n be positive, so that m = −n

is negative. Then, for y 6= 0,

B(x, y)−n = [B(x, y)−1]
n

= B(−xy−1, y−1)n, by Corollary 2.1,

= B

[

−xy−1

(

1− y−n

1− y−1

)

, y−n

]

, by Theorem 3,

= B

[

x

(

1− y−n

1− y

)

, y−n

]

;

that is,

B(x, y)m = B

(

x

[

1− ym

1− y

]

, ym

)

.

Corollary 4.1. P n = B(1, 1)n = B(n, 1) for all integers n.
To the best of our knowledge, Corollary 4.1 was first proved in the special case n = −1

by John Riordan [1].
We define for any rational t

B(x, y)t = B

(

x

[

1− yt

1− y

]

, yt

)

.

This definition will only make sense if yt is well-defined. Furthermore, if y = 1, by convention,
(1− yt)/(1− y) = t.

In particular, for any integers m,n 6= 0 and y 6= 0,

B(x, y)m/n = B

(

x

[

1− ym/n

1− y

]

, ym/n

)

,
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provided that ym/n is well-defined. This makes sense since, by Theorem 4,

B

(

x

[

1− y1/n

1− y

]

, y1/n

)n

= B

([

x
1− y1/n

1− y

] [

1− (y1/n)n

1− y1/n

]

, y(1/n)n

)

= B(x, y);

and
[

B(x, y)1/n
]−m

= B

(

x
1− y1/n

1− y , y1/n

)m

= B

(

x
1− y1/n

1− y
1− (y1/n)m

1− y1/n
, (y1/n)m

)

= B

(

x
1− ym/n

1− y , ym/n

)

= B(x, y)m/n.

It is straightforward to show that the definition

[B(x, y)]t = B

(

x

[

1− yt

1− y

]

, yt

)

will surely give a unique tth power provided that

(i) yt is defined to be the unique, rational positive tth power of y.

(ii) (1− yt)/(1− y) = t whenever y = 1.

(iii) We limit the class of admissible tth powers to binomial matrices whose entries are real
numbers.

In particular, if Bk is a stochastic matrix we can obtain a well-defined unique tth power.
Such a concept is quite useful—suppose, for example, that readings on a Markov chain
are taken every three months. Then one possible answer to the question of “what went
on monthly” is to take a unique cube-root of the observed matrix. For an example of a
Markov chain which is also a binomial matrix, consider the Estes’ Learning Model when the
experimenter always makes the same choice [2].

To illustrate, consider

B3 =







1 0 0
x y 0
x2 2xy y2





 .
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We define B
1/2
3 by referring to the definition of B(x, y)t above. Accordingly,

B
1/2
3 =

























1 0 0

x

(

1− y1/2

1− y

)

y1/2 0

x2

(

1− y1/2

1− y

)

2x

(

1− y1/2

1− y

)y1/2

y

























.

To illustrate further, suppose that x = y = 1
2
. Then y1/2 .

= 0.707 and (y1/2−1)/(y−1)
.
=

0.586; then

B3

(

1

2
,
1

2

)

=











1 0 0

1
2

1
2

0

1
4

1
2

1
4











,

whereas
[

B3

(

1

2
,
1

2

)]

1

2

=







1 0 0
0.293 0.707 0
0.086 0.414 0.500





 .

We terminate with a description of the eigenvalues and eigenvectors of B(x, y).
Theorem 5. Given Bk(x, y) where y 6= 0, y 6= 1. Then the eigenvalues of Bk(x, y) are
distinct, viz., y0 = 1, y, y2, . . . , yn−1, and the corresponding eigenvectors are the columns of
Bk(x/(1− y), 1), in order.
Proof. Consider the matrix product

Bk(x, y)Bk

(

x

1− y , 1
)

= Bk

(

x+
yx

1− y , y
)

= Bk

(

x

1− y , y
)

.

This proves our contention, column by column, directly from the definition of eigenvector
and eigenvalue.
Corollary 5.1. If Bk(x, y) is general stochastic, i.e. ,if x+ y = 1, then its eigenvectors are
the columns of Bk(1, 1) = Pk.
Corollary 5.2.

Bk(x, y) = Bk

(

x

1− y , 1
)

· Y · Bk

(

−x
1− y , 1

)

,

where Y is the diagonal matrix of eigenvalues of Bk(x, y) and y 6= 0, y 6= 1.

Note that if we are to attempt to define the tth power of a binomial matrix by first
passing to its diagonalization as in Corollary 5.2 and then taking the tth roots of the diagonal
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elements in the diagonal matrix Y above, we would come to the conditions and definition
given earlier, i.e.,

[B(x, y)]t = B

(

x

[

1− yt

1− y

]

, yt

)

.

This relation follows from direct multiplication of the matrices associated with the right-
hand side of Corollary 5.2, Y replaced by Y t, where Y t is deduced from Y by replacing the
scalar y by the scalar yt.

The main purpose of this paper has been expressed in the first paragraph. An incidental
purpose, of course, is the hope that some of the deeper results of matrix theory can influence
the study of combinatorial equalities and inequalities—for example, can we obtain combi-
natorial inequalities by applying the theory of eigenvalues to the symmetric matrix Sk of
Theorem 1? Furthermore, it is of interest to note that the matrices Bk(x, y) and Sk occur
unnamed in numerous contexts. For such an example, we refer the reader to any proof of
the Inclusion-Exclusion Principle.

The author wishes to express appreciation to those persons who have helped him clarify this paper—in
particular, thanks to Professors Norman Schaumberger, James Slifker, and Warren Page.

References

1. J. Riordan, Inverse Relations and Combinatorial Identities, Amer. Math. Monthly 71,
Number 5, (1964).

2. Kemeny, Snell and Thompson, Introduction to Finite Mathematics, 2nd ed. , Prentice-
Hall, Englewood Cliffs, New Jersey, 1966, pp. 415–423.

3. C.L. Liu, Introduction to Combinatorial Mathematics, Chapter IV, McGraw-Hill, New
York, 1968.

Jay Strum
New York University
College Mathematics Journal 8 (1977), 260–266



A Combinatorial Theorem on Circulant Matrices

Introductory treatments frequently say that matrices are just rectangular arrays of numbers,
but, of course, the real intent is to develop their algebraic properties. Here, we go no further
than matrices as formal or symbolic objects. Half the time, the elements will be colors
rather than numbers. Matrices have a capacity for storing combinatorial information, and
we want to exploit that. The following examples extend some classical problems, and provide
motivation.

1. Problem of n queens (Gauss, ca. 1850). Can n mutually invulnerable queens
be placed on an n × n chessboard? Surprisingly, it seems that the answer—affirmative for
n ≥ 4—has been known only since 1969 [1], [2]. We give a simple new proof of this fact,
below. Here, however, our interest is in other surfaces with chessboard-like properties: the
wrapped-around cylindrical or toroidal boards. Whether on the 8 × 8, 9 × 9, or 10 × 10
versions, the enhanced diagonals can make trying to place immune queens a real exercise in
futility.

When can n invulnerable queens be placed on n× n toroidal chessboard?

2. Ring dancers. N husbands have joined hands in a large circle, facing inward,
while their N wives have linked arms in an inner circle, facing outward. The two groups are
dancing in opposite directions. Now, freeze the action. Picking a husband at random, we
expect that the person facing him is not his wife. On the other hand, it isn’t unreasonable
to suspect that, somewhere on the circle, two spouses are facing each other.

Is it always possible to freeze the action at an instant when no spouses are facing each
other?

3. N pigeons, N holes. The pigeonhole principle says that it takes at least N + 1
pigeons, flying into N pigeonholes, to guarantee that one of the pigeonholes will contain
several pigeons. Here is a classic application [3],[4],[5],[6]:

Suppose that a disk has been divided into n = 2k congruent sectors with k sectors
colored blue and k colored red. Let the same thing be done to a smaller disk. The problem
is to show that the smaller disk can always be positioned concentrically within the larger so
that at least half the sectors have matching color. We comment on the solution later. For
our nonstandard application, which removes the critical N + 1st pigeon (see below), let n
be arbitrary and, instead of using colors, label the sectors of each disk with the numbers

281
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1, 2, . . . , n in any order. We can place the disks concentrically and talk about the sum of
the integer labels in a sector.

Can the disks be positioned so that at least two sector sums are equal?

4. A beautiful deception. To perpetrate this admitted flim-flam, one needs an
accomplice seated anonymously in the audience. Participants are asked to draw a clockface
with the numbers 1, 2, . . . , 12 arranged in any order they please. A persuasive MC will
stress the secrecy of each individual’s arrangement, that there are 11! or nearly 40 million
possibilities, etc. This being done, everyone is asked to note the largest sum given by three
consecutive numbers on their permuted clockface. This becomes a player’s secret number.
Now the bidding starts. A person is to bid any number if they are convinced that no one else
in the audience can undercut them with their secret number. For example, I would bid 27
if I felt certain that no one else had a secret number of 26 or less. The winner is either the
last bidder or the first one who undercuts another bidder. It’s a game of nerve and reflexes.
Invariably, the accomplice wins.

