Proof of Fact 1. Looking at right triangle BDE, we have $DE = (BD) \tan \alpha$, where $\alpha = \angle DBE$, or

$$x = (1 - y) \tan \alpha.$$

From triangle ACB and the law of sines, we have

$$\sin(\theta + \alpha) = \frac{y + 2r}{2r} \sin \theta,$$

so that $\alpha = \sin^{-1} \left(\left(1 + \frac{y}{2r} \right) \sin \theta - \theta \right)$. This gives

$$x = (1 - y) \tan \left(\sin^{-1} \left(\left(1 + \frac{y}{2r} \right) \sin \theta - \theta \right) \right).$$

Proof of Fact 2. For this we need just the usual approximations:

$$u \approx \sin u \approx \tan u \approx \sin^{-1} u, \text{ for } u \to 0.$$

Proof of Fact 3. $\frac{(1 - y)y}{2r} \theta$ is quadratic in y with its maximum at the average of its zeros, namely, $y = 1/2$.

17
Proof of Fact 4. Let α_k denote the angle of deflection of the k’th ball after it is contacted by the $(k-1)$’st, where the cue ball is the 0’th ball. The following are easy to verify:

\[
\frac{x}{1-y_n} = \tan \alpha_n \\
\sin(\alpha_n + \alpha_{n-1}) = (y_n - y_{n-1})\frac{\sin \alpha_{n-1}}{2r} \\
\alpha_n + \alpha_{n-1} \approx \frac{y_n - y_{n-1}}{2r} \alpha_{n-1} \\
\vdots \\
\sin(\alpha_k + \alpha_{k-1}) = (y_k - y_{k-1})\frac{\sin \alpha_{k-1}}{2r} \\
\alpha_k + \alpha_{k-1} \approx \frac{y_k - y_{k-1}}{2r} \alpha_{k-1} \\
\vdots \\
\sin(\alpha_2 + \alpha_1) = (y_2 - y_1)\frac{\sin \alpha_1}{2r} \\
\alpha_2 + \alpha_1 \approx \frac{y_2 - y_1}{2r} \alpha_1 \\
\sin(\alpha_1 + \theta) = (y_1 + 2r)\frac{\sin \theta}{2r} \\
\alpha_1 + \theta \approx \frac{y_1 + 2r}{2r} \theta.
\]

Solving gives $x \approx (1 - y_n) \left(\frac{y_n - y_{n-1} - 2r}{2r} \right) \cdots \left(\frac{y_2 - y_1 - 2r}{2r} \right) \left(\frac{y_1}{2r} \right) \theta$. Letting $z_{n+1} = 1 - y_n$, $z_k = y_k - y_{k-1} - 2r$ (for $1 < k < n$) and $z_1 = y_1$, we want to maximize $z_1z_2 \cdots z_{n+1}$ subject to $z_1 + z_2 + \cdots + z_{n+1} = 1 - 2r$. This is standard (by Lagrange multipliers, say) resulting in

\[
z_1 = z_2 = \cdots = z_{n+1} = \frac{1 - 2r}{n + 1}.
\]
Proof of Fact 5. Holding θ and r constant, let $f(y) = x(y, \theta, r)$ and differentiate (3) and (4) with respect to y to get

$$f'(y) = -\tan \alpha + (1 - y) \sec^2 \alpha \frac{d\alpha}{dy}$$

and

$$\frac{d\alpha}{dy} = \frac{\sin \theta}{2r} \sec(\theta + \alpha).$$

Differentiating each once more gives

$$f''(y) = -2 \sec^2 \alpha \frac{d\alpha}{dy} + (1 - y) \sec^2 \alpha \left(2 \tan \alpha \left(\frac{d\alpha}{dy} \right)^2 + \frac{d^2\alpha}{dy^2} \right)$$

and

$$\frac{d^2\alpha}{dy^2} = \frac{\sin \theta}{2r} \sec(\alpha + \theta) \tan(\alpha + \theta) \frac{d\alpha}{dy}.$$

Combining these gives

$$\frac{d^2x}{dy^2} = \frac{d\alpha}{dy} (\sec^2 \alpha)(-2 + J),$$

where

$$J = (1 - y) \frac{\sin \theta}{2r} \sec(\alpha + \theta)(2 \tan \alpha + \tan(\alpha + \theta)).$$
We'll show that $J < 3/2$, which will prove that $f''(y) < 0$.
Since $\tan \alpha < \tan(\alpha + \theta)$, we have

$$\sec(\alpha + \theta)(2 \tan \alpha + \tan(\alpha + \theta)) < 3 \sec(\alpha + \theta) \tan(\alpha + \theta)$$

$$= \frac{3 \sin(\alpha + \theta)}{1 - \sin^2(\alpha + \theta)}$$

$$= \frac{3(\sin \theta)(1 + \frac{y}{2r})}{1 - (\sin^2 \theta)(1 + \frac{y}{2r})^2}.$$

This implies that

$$J < \frac{(1 - y)}{2r} \frac{3 \left(\frac{2r}{1 + 2r} \right)^2 \left(1 + \frac{y}{2r} \right)}{1 - \left(\frac{2r}{1 + 2r} \right)^2 \left(1 + \frac{y}{2r} \right)^2}$$

$$= \frac{3(2r + y)}{1 + 4r + y}$$

$$< \frac{3}{2}.$$

20
Proof of Fact 6. \(f(y) \) has a unique maximum for \(0 \leq y \leq 1 \), since \(f(0) = f(1) = 0 \) and \(f''(y) < 0 \) on this interval. By showing \(f'(1/2) > 0 \), it will follow that this maximum occurs for \(1/2 < y < 1 \).

