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THE GAME OF LIFE, PART I 

Most of the work of John Horton Conway, a distinguished 
mathematician at the University of Cambridge, has been in 
pure mathematics. For instance, in 1967 he discovered a new 
group--some call it "Conway's constellation"-that includes all 
but two of the then known sporadic groups. (They are called 
"sporadic" because they fail to fit any classification scheme.) It 
is a breakthrough that has had exciting repercussions in both 
group theory and number theory. It ties in closely with an ear- 
lier discovery by John Leech of an extremely dense packing of 
unit spheres in a space of 24 dimensions where each sphere 
touches 196,560 others. As Co~lway has remarked, "There is a 
lot of room up there." 

In addition to such serious work Conway also enjoys recrea- 
tional mathematics. Although he is highly productive in this 
field, he seldom publishes his discoveries. One exception was 
his paper on "Mrs. Perkins' Quilt," a dissection problem dis- 
cussed in my Mathematzcal Carnzval. Another was sprouts, a to- 
pological pencil-and-paper game invented by Conway and 
M. S. Paterson. It is also the topic of a chapter in the same 
book. 

In this chapter we consider Conway's most famous brain- 
child, a fantastic solitaire pastime he calls "Life." Because of its 
analogies with the rise, fall and alterations of a society of living 
organisms, it belongs to a growing class of what are called "sim- 
ulation games"-games that resemble real-life processes. T o  
play Life without a computer you need a fairly large checker- 
board and a plentiful supply of flat counters of two colors. 
(Small checkers or poker chips do nicely.) An Oriental "go" 
board can be used if you can find flat counters small enough to 
fit within its cells. (Go stones are awkward to use because they 
are not flat.) It is possible to work with pencil and graph paper 
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but it is much easier, particularly for beginners, to use counters 
and a board. 

The basic idea is to start with a simple configuration of 
counters (organisms), one to a cell, then observe how it changes 
as you apply Conway's "genetic laws" for births, deaths and 
survivals. Conway chose his rules carefully, after a long period 
of experimentation, to meet three desiderata: 

(1) There should be no initial pattern for which there is a 
simple proof that the population can grow without limit. 

(2) There should be initial patterns that upparentlj do grow 
without limit. 

(3) There should be simple initial patterns that grow and 
change for a considerable period of time before coming to an 
end in three possible ways: Fading away completely (from 
overcrowding or from becoming too sparse), settling into a sta- 
ble configuration that remains unchanged thereafter, or enter- 
ing an oscillating phase in which they repeat an endless cycle 
of two or more periods. 

In brief, the rules should be such as to make the behavior of 
the population both interesting and unpredictable. 

Conway's genetic laws are delightfully simple. First note that 
each cell of the checkerboard (assumed to be an infinite plane) 
has eight neighboring cells, four adjacent orthogonally, four 
adjacent diagonally. The rules are: 

(1) Survivals. Every counter with two or three neighboring 
counters survives for the next generation. 

(2) Deaths. Each counter with four or more neighbors dies 
(is removed) from overpopulation. Every counter with one 
neighbor or none dies from isolation. 

(3) Births. Each empty cell adjacent to exactly three neigh- 
bors-no more, no fewer-is a birth cell. A counter is placed 
on it at the next move. 

It is important to understand that all births and deaths occur 
simultaneously. Together they constitute a single generation or, 
as we shall usually call it, a "tick" in the complete "life history" 
of the initial configuration. Conway recommends the following 
procedure for making the moves: 

(1) Start with a pattern consisting of black counters. 
(2) Locate all counters that will die. Identify them by putting 

a black counter on top of each. 
(3) Locate all vacant cells where births will occur. Put a white 

counter on each birth cell. 
(4) After the pattern has been checked and double-checked 
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to make sure no mistakes have been made, remove all the dead 
counters (piles of two) and replace all newborn white organ- 
isms with black counters. 