What is the accomplice’s secret number, and what is the probability that someone else in
the audience has it?

Interestingly, all these examples boil down to questions about the elementary structure
of circulant matrices. Recall that a circulant (retrocirculant) is a square matrix identified
by its top row. This row is shifted successively a step to the right (left) with wraparound
to produce the remaining rows. We use the notation Circ(a, b, c, . . . )(Circ←(a, b, c, . . . ))
where a, b, c . . . are distinct colors. Major (minor) diagonals are the monochrome sets in
Circ(a, b, . . . )(Circ←(a, b, . . . )). The toroidal chessboard, ring dancers, and sectored disks
are covered by the following basic result.

Theorem. It is possible to choose n positions in the n×n circulant matrix Circ(a, b, c, . . . )
which are (i) on distinct columns, (ii) on distinct rows, (iii) of distinct colors; if and only if
n ≥ 1 is odd. It is possible to replace (iii) with (iii′) of distinct colors both in Circ(a, b, c, . . . )
and Circ←(a, b, c, . . . ); if and only if n ≥ 1 is an odd integer not divisible by 3.

Proof. Let n ≥ 1 be odd. Superimpose Circ(0, 1, 2, . . . , n − 1) on Circ(a, b, . . . ). Let
(x)n denote the nonnegative remainder after x is divided by n. The position of the kth
column and akth row shows diagonal number (k − ak)n, k = 0, 1, . . . , n − 1. To locate the
n positions which satisfy (i)–(iii), begin circling elements starting with the upper leftmost
(zero). We move from left to right, as the knight does in chess, over a column and down
two rows circling elements as we go. This staircase pattern wraps around at midboard and
continues to the last column. The n circled positions are on distinct rows because n is odd.
The corresponding diagonal sequence {0, n− 1, n − 2, . . . , 3, 2, 1} shows the circled positions
have distinct color in Circ(a, b, c, . . . ).

To argue that n odd is necessary for (i)–(iii), suppose that in column k the akth row
element has been chosen, k = 0, 1, . . . , n− 1. Since the ak and (k − ak)n are distinct,

0 ≡n

n−1
∑

k=0

(k − ak)n =
n−1
∑

k=0

k =
1

2
(n− 1)n,
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where ≡n denotes congruence modulo n. This means that n must be odd.

Now consider the stronger condition (iii′). Superimpose Circ←(0, 1, 2, . . . , n − 1) on
Circ←(a, b, . . . ). Circle the same n positions as before. In general, they will not lie on
distinct minor diagonals, as exemplified by the 3× 3 case. But if n ≥ 1 is not divisible by
3, the corresponding diagonal sequence {(k + ak)n}n−1

k=0 will be {0, 3, 6, . . . } without possi-
bility of repetition. These same fixed positions are distinctly colored in Circ(a, b, . . . ) and
Circ←(a, b, c, . . . ) simultaneously.

In fact, n 6≡ 0(mod3) is necessary for (iii′). To see this, suppose that {ak}, {(k − ak)n}
and {(k + ak)n} , 0 ≤ k ≤ n− 1, are all permutations of {0, 1, . . . , n− 1}. Then,

n−1
∑

k=0

(k − ak)
2
n +

n−1
∑

k=0

(k + ak)
2
n = 2

n−1
∑

k=0

k2

implies

0 ≡n

n−1
∑

k=0

a2
k =

(n− 1)(2n − 1)n

6
,

which holds if and only if n is odd and not divisible by 3.

Corollary 1. It is possible to place n invulnerable queens on the cylindrical or toroidal
chessboard if and only if the unwrapped n × n board satisfies n ≥ 5, n odd and not divisible
by 3.

Corollary 2. It is possible to place n invulnerable queens on an n × n chessboard for
all n ≥ 4.

Corollary 1 follows by observing that the monochrome diagonals of Circ(a, b, . . . )
(Circ←(a, b, . . . )) model the major (minor) diagonals of a wrapped-around chessboard. Queens
placed in the circled positions on such a board remain invulnerable when it is unwrapped.
Since a queen has been placed in the upper leftmost square, pruning the first row and column
leaves the remaining queens in immune formation. Thus, we have already solved the classical
queens problem of Corollary 2 for odd values of n, 3± n, and the corresponding even values
n− 1.

Completion of proof of Corollary 2. Take n = 2m + 1 > 3, where 3|n. We modify
the construction in [2] slightly and use circulant matrix arguments. As before, the queen
placed in the upper leftmost square is deleted along with the first row and column to give
the solution for n − 1. This being done, consider the remaining 2m × 2m submatrix in
Circ←(m,m+ 1, . . . , n− 1, 0, 1, . . . , m− 1), shown below.
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Partition this submatrix into left and right halves, denoted by L and R respectively.
Place the remaining queens in positions circled as follows. Begin by circling 0 in the first
column of L, then, moving from left to right, one column over and two rows down with w
denoting a typical circled position in the lower half of L,w = 3h, h = 0, 1, . . . . Wrap around
to the top of L, where x is the typical term, x = 3i + 1(mod n), and continue until all m
columns of L are filled. We perform the inverse process in R: Circle n−1 in the last column
of R, then, moving from right to left, over one column and up two rows, with y denoting a
typical circled position in the upper half of R, y = n− 3j − 1, j = 0, 1, . . . . Wrap around to
the bottom of R, where z is the typical term, z = n− 3k − 2(mod n), and continue until all
m columns of R are filled.

Clearly, the queens occupy distinct rows and columns. Because equations like w = y
have no solution (3± n− 1, 3± n − 2), attack along minor diagonals is impossible. On the
other hand, x = z does have solutions, and these queens would be vulnerable on the toroidal
chessboard. Here on the unwrapped board they are safe in L and R.

Confirming immunity along major diagonals is even easier. Once checks the same posi-
tions in Circ(m− 1, m, . . . , n− 1, 0, 1, . . . , m− 2).
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Corollary 3. In Example (2) there is always an instant when none of the face-to-face
pairs are spouses if and only if N is even. Similarly, in Example (3), there is always a
superposition of disks with at least two equal sector sums if and only if n is even.

Proof. Example (2) is absorbed into Example (3) by considering the disk problem with
n distinct colors (= spouses) per disk. If the disks can be superimposed so that no sectors
match, the ring dancers problem is solved. Let s, t, u, . . . denote either the color pattern or
sequence of integer labels of the sectors of the larger disk, written linearly. Let a, b, c, . . . be
the same for the smaller disk. Write Circ(a, b, c, . . . ), the inventory of superpositions, directly
underneath s, t, u, . . . . Suppose that n is even. If s, t, u, . . . are colors, move from left to right
circling the element in each column of Circ(a, b, . . . ) which matches the color of s, t, u, . . .
heading that column. If s, t, u, . . . are integers, circle n+ 1− s, n+ 1− t, n+ 1− u, . . . .

Think of the circles as pigeons and the rows of Circ(a, b, . . . ) as the pigeonholes. In the
classical (red-blue) disk problem, there would be k pigeons per column (half the column
entries are color matches), giving a total of 2k2 pigeons filling up 2k = n pigeonholes. One
of the rows of Circ(a, b, . . . ) would wind up with at least k circled elements—the desired
superposition.

But here, the standard pigeonhole principle doesn’t apply. Because the colors are distinct
each column gets a single circle, hence, n pigeons into n pigeonholes. Enter the Theorem:
The circled positions are in distinct columns and have distinct colors, but n is even. Thus,
there must be a row in Circ(a, b, . . . ) with at least two circled elements. In the sector-sums
case, this means that

(n+ 1− x) + x = n+ 1 = (n+ 1− y) + y,

where x and y label two sectors of the larger disk.
For the ring dancers, the pigeonhole principle works in reverse. The two circled elements

in one row imply that there must be another row without circled elements. That is the
instant when no spouses face each other.

All these claims break down when n is odd. In that case, given colors s, t, u, . . . , construct
Circ(a, b, . . . ) by first replicating s, t, u, . . . from left to right up the minor main diagonal
and then extending the colors along major diagonals. Now there is no row of Circ(a, b, . . . )
without a match with an element of s, t, u, . . . . If s, t, u, . . . are integers and n is odd, it isn’t
hard to label the sectors so that every superposition gives distinct sector sums.

Example (4) is connected with circulants in a different way. Let x1, x2, . . . , xn denote a
circular permutation of the integers 1, 2, . . . , n, n ≥ 7, and sj = xj + xj+1 + xj+2. Then,
S = Circ(1, 1, 1, 0, . . . , 0)X, where XT = (x1, . . . , xn), S

T = (s1, . . . , sn). Obviously, not
every choice of S can result in a feasible solution X since the elements of X must be distinct
integers.