We’ve already noted (implicitly) the dependence of \(\alpha \) on \(y \), but let’s set \(y = 1/2 \) in (4) to get

\[
\sin(\alpha + \theta) = (\sin \theta) \left(1 + \frac{1}{4r} \right),
\]

and continue to write \(\alpha \) for the specific value of \(\alpha \) so obtained (which still depends on the fixed values of \(\theta \) and \(r \)). Using the fact that \(\sec^2 \alpha > \sec \alpha \), our formula for \(f'(y) \) from a previous napkin gives

\[
f'(1/2) > -\tan \alpha + \frac{1}{4r} \sec \alpha \sin \theta \sec(\alpha + \theta)
= \sec \alpha (- \sin \alpha + (\sin (\alpha + \theta) - \sin \theta) \sec (\alpha + \theta))
= \sec \alpha \sec(\alpha + \theta) \cdot L,
\]

where \(L = \sin(\alpha + \theta) - \sin \alpha \cos(\alpha + \theta) - \sin \theta \). We’re done if \(L > 0 \).

We note that \(L = 0 \) for \(\alpha = 0 \), so we’ll be done if \(\frac{\partial L}{\partial \alpha} > 0 \). And indeed,

\[
\frac{\partial L}{\partial \alpha} = \cos(\alpha + \theta) - \cos \alpha \cos(\alpha + \theta) + \sin \alpha \sin(\alpha + \theta)
> \cos(\alpha + \theta) - \cos(\alpha + \theta) + \sin \alpha \sin(\alpha + \theta)
= \sin \alpha \sin(\alpha + \theta)
> 0.
\]
Proof of Fact 7. We want to show that \(f'(0) < -f'(1) \). Letting \(a = 1/(2r) \), this translates into proving that \(a \tan \theta < \tan((\sin^{-1}((a+1)\sin \theta) - \theta) \), or

\[
\tan^{-1}(a \tan \theta) + \theta < \sin^{-1}((a+1)\sin \theta). \tag{5}
\]

Note that \(a > 1 \) and that \((a+1)\sin \theta > 1 \) (our condition of the maximum angle). Both sides of the inequality in (5) are zero for \(\theta = 0 \), so we are finished if the inequality holds when differentiated. That is, we are done if we can show that

\[
1 + \frac{a \sec^2 \theta}{1 + a^2 \tan^2 \theta} < \frac{(a + 1) \cos \theta}{\sqrt{1 - (a + 1)^2 \sin^2 \theta}}. \tag{6}
\]

Squaring both sides, cross-multiplying, then gathering everything to the right (brute-force here; I won’t say if I had any electronic assistance), our inequality in (6) is true if

\[
a^2 \sin^2 \theta (3 - (a^2 + 2a + 3) \sin^2 \theta) > 0.
\]

Again using the fact that \(\sin \theta < \frac{1}{a+1} \), we have

\[
3 - (a^2 + 2a + 3) \sin^2 \theta > 3 - \frac{a^2 + 2a + 3}{(a+1)^2} = \frac{2a(a+2)}{(a+1)^2},
\]

which is positive, so we’re done.
Proof of Fact 8. Since $f(1-y) > f(y) \iff \frac{f(1-y)}{y(1-y)} > \frac{f(y)}{y(1-y)}$, by defining $g(y) = \frac{f(y)}{y(1-y)}$, it suffices then to show that g is increasing on $[0, 1/2]$. Using $\sin(\theta + \alpha) = (1 + \frac{y}{2r}) \sin \theta$, or $\sin(\theta + \alpha) - \sin \theta = \frac{y}{2r} \sin \theta$, and $\sin \theta \leq \frac{2r}{y+2r}$, we have,

$$g'(y) = \frac{f'(y)}{y(1-y)} + \frac{f(y)(2y-1)}{y^2(1-y)^2}$$

$$= \frac{-y \tan \alpha + y(1-y)(\sec^2 \alpha) \sin \theta \sec(\theta + \alpha) + (2y-1) \tan \alpha}{y^2(1-y)}$$

$$= \frac{y \sec^2 \alpha \sin \theta \sec(\theta + \alpha) - \tan \alpha}{y^2}$$

$$= \frac{\sec^2 \alpha (\sin(\theta + \alpha) - \sin \theta) \sec(\theta + \alpha) - \tan \alpha}{y^2}$$

$$> \frac{(\sin(\theta + \alpha) - \sin \theta) \sec(\theta + \alpha) - \tan \alpha}{y^2}$$

$$= \frac{\sec \alpha \sec(\theta + \alpha)}{y^2} ((\sin(\theta + \alpha) - \sin \theta) \cos \alpha - \cos(\theta + \alpha) \sin \alpha)$$

$$= \frac{\sec \alpha \sec(\theta + \alpha)}{y^2} \sin \theta (1 - \cos \alpha)$$

$$> 0.$$
Proof of Fact 9. For each fixed $r \in (0, 1/2)$ and $y \in (0, 1)$, the maximum value of x is

$$x(y, \sin^{-1} \frac{2r}{1 + 2r}, r) = (1 - y) \tan \left(\sin^{-1} \left(\frac{y + 2r}{1 + 2r} \right) - \sin^{-1} \left(\frac{2r}{1 + 2r} \right) \right).$$

Letting $r \to 0$ in the above gives

$$\frac{1 - y}{\sqrt{1 - y^2}},$$

a quantity which is zero when $y = 0$ and for $y \to 1$, and which is otherwise positive. The derivative of this quantity is

$$-(1 - y)(y^2 + y - 1) \quad \frac{1}{(1 - y^2)^{3/2}},$$

which has as its single zero in $(0, 1)$ the number we desire.

Our work here is done. Shoot.