You will now have the first generation in the life history of 
your initial pattern. The same procedure is repeated to pro- 
duce subsequent generations. It should be clear why counters 
of two colors are needed. Because births and deaths occur si- 
multaneously, newborn counters play no role in causing other 
deaths or births. It is essential, therefore, to be able to distin- 
guish them from live counters of the previous generation while 
you check the pattern to be sure no errors have been made. 
Mistakes are very easy to make, particularly when first playing 
the game. After playing it for a while you will gradually make 
fewer mistakes, but even experienced players must exercise 
great care in checking every new generation before removing 
the dead counters and replacing newborn white counters with 
black. 

You will find the population constantly undergoing unusual, 
sometimes beautiful and always unexpected change. In a few 
cases the society eventually dies out (all counters vanishing), al- 
though this may not happen until after a great many genera- 
tions. Most starting patterns either reach stable figures-Con- 
way calls them "still 1ifes"-that cannot change or patterns that 
oscillate forever. Patterns with no initial symmetry tend to be- 
come symmetrical. Once this happens the symmetry cannot be 
lost, although it may increase in richness. 

Conway originally conjectured that no pattern can grow with- 
out limit. Put another way, any configuration with a finite number 
of counters cannot grow beyond a finite upper limit to the number 
of counters on the field. At the time this was one of the most 
difficult questions posed by the game. Conway offered a prize of 
$50 to the first person who could prove or disprove the conjecture 
before the end of 1970. One way to disprove it would be to dis- 
cover patterns that keep adding counters to the field: A "gun" (a 
configuration that repeatedly shoots out moving objects such as 
the "glider," to be explained below) or a "puffer train" (a configu- 
ration that moves but leaves behind a trail of "smoke"). The 
results of the contest for Conway's prize are discussed in the next 
chapter. 

Let us see what happens to a variety of simple patterns. 
A single organism or any pair of counters, wherever placed, 

will obviously vanish on the first tick. 
A beginning pattern of three counters also dies immediately 

unless at least one counter has two neighbors. Figure 126 
shows the five connected triplets that do not fade on the first 
tick. 
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Figure 126 

The fate of five triplets in "life" 

(Their orientation is of course irrelevant.) The first three [a, b, 
c] vanish on the second tick. In connection with c it is worth 
noting that a single diagonal chain of counters, however long, 
loses its end counters on each tick until the chain finally dis- 
appears. The speed a chess king moves in any direction is 
called by Conway (for reasons to be made clear later) the 
"speed of light." We say, therefore, that a diagonal chain de- 
cays at each end with the speed of light. 

Pattern d becomes a stable "block" (two-by-two square) on 
the second tick. Pattern e is the simplest of what are called 
"flip-flops" (oscillating figures of period 2). It alternates be- 
tween horizontal and vertical rows of three. Conway calls it a 
"blinker." 

Figure 127 shows the life histories of the five tetrominoes 
(four rookwise-connected counters). The square [a] is, as we 
have seen, a still-life figure. Tetrominoes b and c reach a stable 
figure, called a "beehive," on the second tick. Beehives are fre- 
quently produced patterns. Tetromino d becomes a beehive on 
the third tick. Tetromino e is the most interesting of the lot. 
After nine ticks it becomes four isolated blinkers, a flip-flop 
called "traffic lights." It too is a common configuration. Figure 
128 shows 12 common forms of still life. 

The reader may enjoy experimenting with the 12 pentomi- 
noes (all possible patterns of five rookwise-connected counters) 
to see what happens to each. He will find that five vanish be- 
fore the fifth tick, two quickly reach a stable loaf, and four in 



Figure 127 

The life histories of the five tetrominoes 
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Figure 128 

The commonest stable forms 

a short time become traffic lights. The only pentomino that 
does not end quickly (by vanishing, becoming stable or oscillat- 
ing) is the R pentomino ["a" in  Figure 1291. Conway has tracked 
it for 460 ticks. By then it has thrown off a number of gliders. 
Conway remarks: "It has left a lot of miscellaneous junk stag- 
nating around, and has only a few small active regions, so it is 
not at all obvious that it will continue indefinitely." Its fate is 
revealed in the addendum to this chapter. 

Figure 129 

The R pentomino (a) and exercises for the reader 

For such long-lived populations Conway sometimes uses a 
computer with a screen on which he can observe the changes. 
The program was written by M. J. T .  Guy and S. R. 
Bourne. Without its help some discoveries about the game 
would have been difficult to make. 