Lemma. Nondistinct solutions of S = Circ(1, 1, 1, 0, . . . , 0)X result (i) if two consecutive
elements in S are equal; or (ii) if S contains five consecutive elements of the form abcba.

Proof. The equation xj + xj+1 + xj+2 = xj+1 + xj+2 + xj+3 implies xj = xj+3, confirming
(i). To confirm (ii), suppose, without loss of generality, that

x1 + x2 + x3 = a, x2 + x3 + x4 = b, x4 + x5 + x6 = b, x5 + x6 + x7 = a.
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These equations imply x1 − x4 = a− b = x7 − x4, so x1 = x7.

The key question regarding the flim-flam game of Example (4) is: What can a player’s
secret number possibly be? Obviously it can’t be, say, 14 because everyone has a 12 on
their clockface and, next to it, at least 1 and 2. The bidding should begin at 16. The bids
17, 18, 19, 20, . . . pass uneventfully.

Let σ denote any secret number. To obtain a lower bound on σ we compute s̄, the average
value of the triple-sums sj:

s̄ =
1

12

12
∑

k=1

sk =
1

4

12
∑

k=1

xk =
1

4

12
∑

k=1

k = 19.5.

Thus σ ≥ 20 ≥ s̄. In actuality, σ can never equal 20. Twelve integers, the largest of
them 20, average out to 19.5 only if at least 6 of them equal 20. If exactly 6 of the sj

equal 20, then the others must all be 19. In that case, either two consecutive sj are the
same, or else the 20’s and 19’s alternate. Both possibilities are violations, in view of the
above Lemma. If more than 6 of the sj equal 20, we have the same violation because (the
pigeonhole principle!) at least two consecutive entries in S must be 20.

Thus σ ≥ 21. Meanwhile, my accomplice is ready with a circular permutation for which
σ attains its lower bound. It is 1, 8, 10, 3, 5, 9, 4, 6, 11, 2, 7, 12.

The only remaining question: What is the probability that someone in the audience has
also stumbled onto a circular permutation of 1, 2, . . . , 12 for which σ = 21? Frankly, I don’t
know the probability, but I believe that it is very small. After all, my accomplice and I have
never lost a game.

Acknowledgement. I wish to thank Professors P.J. Davis and O. Shisha for helpful discussions.
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An Elementary Approach to the
Functional Calculus for Matrices

Let A be a square matrix of complex numbers. Let (λ1− λ)m1 · · · (λr − λ)mr be the minimal
polynomial of A, where λ1, . . . , λr is a complete enumeration of the distinct eigenvalues of
A and mj(j = 1, . . . , r) equals the largest order of the Jordan blocks with eigenvalue λj.
Let f be a function analytic on a neighborhood of {λ1, . . . , λr}. It is known that a unique
polynomial g of degree at most m1 + · · · + mr − 1 exists that satisfies the interpolation
conditions

g(λj) = f(λj), . . . , g
(mj−1)(λj) = f (mj−1)(λj), j = 1, . . . , r.

The polynomial g, which depends on f , is called the Lagrange-Sylvester interpolation poly-
nomial [1, Chapter 5] or the Hermite interpolation polynomial [3, Chapter 1] for f on the
spectrum of A. A matrix f(A) may then be defined by setting f(A) = g(A), where the
right side means the polynomial in A that is obtained by substituting A for z in g(z); see
[1, Chapter 5].

The aim of this note is to give an alternative and equivalent definition of f(A) that is
more intuitive and transparent, using the Jordan canonical form of A in a more direct way.
A key to this is given by a homomorphism from an algebra of functions to a commutative
algebra of upper-triangular matrices, to be stated shortly. Our purpose in presenting this
material, which is known to many researchers in the subject, is to make this method more
widely known among teachers of linear algebra. With our approach, we can dispense with
the use of interpolation polynomials, thus making it possible to present the functional cal-
culus for matrices to students with a modest background in matrix theory in a more direct
and understandable form. Theorem 4 guarantees that the two definitions of f(A) (namely,
Gantmacher’s and ours) agree. Our approach leads in a natural way to Dunford’s integral
representation of f(A) (see Dunford & Schwartz [2, Chapter 7]), thus filling a gap between
the elementary and advanced theories of functions of a single operator; see Theorem 5.

We will give only the definitions and the statements of the theorems that lead to a
definition of f(A). Except for Theorem 5, the proofs are left as exercises for the reader.

Let f be analytic on a neighborhood of {λ1, . . . , λr}. Let n denote a positive integer. By
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the symbol f∗(z), or simply f∗, we mean the n by n upper-triangular matrix defined by:

f∗(z) =

















f(z) f ′(z) f ′′(z)/2! . . . f (n−1)(z)/(n− 1)!

f(z) f ′(z)
...

. . .
. . . f ′(z)

0
. . . f(z)

















.

This matrix appears also in the Gantmacher’s treatment [1, Chapter 5], though in different
contexts.

We note that for f(z) = z, we have

f∗(λ) =















λ 1 0
. . .

. . .

. . . 1
0 λ















= J,

i.e., a single Jordan block with eigenvalue λ. If f(z) ≡ c (constant), then f∗(λ) = cI , where
I denotes the identity matrix.

The following key theorems, easily verifiable, state that the map f → f∗ is a homo-
morphism from the algebra of functions analytic on a neighborhood of {λ1, . . . , λr} to a
commutative algebra of upper-triangular matrices.

Theorem 1.

(1) (f + g)∗ = f∗ + g∗,
(2) (cf)∗ = cf∗, where c is a constant,
(3) (fg)∗ = f∗g∗ = g∗f∗,
(4) (f/g)∗ = f∗(g∗)−1 = (g∗)−1f∗ if g(z) 6= 0,
(5) (1/g)∗ = (g∗)−1 if g(z) 6= 0.

As an immediate corollary to Theorem 1 we have the following theorem.

Theorem 2. Let J be a single Jordan block with eigenvalue λ. Let f be a rational
function not having a pole at λ, and let p and q be co-prime polynomials such that f = p/q.
Then

f∗(λ) = p(J) [q(J)]
−1

= [q(J)]
−1
p(J).

The next theorem states that a similar results holds for an infinite power series.

Theorem 3. Let J be a single Jordan block with eigenvalues λ. Let f(z) = a0 +a1z+ · · ·
be an infinite power series whose radius of convergence is strictly greater than |λ|. Then

f∗(λ) = a0I + a1J + · · · .

The Jordan canonical form of a square matrix A is given by

V −1AV = diag[J1, . . . , Jm],
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where V is an invertible matrix and the right side denotes the block diagonal matrix with
the diagonal blocks J1, . . . , Jm. Here Ji denotes a single Jordan block with eigenvalues
µi(i = 1, . . . , m). The µi are not necessarily distinct. If f is analytic on a neighborhood of
the eigenvalues {µ1, . . . , µm} of A, then we can define f(A) by

V −1f(A)V = diag[f∗(µ1), . . . , f
∗(µm)].

Theorems 2 and 3 show that f(A) is what we expect if f is either rational or a power series.
As further applications of foregoing theorems, we obtain the following two theorems. The

first one gives a necessary and sufficient condition for equality of f(A) and g(A). The second
one leads us to the Dunford’s integral representation of f(A).

Theorem 4 (Identity theorem). Let λ1, . . . , λr be distinct eigenvalues of a square matrix
A. Let f and g be analytic on a neighborhood of {λ1, . . . , λr}. Then f(A) = g(A) if and
only if

f (i)(λj) = g(i)(λj), i = 0, 1, . . . , mj − 1, j = 1, . . . , r,

where mj denotes the largest order of the Jordan blocks with eigenvalue λj.

Theorem 5 (Dunford’s integral representation of f(A)). Let C be a simple closed curve
that encloses in its interior every eigenvalue of a square matrix A. Let f be analytic on C
and in the interior of C. Then

f(A) =
1

2πi

∫

C
f(t)(tI − A)−1dt,

where the right side means, by definition, the elementwise integration.

Proof. It is sufficient to prove the above equation for a single Jordan block J of order k
with eigenvalue λj . We have

f(J) = f∗(λj) (by Theorems 2 and 3)

=
1

2πi

∫

C
f(t)



























1

t− λj

1

(t− λj)2
· · · 1

(t− λj)k

. . .
...

. . .
1

(t− λj)2

0
. . .

1

t− λj



























dt

=
1

2πi

∫

C
f(t)(tI − J)−1dt.
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PART 10

Problems





Introduction

To best understand linear algebra, one must work problems—the more, the better. Hence,
any material directed toward the learning of linear algebra should include a selection of prob-
lems. This section contains a collection we have accumulated from several submitters, our-
selves, and the problem sections of the American Mathematical Monthly. They are roughly
divided into sections corresponding to those of this volume. The problems vary greatly in
difficulty and subtlety, and we have not attempted to grade this difficulty. However, often
a simple idea will make a seemingly difficult problem transparent. Many problems are also
good exercises for the elementary course.

Most problems are attributed immediately following the statement. If the problem is from
the Monthly and we know of the appearance of a solution, the solution (only) is referenced
as “soln [year, page number(s)].” Other problems from the Monthly are referenced by “prob
[year, page number(s)].” Submitted problems are attributed to the submitter, where possible,
and the few problems not referenced are either unattributable or from the Editors.
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Problems

Partioned Matrix Multiplication

1. Let A be an m × r matrix, B r × n and C n × s. Determine a formula that gives the
number of scalar multiplications in computing AB. Use this result to derive a formula
for the number of scalar multiplications in computing (AB)C and A(BC).

Find the most and least efficient ways of performing the following products. A is 5×14,
B is 14× 87, C is 87× 3, D is 3× 42.

(a) ABC

(b) ABCD.

Gareth Williams
Stetson University

2. Let A, m1-by-n1, and C , m2-by-n1, be given real matrices (any field will do) and let X,
m2-by-n2, be free to be chosen. Discover and prove a formula for the maximum value
of

rank

[

A B
C X

]

,

in which the minimum is taken over all choices of X. Your formula should be in terms
of

rank [A,B] , rank

[

A
C

]

, and rank [A] .

Besides stressing the concept of rank, which is very important for work beyond the
first course, this problem, though challenging, can be done in several ways by entirely
elementary means. In addition, it provides entry to the unsolved problem in which the
unspecified entries are scattered arbitrarily, rather than lying in the block X.

The Editors
CMJ 23 (1992), pp. 299–303

3. Let the rows of B be r1, r2, r3. You want to premultiply B to obtain






r1 + r2

r2 − 2r3

r1 + r3 − 2r2





 .
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What is the premultiplier matrix?

Steve Maurer
Swarthmore College

4. Consider the product ABx, where A and B are square matrices and x is a column
vector. Compare the number of computations to compute the product in the forms
(AB)x and A(Bx).

Steve Maurer
Swarthmore College

Determinants

5. Let an n×n matrix have positive entries along the main diagonal, and negative entries
elsewhere. Assume that it is normalized so that the sum of each column is 1. Prove
that its determinant is greater than 1.

Melvin Hausner
New York University
soln [1964, 447–483]

6. Given an n×n matrix with randomly selected integer elements, what is the probability
that the absolute value of the determinant of the matrix is an odd integer?

Harry Lass
California Institute of Technology
soln [1965, 191]

7. If (b) = [bij] is a real symmetric square matrix with bii = 1, and
∑

j 6=i |bij| ≤ 1 for each
i, then det(b) ≤ 1.

L.A. Shepp
Bell Telephone Laboratories
soln [1966, 1024–1025]

8. Find necessary and sufficient conditions for a k × n matrix (k < n) with integral
elements in order that it be a submatrix of an integral n× n matrix with determinant
1.

Dorembus Leonard
Tel-Aviv University
soln [1969, 300]

9. Let A be a complex n × n matrix, let A be its complex conjugate, and let I be the
n× n identity matrix. Prove that det(I + AA) is real and nonnegative.

D.Z̆. Djoković
University of Waterloo
soln [1976, 483–484]
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10. Let A,B,C,D be n × n matrices such that CD′ = DC ′, where the prime denotes
transpose. Prove

∣

∣

∣

∣

∣

A B
C D

∣

∣

∣

∣

∣

= |AD′ − BC ′| .

Anon, Erewhon-upon-Yarkon
soln [1977, 495–496]

11. Suppose A,B,C,D are n by n matrices and C ′, D′ denote the transposes of C,D. In a
comment on problem 6057 [1987, 1020], M.J. Pelling remarked that the condition

CD′ +DC ′ = 0 (∗)

implies

det

(

A B
C D

)

= det(AD′ +BC ′) (∗∗)

if D is nonsingular, but gave an example with singular D satisfying (∗) in which one
side of (∗∗) is 1 and the other side is −1. Prove that in any case (∗) implies

det

(

A B
C D

)2

= det(AD′ + BC ′)2.

William C. Waterhouse
Pennsylvania State University, State College
soln [1990, 244–250]

12. Let An be the matrix of order (2n − 1)× n whose kth row is the binary expression for
k. Let Mn = AnA

′
n(mod 2). If Mn is regarded as a matrix over the integers, what is its

determinant?

Stephen B. Maurer
Princeton University
soln [1977, 573–574]

13. Let A be the cyclic matrix with (a0, a1, . . . , ap−1) as first row, p a prime. If ai are
integers, show that detA ≡ a0 + a1 + · · ·+ ap−1(mod p).

Ira Gessel
Massachusetts Institute of Technology
soln [1979, 129–130]

14. If m and n are given positive integers and if A and B are m by n matrices with real
entries, prove that (detABT )2 ≤ (detAAT )(detBBT).

S.J. Bernau and Gavin G. Gregory
University of Texas at El Paso
soln [1994, 81]
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15. In elementary linear algebra, two different definitions of the word “adjoint” are used.
The adjoint of a square matrix A with complex entries is either:

(I) the matrix whose (i, j)-entry is the cofactor of aij in A; or,

(II) the complex conjugate of the transpose of A.

Under what conditions on the matrix A will these two definitions yield the same matrix?

Richard Sinkhorn
University of Houston
soln [1993, 881–882]

16. Evaluate the determinant
∣

∣

∣

∣

∣

∣

∣

∣

∣

x x− 1 · · · x− k
x− 1 x · · · x− k + 1
· · · · · ·

x− k x− k + 1 · · · x

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

H.S. Shapiro
Chatham, N.J.
soln [1953, 553]

17. Let A and B be two nth-order determinants, and let C be a third determinant whose
(i, j)th element is the determinant A with its ith column replaced by the jth column
of B. Show that C = An−1B.

James Ax and Lawrence Shepp
Polytechnic Institute of Brooklyn
soln [1958, 288]

Eigenanalysis

18. Let A = (aij) be an m by n matrix whose entries are elements of an ordered set
(S,≥)[sic]. Suppose A is column ordered—that is a1j ≥ a2j ≥ · · · ≥ amj for each
j = 1, 2, · · · , n. Obtain a row ordered matrix A′ by arranging the entries of each row
of A so that a′i1 ≥ a′12 · · · ≥ a′in for each i = 1, 2, · · · , m. Is A′ column ordered?

R.W. Cottle
University of California
soln [1963, 212–213]

19. A square matrix M of order n has the properties that aii = 1 and aikakj = aij for all
i, j, k. What are the characteristic values of M?

F.D. Parker
State University of New York
soln [1965, 321–322]
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20. Show that if A and B are nonnegative definite Hermitian matrices of order n, the
characteristic roots of AB are real and nonnegative.

J.T. Fleck and Carl Evans
Cornell Aeronautics Laboratory
soln [1966, 791–792]

21. Suppose a11, · · · , a1n are given integers whose greatest common divisor is 1, and suppose
n ≥ 2. Is it always possible to find a matrix (aij) with the given integers in the first
row and all aij integers such that det(aij) = 1?

B.R. Toskey
Seattle University
soln [1968, 81]

22. Let Ann be a real, symmetric, positive semi-definite matrix. Let Apn be the matrix
obtained from Ann by omitting the last n − p rows, and App be obtained by omitting
the last n− p columns of Apn. Prove that rank App = rank Apn.

F.D. Faulkner
U.S. Naval Postgraduate School
soln [1967, 877–878]

23. If A is a normal matrix (i.e., A commutes with its conjugate transpose), then the
characteristic roots of A form a symmetric set with respect to the origin in the complex
plane (i.e. if Z is a characteristic root of multiplicity r then −Z is a characteristic root
of multiplicity r) if and only if the trace (A2k+1) = 0 for k = 0, 1, 2, · · · .

C.M. Petty and W.E. Johnson
Lockheed Aerospace Sciences Laboratory
soln [1968, 205–206]

24. It is well known that each characteristic vector for a nonsingular n×n matrix A is also
a characteristic vector for the matrix adj A of (transposed) cofactors of elements of A.
Prove that this is true for singular A also.

D.E. Crabtree
Amherst College
soln [1968, 1127–1128]

25. Suppose all three matrices, A,B,A+B have rank 1. Prove that either all the rows of
A and B are multiples of one and the same row vector v or else all the columns of A
and B are multiples of one and the same column vector w.

Peter Ungar
New York University
soln [1982, 133]
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26. An n× n complex matrix A = [aij] is cross-diagonal if aij = 0 whenever i+ j 6= n+ 1.
Find the condition that the eigenvectors of A span Cn, the entire n-vector space.

H. Kestelman
University College, London
soln [1986, 566]

27. A and B are n×n matrices and both have only positive eigenvalues; can AB have only
negative eigenvalues? How is the result affected if A,B are both Hermitian?