As easy exercises the reader is invited to discover the fate of 
the Latin cross ["b" i n  Figure 1291, the swastika [c], the letter H 
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[dl ,  the beacon [el, the clock fl, the toad [g] and the pinwheel 
[ h ] .  The last three figures were discovered by Simon Norton. If 
the center counter of the H is moved up one cell to make an 
arch (Conway calls it "pi"), the change is unexpectedly drastic. 
The H quickly ends but pi has a long history. Not until after 
173 ticks has it settled down to five blinkers, six blocks and two 
ponds. Conway also has tracked the life histories of all the hex- 
ominoes, and all but seven of the heptominoes. Some hexomi- 
noes enter the history of the R pentomino; for example, the 
pentomino becomes a hexomino on its first tick. 

One of the most remarkable of Conway's discoveries is the 
five-counter glider shown in Figure 130. After two ticks it has 
shifted slightly and been reflected in a diagonal line. Geome- 
ters call this a "glide reflection"; hence the figure's name. After 
two more ticks the glider has righted itself and moved one cell 
diagonally down and to the right from its initial position. We 
mentioned earlier that the speed of a chess king is called the 
speed of light. Conway chose the phrase because it is the high- 
est speed at which any kind of movement can occur on the 
board. No pattern can replicate itself rapidly enough to move 
at such speed. Conway has proved that the maximum speed 
diagonally is a fourth the speed of light. Since the glider rep- 
licates itself in the same orientation after four ticks, and has 
traveled one cell diagonally, one says that it glides across the 
field at a fourth the speed of light. 

Figure 130 

The "glider" 

Movement of a finite figure horizontally or vertically into 
empty space, Conway has also shown, cannot exceed half the 
speed of light. Can any reader find a relatively simple figure 
that travels at such a speed? Remember, the speed is obtained 
by dividing the number of ticks required to replicate a figure 
by the number of cells it has shifted. If a figure replicates in 
four ticks in the same orientation after traveling two unit 
squares horizontally or vertically, its speed will be half that of 
light. Figures that move across the field by self-replication are 
extremely hard to find. Conway knows of four, including the 
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glider, which he calls "spaceships" (the glider is a "feather- 
weight spaceship"; the others have more counters). I will dis- 
close their patterns in the Answer Section. 

Figure 13 1 depicts three beautiful discoveries by Conway 
and his collaborators. The stable honey farm [a in Figure 1311 
results after 14 ticks from a horizontal row of seven counters. 
Since a five-by-five block in one move produces the fourth gen- 
eration of this life history, it becomes a honey farm after 11 
ticks. The "figure 8" [b in Figure 1311, an oscillator found by 
Norton, both resembles an 8 and has a period of 8. The form 
c, in Figure 131 called "pulsar CP 48-56-72," is an oscillator 
with a life cycle of period 3. The state shown here has 48 
counters, state two has 56 and state three has 72, after which 
the pulsar returns to 48 again. It is generated in 32 ticks by a 
heptomino consisting of a horizontal row of five counters with 
one counter directly below each end counter of the row. 

Figure 131 

Three remarkable patterns, one stable and two oscillating 

Conway has tracked the life histories of a row of n counters 
through n= 20. We have already disclosed what happens 
through n = 4 .  Five counters result in traffic lights, six fade 
away, seven produce the honey farm, eight end with four bee- 
hives and four blocks, nine produce two sets of traffic lights, 
and 10 lead to the "pentadecathlon," with a life cycle of period 
15. Eleven counters produce two blinkers, 12 end with two bee- 
hives, 13 with two blinkers, 14 and 15 vanish, 16 give "big 
traffic lights" (eight blinkers), 17 end with four blocks, 18 and 
19 fade away and 20 generate two blocks. 