H. Kestelman
University of College, London
soln [1984, 587–588]

28. (a) For what positive integers n does there exist an n by n matrix A over C having
the following three properties:

(i) n2 − n of the entries are zero,

(ii) there are n distinct nonzero entries r1, r2, . . . , rn, none of which lies on the
main diagonal,

(iii) the eigenvalues of A are r1, r2, . . . , rn?

(b) Same as (a) except that all the entries are required to be real.

Bruce A. Reznick and Lee A. Rubel
University of Illinois, Urbana
soln [1989, 532]

29. Let A be a matrix (not necessarily square) of rank r ≥ 1 with nonnegative elements.
Let A∗ denote the transpose of A. Prove that the square matrix AA∗ has no eigenvalue
different from 0,1 if and only if, after deleting all identically vanishing rows and columns,
the remaining submatrix of A can be brought by a permutation of the rows and a
permutation of the columns to the form

(1) B = B1 + · · ·+Br,

where, for each i, Bi is a rectangular matrix of rank 1, with all its elements positive
and such that the sum of squares of all elements of Bi is 1. Equation (1) means that B
is obtained by laying out successively the rectangular blocks B1, · · · , Br with the lower
right corner of Bi attached to the upper left corner of Bi+1 and with zeros filling in the
entire matrix outside these blocks.

Ky Fan
Wayne State Uniersity
soln [1961, 1011–1012]

30. For a timed paper and pencil test on eigentheory, it is only fair that the eigenvalues
and eigenvectors should be simple but unguessable. What’s a good way for a professor
to create matrices A with this property? (Trial and error is not a good way—try it.)
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Use your method to create a simple 2 × 2 matrix with small-integer but unguessable
eigenvalues and eigenvectors.

Steve Maurer
Swarthmore College

Geometry

31. The norm ‖A‖ of a real 2 × 2 matrix A is by definition the maximum of ‖Ax̂‖ when
x̂‖ = 1; if ‖x‖ is the euclidean norm (xTx)1/2, then ‖A‖ < ‖|A|‖ where |A| is the
matrix whose elements are the absolute magnitudes of those of A. Find necessary and
sufficient conditions on an invertible 2× 2 matrix N in order that ‖A‖ < ‖|A|‖ for all
A when ‖x‖ is defined as the euclidean norm of Nx.

(One tends to use the inequality ‖A‖ < ‖|A|‖ automatically in matrix analysis and
might “naturally” assume it, when ‖x‖ is the euclidean norm of Nx, for all N .)

H. Kestelman
University College, London
soln [1981, 831]

32. Let A be a nonnegative irreducible n × n matrix with Perron root r. Show that there
exists a constant k > 0 such that

∥

∥

∥(tI − A)−1
∥

∥

∥ ≤ K

t− r for all t > r.

Here I denotes the identity matrix and ‖ ‖ is the operator norm induced by the Eu-
clidean norm x→ (xTx)1/2. Find the best value of the constant K.

Emeric Deutsch
Polytechnic Institute of New York
soln [1983, 214–215]

33. Given that the sequence A,A2, A3, . . . converges to a nonzero matrix A∞, show that
A∞ = V (WV )−1W where V is any matrix whose columns are a basis of the right kernel
of A− I , and W is any one whose rows are a basis of the left kernel of A− I .
H. Kestelman
University College, London
soln[1983, 485]

34. Given a positive integer n, letM denote the set of n by nmatrices with complex entries.
If A ∈ M , let A∗ denote the conjugate transpose of A. Prove that for each positive
integer k and each B ∈M there exists a unique A ∈M such that A(A∗A)k = B.

Bjorn Poonen
Winchester, MA
soln [1991, 763]
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35. Let k and n be integers with 0 < k < n, and let A be a real n by n orthogonal matrix
with determinant 1. Let B be the upper left k by k submatrix of A, and let C be the
lower right (n− k) by (n− k) submatrix of A.

(a) Show that det(B) = det(C).

(b) Give a geometrical interpretation.

(c) Generalize to the case in which A is a unitary matrix.

M. Al-Ahmar
Al-Fateh University, Tripoli, Libya
prob 10279 [1993, 76]

36. A square n × n matrix A = (aik) with complex numbers as elements is called normal
if AA∗ = A∗A, where A∗ is the transposed and complex conjugate of A. A matrix A is
called nilpotent if for some integer r ≥ 1 the matrix Ar is the zero matrix 0. Prove (by
rational methods only) that a normal and nilpotent matrix is the zero matrix.

Olga Taussky
National Bureau of Standards
soln [1958, 49]

37. A square matrix B is called normal if its elements are in the complex field and if
it commutes with its transposed conjugate matrix B∗ (i.e., if BB∗ = B∗B); more
generally, call a given n×n matrix A m-normal if A can be imbedded, as leading n×n
submatrix, in some normal m ×m matrix B. Find the greatest value of n for which
every (complex) n× n matrix is (n+ 1)-normal, and show that every square matrix is
m-normal for all sufficiently large m.

What are the corresponding results when A,B are restricted to be real?

M.P. Drazin
RIAS, Baltimore, MD
soln [1060, 383–385]

Matrix Forms

38. F is a field of characteristic γ(γ 6= 0); T is a p × p nonsingular matrix over F . Prove
that the only matrix of the form λT (λ ∈ F ) similar to T is T itself.

Ih-Ching Hus
Fordham University
soln [1969, 418–419]

39. Two matrices A and B are permutation equivalent if B can be obtained from A by first
permuting the rows of A and then permuting the columns of the resulting matrix.
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Call an n × n matrix of zeros and ones a k − k matrix if there are precisely k ones
in each row and in each column. Show that if n ≤ 5, then every k − k matrix is
permutation equivalent to its transpose, but that this is no longer true if n ≥ 6.

Morris Newman and Charles Johnson
National Bureau of Standards
soln [1976, 201–204]

40. Given a complex square matrix A, show that there exists a unitary matrix U such that
U has all diagonal entries equal. If A is real, U can be taken real orthogonal.

H.S. Witsenhausen
Bell Laboratories, Murray Hill, NJ
soln [1980, 62–63]

41. Let M be a 3 by 3 matrix with entries in a field F . Prove that M is similar over the
field to precisely one of these three types:







a 0 0
0 a 0
0 0 a













b 0 0
1 c 0
0 0 c













d 1 0
e 0 1
f 0 0





 (a, b, c, d, e, f ∈ F ).

Type I Type II Type III

F.S. Cater
Portland State University
soln [1987, 881–882]

42. Let A be a partitioned real matrix with submatrices Aij, i, j = 1, 2, . . . , k. Let B be
the k × k matrix with elements bij given as follows: bij is the algebraic sum of all of
the elements in the Aij submatrix. Show that if A is symmetric positive definite, then
B is symmetric positive definite.

William N. Anderson, Jr., and George E. Trapp
Fairleigh Dickinson University and West Virginia University
soln [1988, 261–262]

43. Prove that the product of two skew-symmetric matrices of order 2N has no simple
eigenvalues.

M. Lutzky
Silver Spring, MD

44. In a 6× 7 reduced echelon matrix with five pivotal 1’s, at most how many entries are
nonzero? How about in an m× n echelon matrix with p pivots?

45. In a 6 × 7 echelon matrix with five pivotal entries, at most how many entries are
nonzero? How about an m× n echelon matrix with p piviots?

46. Give an example of a 3× 3 lower triangular echelon matrix.
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Matrix Equations

47. If A,B are invertible matrices of the same dimension, it is not always possible to solve
XY = A, Y X = B for X, Y ; A and B must be similar, since X−1AX = B. Under
what conditions on invertible A,B,C can one solve XY = A, Y Z = B,ZX = C for
X, Y, Z?

J.L. Brenner
Stanford Research Institute
soln [1962, 166–167]

48. Let m and n be positive integers. What pairs of matrices C and D, over any field K,
have the property that if A is an m× n matrix over K and B is an n×m matrix over
K such that AB = C then BA = D?

William P. Wardlaw
U.S. Naval Academy
soln [1981, 154]

49. Suppose A,B, and C are matrices of size m by n, m by m, and n by m respectively
and suppose CA is equal to the n by n identity matrix. Give a necessary and sufficient

condition for the block matrix M =

(

A B
0 C

)

to be invertible and find an expression

for M−1 when this condition holds.

Lawrence A. Harris
University of Kentucky
soln [1992, 60]

50. Let C be an n× n matrix such that whenever C = AB then C = BA. What is C?

Harley Flanders
University of California
soln [1954, 470]

51. Let A,B,X denote n × n matrices. Show that a sufficient condition for the existence
of at least one solution X of the matrix equation

X2 − 2AX +B = 0

is that the eigenvalues of the 2n × 2n matrix

R =

[

A I
A2 − B A

]

be pairwise distinct. Here I denotes the n× n identity matrix.

Peter Treuenfels
Brookhaven National Laboratory
soln [1059, 145–146]
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Linear Systems, Inverses and Rank

52. Let A and B be arbitrary matrices of dimensions m× n and n×m respectively. Does
the existence of [Im + AB]−1 imply the existence of [In +BA]−1, where Im and In are
the identity matrices of dimension m and n respectively? If so, determine the latter in
terms of the former. If not, give a counterexample.

Henry Cox and David Taylor
Model Basin, Washington, DC
soln [1966, 543–544]

53. Let aij be nonnegative real numbers such that (a) aii = 1, (b) aijaji < 1, and (c) aijajk ≤
aik for all i, j with 1 ≤ i, j ≤ n, and i 6= j.

Show that the matrix [aij] has a positive determinant for n = 3. This is obviously
true for n = 1, 2; can you establish this result for n > 3? At least show that [aij] is
non-singular for all n.

J.C. Nichols and (independently) J.A. Huckaba
Monmouth College and University of Missouri
soln [1970, 530–531]

54. Show that the square matrix M = (mij) is nonsingular if it satisfies the following
conditions:

(i) mii 6= 0 for all i;

(ii) if i 6= j and mij 6= 0, then mji = 0;

(iii) if mij 6= 0 and mjk 6= 0, then mik 6= 0.

R.D. Whittekin
Metropolitan State College
soln [1975, 938–939]

55. If Q1, Q2, Q3, Q4 are square matrices of order n with elements in a field F and the

matrix
[

Q1 Q3

Q2 Q4

]

of order 2n is invertible, are there scalars α1, α2, α3, α4 in F so that

U = α1Q1 + α2Q2 + α3Q3 + α4Q4 is invertible?

Robert Hartwig
North Carolina State University
soln [1983, 120]

56. Suppose A and B are n by n matrices and suppose there exists a nonzero vector x such
that Ax = 0 and a vector y such that Ay = Bx. If Ai is the matrix obtained from A
by replacing its ith column by the ith column of B, show that

n
∑

i=1

detAi = 0.

Tim Sauer
George Mason University
soln [1990, 245–246]
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Problems 57–72 submitted by Steve Maurer, Swarthmore College

57. Suppose Gaussian elimination reduces A to

R =







1 2 0 −3
0 0 1 1
0 0 0 0





 .

a) Name all solutions to Ax = 0.

b) But you were never told the entries of A! What theorem justifies your answer to
part a?

c) Suppose further that Gaussian elimination required no row switches to reach R. Find
a vector b such that Ax = b has no solutions. Caution: If all you show about your
b is that Rx = b has no solutions, you are done.

58. Every real number except 0 has a multiplicative inverse. Does every square matrix that
is not all 0’s have an inverse? Does every square matrix that has no 0 entries have an
inverse?

59. Let A be n × n. How much work does it take to solve Ax = b by first finding A−1

and then premultiplying b by it? How much more work is this than doing Gaussian
elimination? (Computing A−1 by Gaussian elimination takes approximately n3 steps.)

60. Your boss gives you a huge square matrix A and tells you to solve Ax = b. Just as you
are about to start, your fairy godmother arrives and hands you A−1 on a silver platter.
To solve the problem most efficiently, what should you do?

61. Repeat the previous problem, but this time it so happens that yesterday you solved
Ax = c by the LU method and you’ve saved the L and U matrix. Now what should
you do?

62. It is often stated as a theorem that

(AB)−1 = B−1A−1.

This equality is misleading because it suggests a bi-implication—that the existence of
both inverses on the right implies the existence of the inverse on the left and vice versa.
However, vice versa is false: A and B don’t even have to be square (hence certainly
not invertible) and yet AB can be square and invertible.

a) Construct a specific example confirming the previous sentence.

b) Prove: If AB is invertible and A is square, then both A and B are invertible and
(AB)−1 = B−1A−1.

63. The usual definition of A being invertible is that there exists a matrix A−1 such that
AA−1 = A−1A = I . From this it follows trivially that a nonsquare matrix A can’t have
an inverse, because A−1A and AA−1 wouldn’t even have the same shape, let alone be
equal. What if we change the definition of inverse and ask only that A−1A and AA−1

both be identity matrices, maybe with different sizes? Prove or disprove: Now some
nonsquare matrices have inverses.
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64. Prove: If A is square and has a right inverse, then it has an inverse. (Hint: What
conclusion does the hypothesis force concerning the reduced echelon form of A?)

65. Prove or disprove: Let u,v,w be vectors in some space V . If the sets {u,v} , {u,w},
and {v,w} are each independent, then the single set {u,v,w} is independent.

66. If a matrix A has a unique right inverse, then A′ is invertible.

67. Suppose A and B = [B1|B2] are both matrices with m rows and independent columns.
Prove that this matix has independent columns.

[

A B1 0
A 0 B2

]

.

68. Consider the matrix equation
Ax = b (1)

and the single linear (dot product) equation

c · x = d. (2)

Suppose (1) =⇒ (2) in the logical sense that any vector x that satisfies (1) satisfies (2).
Prove that the implication can be proved algebraically by simply summing the right
linear combination of the rows of (1). In other words, there is a row vector v such that

vA = c and vb = d.

Put another way, for linear equations “logically implies” is no stronger than “implies
by linear calculations.”

69. An inconsistent system Ax = b has 13 equations and 17 unknowns. What is the largest
possible rank of A? Explain briefly.

70. Three sets of variables are related as follows:

y1 = −x1 + 2x2,
y2 = x1 − x2,

z1 = 2y1 + 3y2,
z2 = y1 − 4y2.

Use matrix operations to obtain formulas for the z’s in terms of the x’s.

71. Correct the wording in the following statements.

a) A basis of a matrix is the columns with pivots.

b) (1,0) and (0,1) are the span of R2.

c)

[

1 2 1
3 6 2

]

=

[

1 2 1
0 0 −1

]

, so the matrix has no solutions.

72. The matrix equation Ax = 0 represents the intersection of four planes in R3 and this
intersection is a line. What is the rank of matrix A and what is its nullity?
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73. Instructions: Please work with a partner and turn in a solution paper. Part (a) is easy
but you may need to think some how to answer part (b). Discuss this with your partner
until you figure out a method, and then use MATLAB to do any necessary calculations.

Briefly but clearly explain your method for each part and why it works. No credit
will be given unless the method is valid and justified correctly. Be sure you both agree
that the explanations you submit are clear and correct. Your solution paper should
also include the results of any calculations you do.

Use the following matrices:

A =















18 −13 −4 −2
12 −21 −11 8
−34 5 3 34

22 −9 −2 −32
−24 −8 2 4















B =















−1 −1 −3 3 −3
0 −6 4 5 0
5 0 6 −3 1
−5 1 −5 3 −1

0 2 2 0 0















a) Show that Col A and Col B have the same dimension.

b) Determine whether or not Col A and Col B are the same subspace of R5.

(Remarks: This is a nontrivial question. For example, if two subspaces of R5 each have
dimension 1, we could visualize each as a line through the origin, but they might not
be the same line. If each has dimension 2, they look like planes through the origin, but
they might not be the same plane. If each has dimension 3, each looks like R3—but
they might not be the same sets, etc. Your job here is to figure out a way to decide if
two subspaces of R5, of the same dimension, are actually the same set of vectors, and
apply that method to the subspaces Col A and Col B.)

Jane Day
San Jose State University

74. Compute the reduced echelon forms of a number of 3× 3 matrices entered at random.
Why do you get these reduced echelon forms? How can you get another type of reduced
echelon form?

Gareth Williams
Stetson University

Applications

75. An n × n array (matrix) of nonnegative integers has the property that for any zero
entry, the sum of the row plus the sum of the column containing that entry is at least
n. Show that the sum of all elements of the array is at least n2/2.

S.W. Golomb and A.W. Hales
California Institute of Technology and King’s College, Cambridge, England
soln [1963,1006]
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76. Let A = (aij) be a real n × n matrix with aij ≥ 0, 1 ≤ i, j ≤ n. Prove that r(A) ≤
r
[

1
2
(A + AT )

]

, where r(C) denotes the spectral radius of a matrix C .

B.W. Levinger
Case Western Reserve University
soln [1970, 777–778]

77. Prove or disprove: If A = (aij) is a nonsingular n×n complex matrix, if also A−1 = (bij),
and each aij and bij is nonzero, then the matrices of reciprocals (a−1

ij ) and (b−1
ij ) are

singular or nonsingular together. H. Flanders [American Mathematical Monthly (1966),
270–272] proved this for n = 3.

P.M. Gibson
University of Alabama at Huntsville
soln [1971, 405–406]

78. Find all positive semi-definite Hermitian matrices A = (aij) with the property that the
matrix of reciprocals (1/aij) is also positive semi-definite.

Gérard Letac
Université de Clermont, France
soln [1975, 80–81]

79. Let A = (aij) be a real square matrix such that aij > 0 for i 6= j. Show that all entries
of eA are positive.

Melvin Hausner
Courant Institute, New York University

Problems 80–83 submitted by Steve Maurer, Swarthmore

80. The LU factorization of a certain matrix A is






2 0 1
1 1 −1
2 3 3





 .

a) What is the solution to

Ax =







4
1
5





?

b) What is A?