Conway also investigated rows formed by sets of n adjacent 
counters separated by one empty cell. When n = 5 the counters 
interact and become interesting. Infinite rows with n= 1 or 
n = 2 vanish in one tick, and if n = 3 they turn into blinkers. If 
n = 4 the row turns into a row of beehives. 
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The 5-5 row (two sets of five counters separated by a vacant 
cell) generates the pulsar CP 48-56-72 in 21 ticks. The 5-5-5 
ends in 42 ticks with four blocks and two blinkers. The 5-5-5-5 
ends in 95 ticks with four honey farms and four blinkers, 
5-5-5-5-5 terminates with a spectacular display of eight gliders 
and eight blinkers after 66 ticks. Then the gliders crash in 
pairs to become eight blocks after 86 ticks. The form 5-5-5-5- 
5-5 ends with four blinkers after 99 ticks, and 5-5-5-5-5-5-5, 
Conway remarks, "is marvelous to sit watching on the com- 
puter screen." This ultimate destiny is given in the addendum. 

ANSWERS 

The Latin cross dies on the fifth tick. The swastika vanishes on 
the sixth tick. The letter H also dies on the sixth tick. The next 
three figures are flip-flops: As Conway writes, "The toad pants, 
the clock ticks and the beacon flashes, with period 2 in every 
case." The pinwheel's interior rotates 90 degrees clockwise on 
each move, the rest of the pattern remaining stable. Periodic 
figures of this kind, in which a fixed outer border is required 
to move the interior, Conway calls "billiard-table configura- 
tions" to distinguish them from "naturally periodic" figures 
such as the toad, clock and beacon. 

The three unescorted ships (in addition to the glider, or 
"featherweight spaceship" are shown in Figure 132. T o  be pre- 
cise, each becomes a spaceship in 1 tick. (The patterns in Fig- 
ure 132 never recur.) All three travel horizontally to the right with 
half the speed of light. As they move they throw off sparks 
that vanish immediately as the ships continue on their way. Unes- 
corted spaceships cannot have bodies longer than six counters 
without giving birth to objects that later block their 

Figure 132 

Lightweight (left), middleweight (center), 
and heavyweight (right) spaceships 

motion. Conway has discovered, however, that longer space- 
ships, which he calls "overweight" ones, can be escorted by two 
or more smaller ships that prevent the formation of blocking 
counters. Figure 133 shows a larger spaceship that can be es- 
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Figure 133 

Overweight spaceship with two escorts 

corted by two smaller ships. Except for this same ship, length- 
ened by two units, longer ships require a flotilla of more than 
two companions. A spaceship with a body of 100 counters, 
Conway finds, can be escorted safely by a flotilla of 33 smaller 
ships. 

ADDENDUM 

My 1970 column on Conway's "Life" met with such an instant 
enthusiastic response among computer hackers around the 
world that their mania for exploring "Life" forms was esti- 
mated to have cost the nation millions of dollars in illicit com- 
puter time. One computer expert, whom I shall leave name- 
less, installed a secret switch under his desk. If one of his 
bosses entered the room he would press the button and switch 
his computer screen from its "Life" program to one of the 
company's projects. The next two chapters will go into more 
details about the game. Here I shall comment only on some of 
the immediate responses to two questions left open in the first 
column. 

The troublesome R pentomino becomes a 2-tick oscillator 
after 1,103 ticks. Six gliders have been produced and are trav- 
eling outward. The debris left at the center [see Figure 1341 
consists of four blinkers, one ship, one boat, one loaf, four bee- 
hives, and eight blocks. This was first established at Case West- 
ern Reserve University by Gary Filipski and Brad Morgan, and 
later confirmed by scores of "Life" hackers here and abroad. 

The fate of the 5-5-5-5-5-5-5 was first independently found 
by Robert T. Wainwright and a group of hackers at Honey- 
well's Computer Control Division, later by many others. The 
pattern stabilizes as a 2-tick oscillator after 323 ticks with four 
traffic lights, eight blinkers, eight loaves, eight beehives, and 



Figure 134 

R pentomino's original (black) and final (open dots) state. 
(Six gliders are out of sight.) 
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four blocks. Figure 135 reproduces a printout of the final 
steady state. Because symmetry cannot be lost in the history of 
any life form, the vertical and horizontal axes of the original 
symmetry are preserved in the final state. The maximum pop- 
ulation (492 bits) is reached in generation 283, and the final 
population is 192. 