81. Two planes fly along straight lines. At time t plane 1 is at (75, 50, 25) + t(5, 10, 1) and
plane 2 is at (60, 80, 34) + t(10, 5,−1).

a) Do the planes collide?

b) Do their flight paths intersect?
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82. Suppose that the center of a sphere S having radius 3 units is moving at constant
velocity through space along a line that passes through the point P0 = (2, 2, 2), and is
parallel to the vector (1,−2, 2). If the center of the sphere is at P0 at a certain time,
and the sphere collides with the plane T , having the equation x − 2y + 2z = 15, two
seconds later, then:

a) What is the direction of motion of S?

b) What point of T is hit by S?

c) With what velocity was S moving prior to the collision?

d) What is the equation of motion of the ball after the collision? (Assume that the
collision occurs at time t = 0 seconds, the angle of incidence equals the angle of
reflection, the sphere’s center moves in the same plane before and after the collision,
and the velocity is the same both before and after. Give a formula for the position
of the sphere’s center t seconds after the collision.)

(Parts a–c of this problem appeared on the final exam at the University of Waterloo in
1973; part d is an addition.)

83. (Simpson’s Rule in calculus) This problem shows how it is easy, using linear algebra
concepts, to see that there must be an integration method like Simpson’s and also easy
to find the specific constants. (Similar reasoning leads to other Simpson-like methods
as well.)

Let Pn be the vector space of polynomials of degree at most n. Let a0, a1, a2 be three
distinct real numbers.

a) Show that for any triple (y0, y2, y2) there is a unique p ∈ P2 such that p(a0) =
y0, p(a1) = y1 and p(a2) = y2. Show that the function T that maps each triple to
its polynomial is linear. [Hint: T = E−1, where E : P2 → R3 is the evaluation map
E(p) = (p(a0), p(a1), p(a2)).] Show that E is linear and invertible.

b) Show that the integration map S(f) =
∫ a2

a0

f(x)dx is a linear transformation from

any space of continuous functions (e.g., P2).

c) Why must the composition SE1 : R3 → R have a formula of the form
SE−1(y0, y1, y2) = c0y0 + c1y1 + c2y2?

d) We want to evaluate the integral S(f). If our evaluation is exact for p ∈ P2, it is likely
to be close for most continuous functions, so long as the interval [a0, a2] is small. Use
the fact that S = (SE−1)E to show that for p ∈ P2

∫ a2

a0

p(x)dx = c0p(a0) + c1p(a1) + c2p(a2) (1)

for the same constants c0, c1, c2 as in part c. In other words, there has to be a
Simpson-like rule for evaluating integrals.
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e) Find c0, c1, c2 if a1 = a0 + h and a2 = a1 + h. It turns out the c’s depend only on
h, not on the a’s. Since equation (1) holds for all p ∈ P2, it suffices to plug in p’s
for which both sides are simple. Suggestion: Use p1(x) = 1, p2(x) = x − a1, and
p3(x) = [(x− a1)/h]

2.

f) Derive Simpson’s Rule; you must merely string together a number of intervals of the
form in part (e).

g) For any vector space V of continuous functions on interval [a, b], show that
∫ b

a
f(x)dx =

∑

cip(ai) is true for all f ∈ V if and only if it is true for a basis

of V . Consequently, prove that equation (1) is true for all p ∈ P3 (not just P2) for the
specific a’s and c’s in part (e) by checking equation (1) for exactly one more function.

84. Suppose a student’s social security number is abc − de − fghi. I can take the digits
a, b, c, d, e, f, g, h, i and 1, 2, 3, 4, 5, 6, 7 and form the matrix

A =











a b c d
e f g h
i 1 2 3
4 5 6 7











.

Do this for your own social security number, to form your own special matrix.

As the instructor, with MATLAB, I save all the students’ special matrices, which I
can pull up for extra-credit quizzes during the semester. I might ask the students to
find the row reduced echelon form of their matrix, LU factorization, QR factorization,
inverse if it exists (there is a high probability it does exist), determinant, the largest
eigenvalue and the corresponding eigenvector, and so on.

I give such exercises as extra credit: +5 points if correct; −5 points if there is a
single error; no partial credit. They have the option of doing all, some, or none. Few
students have MATLAB, they have to work through the details carefully and I ask
for exact answers whenever I can. These extra credit problems both generate interest
among students (for the extra credit) and cause them to think about being careful in
their work.

Jim Weaver
University of North Florida

85. An economy of two industries has the following I/O matrix A and demand matrix D.
Apply the Leontief model to this situation. Why does it work? Explain the situation
from both a mathematical and a practical viewpoint. Extend your results to the general
model.

A =

[

.08 .06

.02 .04

]

, D =

[

20
32

]

Gareth Williams
Stetson University
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86. Markov chain models for predicting future population distributions are standard appli-
cations in linear algebra courses. The following questions are interesting and are not
usually given.

Annual population movement between U.S. cities and suburbs in 1985 is described
by the following stochastic matrix P . The population distribution in 1985 is given by
the matrix X, in units of one million.

(from)
City Suburb (to)

P =

[

0.96 0.01
0.04 0.99

]

City
Suburb

X =

[

60
125

]

City
Suburb

a) Determine the population distributions for 1980 to 1985—prior to 1985. Is the chain
going from 1985 to the present a Markov chain? What are the characteristics of the
matrix that takes one from distribution to distribution? Give a physical reason for
these characteristics.

b) Interchange the columns of P to get a stochastic matrix Q. Compare the Markov
chains for stochastic matrices P and Q. Which model is most realistic?

Gareth Williams
Stetson University

Hermitian Matrices

87. Let m ≥ n and let A be a complexm×n matrix of rank n. Let A∗ denote the conjugate
transpose of A. Then the Gram matrix G = A∗A is a positive definite Hermitian n×n
matrix. Show that the Hermitian matrixB = Im−AG−1A∗ is nonnegative if Im denotes
the m×m unit matrix.

Hans Schwerdtfeger
McGill University
soln [1963, 902]

88. It is well known that for any square matrix A with complex elements, there is a unique
decomposition A = B + C , where B = (A + A∗)/2 is Hermitian (and has all roots
along the real axis) and C = (A−A∗)/2 is skew-Hermitian (and has all roots along the
imaginary axis). Given any two distinct lines through the origin in the complex plane,
prove an analogous result for a unique decomposition of A into two “Hermitian-like”
matrices, each with roots along one of the two lines.

David Carlson
Oregon State University
soln [1965, 325]
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89. Let

X =









X11 · · · X1n
...

...
Xn1 · · · Xnn









denote the Hermitian, positive definite matrix, where each block of the partitioning is
m×m, and define

Y =









Y11 · · · Y1n
...

...
Yn1 Ynn









=









X11 · · · X1n
...

...
Xn1 Xnn









= X−1

with corresponding partitions. Prove that
(

∑n
r,t=1 Yrt

)−1
is Hermitian, positive definite.

H.J. Thiebaux
Boulder, Colorado
soln [1976, 388]

90. Let A and B be nonnegative definite Hermitian matrices such that A − B is also
nonnegative definite. Show that tr(A2) ≥ tr(B2).

Götz Trenkler
University of Dortmund, Germany
prob 10234 [1992, 571]

91. Let A be an n-square Hermitian matrix whose characteristic roots are the diagonal
elements Aii, i = 1, · · · , n. Prove that A is diagonal.

M.D. Marcus and N. Moyls
University of British Columbia
soln [1956, 124]

92. Show that a matrix which is similar to a real diagonal matrix is the product of two
Hermitian matrices one of which is positive definite. (The converse is known.)

Olga Taussky
California Institute of Technology
soln [1960, 192–193]

93. Let A,B be two positive definite Hermitian matrices which can be transformed simul-
taneously by unitary transformation to diagonal forms of similarly ordered numbers.
Let x be any vector of complex numbers. Show that (Ax, x)(Bx, x) ≤ (ABx, x)(x, x),
and discuss the case of equality. Two sets of n positive numbers, {ai} , {bi} are called
similarly ordered if (ai − ak)(bi − bk) ≥ 0 for all i, k = 1, · · · , n.

Olga Taussky
California Institute of Technology
soln [1961, 185-186]
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Magic Squares

94. Prove that the matrix product of any two third-order magic squares is a doubly sym-
metric matrix. A magic square is defined as a square array of n2 elements with the
property that the sum of the elements of any line (both diagonals included) is a con-
stant; double symmetry is defined as symmetry in both diagonals.

G.P. Sturm
Oklahoma State University
soln [1962, 65]

95. Let A be a row semi-magic square and let Aj denote the matrix obtained by replacing
the jth column of A by a column of 1’s. Show that det(Aj) is independent of j.