Figure 135 

Initial pattern and final state of the 5-5-5-5-5-5-5 row 
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Cellular automata theory began in the mid-fifties when John 
von Neumann set himself the task of proving that self-replicat- 
ing machines were possible. Such a machine, given proper in- 
structions, would build an exact duplicate of itself. Each of the 
two machines would then build another, the four would be- 
come eight, and so on. (This proliferation of self-replicating 
automata is the basis of Lord Dunsany's amusing 1951 novel 
The Last Revolution.) Von Neumann first proved his case with 
"kinematic" models of a machine that could roam through a 
warehouse of parts, select needed components and put to- 
gether a copy of itself. Later, adopting an inspired suggestion 
by his friend Stanislaw M. Ulam, he showed the possibility of 
such machines in a more elegant and abstract way. 

Von Neumann's new proof used what is now called a "uni- 
form cellular space" equivalent to an infinite checkerboard. 
Each cell can have any finite number of "states," including a 
"quiescent" (or empty) state, and a finite set of "neighbor" cells 
that can influence its state. The pattern of states changes in dis- 
crete time steps according to a set of "transition rules" that ap- 
ply simultaneously to every cell. The cells symbolize the basic 
parts of a finite-state automaton and a configuration of live 
cells is an idealized model of such a machine. Conway's game 
of "Life" is based on just such a space. His neighborhood con- 
sists of the eight cells surrounding a cell; each cell has two 
states (empty or filled), and his transition rules are the birth, 
death and survival rules I explained in the previous chapter. 
Von Neumann, applying transition rules to a space in which 
each cell has 29 states and four orthogonally adjacent neigh- 
bors, proved the existence of a configuration of about 200,000 
cells that would self-reproduce. 
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The reason for such an enormous configuration is that, for 
von Neumann's proof to apply to actual automata, it was nec- 
essary that his cellular space be capable of simulating a Turing 
machine: an idealized automaton, named for its inventor, the 
British mathematician A. M. Turing, capable of performing 
any desired calculation. By embedding this universal computer 
in his configuration, von Neumann was able to produce a uni- 
versal constructor. Because it could in principle construct any 
desired configuration by stretching "arms" into an empty re- 
gion of the cellular space, it would self-replicate when given a 
blueprint of itself. Since von Xeumann's death in 1957 his ex- 
istence proof (the actual configuration is too vast to construct 
and manipulate) has been greatly simplified. The latest and 
best reduction, by Edwin Roger Banks, a mechanical engineer- 
ing graduate student at the Massachusetts Institute of Tech- 
nology, does the job with cells of only four states. 

Self-replication in a trivial sense-without using configura- 
tions that contain Turing machines-is easy to achieve. A de- 
lightfully simple example, discovered by Edward Fredkin of 
M.I.T. about 1960, uses two-state cells, the von Neumann 
neighborhood of four orthogonally adjacent cells and the fol- 
lowing parity rule: Each cell with an even number of live 
neighbors (0, 2, 4) at time t becomes or remains empty at time 
t+ 1, and each cell with an odd number of neighbors (1, 3) at 
time t becomes or remains live at time t+ 1. It is not hard to 
show that after 2" ticks (n varying with different patterns) any 
initial pattern of live cells will reproduce itself four times- 
above, below, left and right of an empty space that it formerly 
occupied. The four replicas will be displaced 2" cells from the 
vanished original. The new pattern will, of course, replicate 
again after another 2" steps, so that the duplicates keep quad- 
rupling in the endless series 1, 4, 16, 64, . . . . Figure 136 shows 
two quadruplings of a right tromino. Terry Winograd, in a 
1967 term paper written when he was an M.I.T. student, gen- 
eralized Fredkin's rule to other neighborhoods, any number of 
dimensions and cells with any prime number of states. 

Ulam investigated a variety of cellular automata games, ex- 
perimenting with different neighborhoods, numbers of states 
and transition rules. In a 1967 paper "On Recursively Defined 
Geometrical Objects and Patterns of Growth," written with 
Robert G. Schrandt, Ulam described a number of different 
games. Figure 137 shows generation 45 of a history that began 
with one counter on the central cell. As in Conway's game, the 
cells are two-state, but the neighborhood is that of von Neu- 
mann (four adjacent orthogonal cells). Births occur on cells 
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Figure 136 

The replication of a trornino 

that have one and only one neighbor, and all live cells of gen- 
eration n vanish when generation n + 2 is born. In other words, 
only the last two generations survive at any step. In Figure 137 
the 444 new births are shown as black cells. The 404 white cells 
of the preceding generation wi!l all disappear on the next tick. 
Note the characteristic subpattern, which Ulam calls a "dog 
bone." Ulam experimented with games in which two configu- 
rations were allowed to grow until they collided. In the ensuing 
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F~gure 137 
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Generation 45 In a cellular game dev~sed by 
Stan~slaw M. Ulam 

"battle" one side would sometimes wipe out the other; some- 
times both arniies would be annihilated. Ula~n also explored 
games on three-dimensional cubical tessellations. His major pa- 
pers on cellular automata are in E u a y ~  on Cellular Automata, ed- 
ited by Arthur W. Burks. 

Similar ganies can he devised for triangular and hexagonal 
tessellations but, although they look different, they are not es- 
sentially so. All can be translated into equivalent games on a 
square tessellation by a suitable definition of "neighborhood." 
A neighborhood need not be made up of touching cells. In 
chess, for instance, a knight's neighborhood consists of the 
squares to which it can leap and squares on which there are 
pieces that can attack it. As Burks has pointed out, games such 
as chess, checkers and go can be regarded as cellular automata 
games in which there are complicated neighborhoods and tran- 
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sition rules and in which players choose among alternative next 
states in an attempt to be first to reach a certain final state that 
wins. 

Among the notable contributions of Edward F. Moore to cel- 
lular automata theory the best-known is a technique for prov- 
ing the existence of what John W. Tukey named "Garden of 
Eden" patterns. These are configurations that cannot arise in 
a game because no preceding generation can form them. They 
appear only if given in the initial (zero) generation. Because 
such a configuration has no predecessor, it cannot be self- 
reproducing. I shall not describe Moore's ingenious technique 
because he explained it informally in an article in Scientific 
American (see "Mathematics in the Biological Sciences," by Ed- 
ward F. Moore; September, 1964) and more formally in a pa- 
per that is included in Burks's anthology. 

Alvy Ray Smith 111, a cellular automata expert at Kew York 
University's School of Engineering and Science, found a simple 
application of Moore's technique to Conway's game. Consider 
two five-by-five squares, one with all cells empty, the other with 
one counter in the center. Because, in one tick, the central nine 
cells of both squares are certain to become identical (in this 
case all cells empty) they are said to be "mutually erasable." It 
follows from Moore's theorem that a Garden of Eden config- 
uration must exist in Conway's game. Unfortunately the proof 
does not tell how to find such a pattern and so far none is 
known. It may be simple or  it may be enormously complex. 
Using one of Moore's formulas, Smith has been able to calcu- 
late that such a pattern exists within a square of 10 billion cells 
on a side, which does not help much in finding one. 

Smith has been working on cellular automata that simulate 
pattern-recognition machines. Although this is now only of 
theoretical interest, the time may come when robots will need 
"retinas" for recognizing patterns. The  speeds of scanning de- 
vices are slow compared with the speeds obtainable by the 
"parallel computation" of animal retinas, which simultaneously 
transmit thousands of messages to the brain. Parallel compu- 
tation is the only way new computers can increase significantly 
in speed because without it they are limited by the speed of 
light through miniaturized circuitry. The  cover of the Febru- 
ary, 1971, issue of Scientific Arnerican [reproduced in Figure 
1381 shows a simple procedure, devised by Smith, by which a 
finite one-dimensional cellular space employs parallel compu- 
tation for recognizing palindromic symmetry. Each cell has 
many possible states, the number depending on the number of 
different symbols in the palindrome, and a cell's neighborhood 
is the two cells on each side. 
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Figure 138 

Cellular automaton 

Smith symbolizes the palindrome TOO HOT TO HOOT with 
four states of cells in the top row. T, 0 and H are represented 
by blue, red and yellow respectively, and black marks the pal- 
indrome's two ends. Here we have indicated the colors by dif- 
ferent shadings. The white cells in the other rows are in the 
quiescent state. The horizontal rows below the top row are suc- 
cessive generations of the top configuration when certain tran- 
sition rules are followed in discrete time steps. In other words, 
the picture is a space-time diagram of a single row, each suc- 
cessive row indicating the next generation. 