Milton Legg
University of Minnesota
soln [1967, 200]

96. Let A be a 3 by 3 magic matrix with real elements; i.e., there is a nonzero real number
s such that each row of A sums to s, each column of A sums to s, the main diagonal
of A sums to s, and the counter-diagonal of A sums to s.

(a) Show that if A is also nonsingular, then A−1 is magic.

(b) Show that A has the form






s/3 + u s/3− u+ v s/3− v
s/3− u− v s/3 s/3 + u+ v
s/3 + v s/3 + u− v s/3− u





 ,

where u and v are arbitrary, and nonsingular if and only if v2 6= u2.

William P. Wardlaw
U.S. Naval Academy, Annapolis, MD
soln [1992, 966]

97. A magic matrix is one whose elements are the numbers of a magic square, i.e., every
row, column, and diagonal has the same sum. (a) Show that a 3 by 3 magic matrix
inverts into a magic matrix. (b) Can this result be extended to magic matrices of higher
order?

Charles Fox
McGill University
soln [1957, 599]

98. Show that a semi-magic matrix A (the sums of the rows and columns are all equal) can
be decomposed into a sum B + C such that for integral K,

(B + C)K = BK + CK.

F.D. Parker
University of Alaska
soln [1960, 703]
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Special Matrices

99. Find the most general square root of the 3 × 3 identity matrix if the elements are to
be (a) integers, (b) any real numbers, (c) complex numbers.

George Grossman
Board of Education, New York
soln [1969, 303]

100. Let A be an n × n matrix with entries zero and one, such that each row and each
column contains precisely k ones. A generalized diagonal of A is a set of n elements of
A such that no two elements appear in the same row or the same column. Show that
A has at least k pairwise disjoint generalized diagonals, each of which consists entirely
of ones.

E.T.H. Wang
University of Waterloo, Canada
soln [1973, 945–946]

101. Find all matrices A such that both A and A−1 have all elements real and nonnegative.

H. Kestelman
University College, London, England
soln [1973, 1059–1060]

102. Characterize all n×n complex matricesA for which the relation per(AX)=per(A)per(X)
holds for every complex n × n matrix X. (Here per(B) denotes the permanent of B.)
Does the same characterization hold when the complex field is replaced by an arbitrary
field?

Ko-Wei Lih
Academia Sinica, Taiwan
soln [1982, 605–606]

103. A square matrix of order n, n ≥ 2, is said to be “good” if it is symmetric, invertible,
and all its entries are positive. What is the largest possible number of zero entries in
the inverse of a “good” matrix?

Miroslav D. Asic̆
London School of Economics
soln [1986, 401–402]

104. Let S be an m by m matrix over C. It is well known that S2 = S and trace(S) = 0
imply that S is the zero matrix. For which positive integers n > 2 and m > 1 does the
pair of conditions Sn = S and trace(S) = 0 imply that S is the zero matrix?

David K. Cohoon
Temple University
soln [1989, 448–449]

105. (a) Prove that a (square) matrix over a field F is singular if and only if it is a product
of nilpotent matrices.
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(b) If F = C, prove that the number of nilpotent factors can be bounded independently
of the size of the matrix.

Daniel Goffinet
St. Étienne, France
soln [1993, 807–809]

106. Suppose that A is an n by n matrix with rational entries whose multiplicative order is
15; i.e. A15 = I , an identity matrix, but Ak 6= I for 0 < k < 15. For which n can one
conclude from this that

I + A + A2 + · · · + A14 = 0?

William P. Wardlaw
United States Naval Academy, Annapolis, MD
prob 10318 [1993, 590]

107. Let S1, S2, . . . , Sk be a list of all non-empty subsets of {1, 2, . . . , n}. Thus k = 2n − 1.
Let aij = 0 if Si ∩ Sj = φ and aij = 1 otherwise. Show that the matrix A = (aij) is
non-singular.

Anthony J. Quinzi
Temple University
soln [1979, 308]

Stochastic Matrices

108. Show that every normal stochastic matrix is necessarily doubly stochastic.

Richard Sinkhorn
University of Houston
soln [1971, 547]

109. A square matrix is doubly-stochastic if its entries are non-negative and if every row sum
and every column sum is one. Show that every doubly-stochastic matrix (other than
the one with all entries equal) contains a 2× 2 submatrix

(

a b
c d

)

such that either min(a, d) > max(b, c) or max(a, d) < min(b, c).

Franz Hering
University of Washington
soln [1973, 200]

110. Let A be a row stochastic matrix such that ‖A‖ = 1, ‖ ‖ being the operator norm
induced by the Euclidean vector norm. Show that A is doubly stochastic.

Emeric Deutsch
Polytechnic Institute of New York
soln [1983, 409–410]
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Trace

111. For square matrices of order n, prove that any matrix M : (1) has zero trace if MQ =
−QM , where Q is some nonsingular matrix, (2) can be written as a matrix of zero
trace plus a multiple of the identity.

R.G. Winter
Pennsylvania State University
soln [1962, 436–437]

112. If A is a 3× 3 involutoric matrix (A2 = 1) with no zero elements, prove that the trace
of A is +1 or −1.

R.E. Mikhel
Ball State Teachers College
soln [1964, 436]

113. Let A be an n× n matrix, A2 = I , the identity, and A 6= ±I . Show

(1) Tr(A) ≡ n(mod 2), (2) |Tr(A)| ≤ n− 2,

where Tr(A) is the trace of A.

H.A. Smith
Institute for Defense Analysis
soln [1967, 1277–78]

114. Let ak =
∑n

i=1(xi)
k, k = 1, 2, · · · . Show that ak(k = n+ 1, n + 2, · · · ) can be expressed

as a polynomial in a1, a2, · · · , an. Stated differently, show that the traces of the higher
powers of an n× n matrix can be expressed as polynomials in the traces of the first n
powers.

P.J. Schweitzer
Institute for Defense Analyses
soln [1968, 800]

Other Topics

115. Let V and W be two vector spaces over the same field. Suppose f and g are two linear
transformations V → W such that for every x ∈ V, g(x) is a scalar multiple (depending
on x) of f(x). Prove that g is a scalar multiple of f .

Edward T.H. Wang and Roy Westwick
Wilfri Laurier University and University of British Columbia
soln [1981, 348–349]
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Problems 116-121, 123 submitted by Steve Maurer, Swarthmore

116. If the point of the definition of Span(S) is to augment S just enough to get a vector
space, why don’t we define Span (S) to be

{cv|c ∈ R,v ∈ S} ∪ {u + v|u,v ∈ S}?

If that’s no good, why not

{cu + dv|c, d ∈ R,u,v ∈ S}?

117. Devise and justify an algorithm for determining whether the span of one set of vectors
is contained in the span of another.

118. Call a set {v1, . . . ,vk} ⊂ Rn strongly dependent if there exists some set of constants,
none 0, so that

∑k
i=0 civi = 0.

a) How does strong dependence differ from dependence?

b) Prove that if S = {v1, . . . ,vk} is strongly dependent, then every vi ∈ S depends on
S − {vi}.
c) Is the converse of part b true? (Give a proof or counterexample.)

I made up this definition of strong dependence. It doesn’t have much use except to
help you understand (ordinary) dependence better.

119. Suppose v1,v2, . . . ,vk are in vector space V . State what is meant for {v1, . . . ,vk} to
be a basis of V

a) using the words “span” and “independent”;

b) using instead the phrase “linear combination.”

120. Name specific vectors u,v, and w in R2 that satisfy all the following conditions:

a) they are independent;

b) u and v are independent;

c) v does not depend on u and w.

121. All of the following statements are incorrect because mathematical words are abused
(not because the intended meanings are wrong). Correct each statement by changing
or adding a few words or by restating the whole sentence.

a) A matrix A is invertible if it has unique solutions.

b) Every basis of a vector space V has the same dimension.

c) Vectors u,v are orthogonal complements if uT v = 0.

d) To get a matrix A with R(A) = V , let the rows of A be the span of V .

e) A nontrivial linear combination of vectors is independent if it does not equal 0.

f) The number of vectors in R(A) is the number of free variables of A.

g) An independent set {v1, v2, . . . , vn} is the dimension of V if it is the span.
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122. Give an example of a subset of R3 that is

a) closed under addition, but not closed under scalar multiplication;

b) closed under scalar multiplication, but not closed under addition.

Such examples illustrate the independence of these two conditons.

Gareth Williams
Stetson University

123. Consider a set of k vectors in Rn and ask the following three questions: Are they
linearly independent? Do they span Rn? Do they form a basis? The answers can be
listed in a table as shown.

k < n k = n k > n
Indep Probably yes Yes or no Never
Basis Never Yes or no Never
Span Never Yes or no Probably yes

The “never” answers are clear. The “probably yes” answers are illustrated geometrically
in low dimensions. (Students really love this “probably” in an otherwise very dry and
abstract course.) The point about the “yes or no” is that the answer is the same to all
three questions.
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