In the first transition each shade travels one cell to the left 
and one cell to the right, except for the end shadings, which 
are blocked by black; black moves inward at each step. Each 
cell on which two shadings land acquires a new state, symbol- 
ized by a cell divided into four triangles. The left triangle has 
the shading that was previously on the left, the right triangle 
has the shading previously on the right. The result of this first 
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move is shown in the second row. When an adjacent pair of 
cells forms a tilted square in the center that is a solid shading, 
it indicates a "collision" of like shadings and is symbolized by 
black dots in the two white triangles of the left cell. Dots re- 
main in that cell for all subsequent generations unless a colli- 
sion of unlike shadings occurs to the immediate right of the 
dotted cell, in which case the dots are erased. When collisions 
of unlike shadings occur, the left cell of the pair remains un- 
dotted for all subsequent generations even though like shad- 
ings may later collide on its right. 

At each move the shadings continue to travel one cell left or 
right (the direction in which the shaded triangles point) and all 
rules apply. If the palindrome has n letters, with n even as in 
this example (the scheme is modified slightly if n is odd), it is 
easy to see that after nl2 moves only two adjacent nonquiescent 
cells remain. If the left cell of this pair is dotted, the automaton 
has recognized the initial row as being palindromic. Down the 
diagram's center you see the colliding pairs of like shadings in 
the same order as they appear on the palindrome from the 
center to each end. As soon as recognition occurs the left cell 
of the last pair is erased and the right cell is altered to an "ac- 
cept" state, here symbolized by nested squares. An undotted 
left cell would signal a nonpalindrome, in which case the left 
cell would become blank and the right cell would go into a "re- 
ject" state. 

A Turing machine, which computes serially, requires in gen- 
eral n2 steps to recognize a palindrome of length 7%. Although 
recognition occurs here at step nl2, the accept state is shown 
moving in subsequent generations to the right to symbolite the 
cell-by-cell transmission of the acceptance to an output bound- 
ary of the cellular space. Of course it is easy to construct more 
efficient palindrome-recognizing devices with actual electronic 
hardware, but the point here is to do it with a highly abstract, 
one-dimensional cellular space in which information can pass 
only from a cell to adjacent cells and not even the center of the 
initial series of symbols is known at the outset. As Smith puts i t  
anthropomorphically, after the first step each of the three dot- 
ted cells thinks it is at the center of a palindrome. The dotted 
cells at each end are disillusioned on the next move because of 
the collision of unlike shadings at their right. Not until genera- 
tion nI2 does the dotted cell at the center know it zs at the center. 

Now for some startling new results concerning Conway's 
game. Conway was fully aware of earlier games and it was with 
thefi in mind that he selected his recursive rules with great 
care to avoid two extremes: too many patterns that grow 
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quickly without limit and too many that fade quickly. By strik- 
ing a delicate balance he designed a game of surprising unpre- 
dictability and one that produced such remarkable figures as 
oscillators and moving spaceships. He conjectured that no fi -  
nite population could grow (in number of members) without 
limit, and he offered $30 for the first proof or disproof. The 
prize was won in November, 1970, by a group in the Artificial 
Intelligence Project at M.I.T. consisting of (in alphabetical or- 
der) Robert April, Michael Beeler, R. William Gosper, Jr., 
Richard Howell, Rich Schroeppel and Michael Speciner. Using 
a program devised by Speciner for displaying life histories on 
an oscilloscope, Gosper made a truly astounding discovery: he 
found a glider gun! The configuration in Figure 139 grows 
into such a gun, firing its first glider on tick 40. The gun is an 
oscillator of period 30 that ejects a new glider every 30 ticks. 
Since each glider adds five more counters to the field, the pop- 
ulation obviously grows without limit. 

Figure 139 

A configuration that grows into a glider gun 

The glider gun led the M.I.T. group to many other amazing 
discoveries. A series of printouts (supplied by Robert T. Wain- 
wright of Yorktown Heights, N.Y.) shows how 13 gliders crash 
to form a glider gun [see Figure 1401. The last five printouts 
show the gun in full action. The group also found a way to po- 
sition a pentadecathlon [see Figure 1411, an oscillator of period 
15, so that it "eats" every glider that strikes it. A pentadecath- 
lon can also reflect a glider 180 degrees, making it possible for 
two pentadecathlons to shuttle a glider back and forth forever. 
Streams of intersecting gliders produce fantastic results. Strange 
patterns can be created that in turn emit gliders. Sometimes 
collision configurations grow until they ingest all guns. In other 
cases the collision mass destroys one or more guns by shooting 
back. The group's latest burst of virtuosity is a way of placing 
eight guns so that the intersecting streams of gliders build a 
factory that assembles and fires a middleweight spaceship 
about every 300 ticks. 



CHAPTER 21 

Figure 140 

Here and on the facing page 13 gliders crash to 
form a glider gun (generation 75) that oscillates 
with a period of 30, firing a glider in each cycle 
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The  existence of glider guns raises the exciting possibility 
that Conway's game will allow the simulation of a .l'uring ma- 
chine, a universal calculator capable in principle of doing any- 
thing the most powerful computer can do. The  trick would be 
to use gliders as unit pulses for storing and transmitting infor- 
mation and performing the required logic operations that are 
handled in actual computers by their circuitry. If' Conrz-ay's 
game allows a universal calculator, the next question will be 
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Figure 141 

Pentadecathlon (bottom right) "eats" gliders 
fired by the gun 
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rvhether it allows a universal constructor, fiom which nontrivial 
self-replication would follow. So far this has not been achieved 
~vith a two-state space and Conway's neighborhood, although it 
has been proved impossible with two states and the von Neu- 
maim neighborhood. 

The  b1.I.T. group found many new oscillators [sep Figure 
1421. One of' them, the barber pole, can be stretched to any 
length and is a flip-flop, with each state a mirror image of the 
other. Another, rvhich they redi~covered, is a pattern Con~vay's 
group had found earlier and called a Hertz oscillator. Ever); 
four ticks the hollo~v "hit" s~\.itches f'rorn one side of the central 
frame to the other, making it an oscillator of period 8. The  
tumbler, which was found by George D. Collins, Jr., of hIc- 
Lean, \'a,, turns upside down every seven ticks. 

Figure 142 

Barber pole (left), Hertz oscillator (middle), 
and tumbler (right) 

T h e  Cheshire cat [see Figure 1431 was discovered by C. R. 
Tompkins of Corona, Calif. On the sixth tick the face vanishes, 
leaving only a grin; the grin fades on the next tick and only a 
permanent paw print (block) remains. The  harvester was con- 
structed by David W. Poyner of Basildon in England. It plows 
up  an infinite diagonal at the speed of light, oscillating Tvith 
period 4 and ejecting stable packages along the way [see Figure 
1441. "Unfortunately," writes Poyner, "I have been unable to 
develop a propagator that will sow as fast as the harvester will 
reap." 

Wainwright has made a number of intriguing investigations. 
He filled a 120-by- 120 square field with 4,800 randomly placed 
bits (a density of one-third) and tracked their history for 450 
generations, by which time the density of this primordial soup, 
as Wainwright calls it, had thinned steadily to one-sixth. 
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Figure 143 

The Cheshire cat (0) fades to a grin (6) 
and disappears, leaving a paw print (7) 

Figure 144 

The harvester, shown at generations (0) left 
and 10 (right) 

Whether it would eventually vanish or, as Wainwright says, 
percolate at a constant minimum density is anybody's guess. At 
any rate, during the 450 generations 42 short-lived gliders 
were formed. Wainrvright found 14 different patterns that be- 
came glider states on the next tick. The most coinrrlon pattern 
to produce a glider on the next tick is shown [a in Figure 1451. 
A Z-pattern found by Collins and by Jeffrey Lund of' Pewau- 
kee, LVis., after 12 ticks becomes two gliders that sail off in op- 
posite directions [b in Fkure 1451. Wainwright and others set 
two gliders on a collision course that causes all bits to vanish on 
the fourth tick [c in Figure 1451. Wallace W. Wagner of Ana- 
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Figure 145 

Two spawners of gliders and two collision courses 

heim, Calif., found a collision course for two lightweight space- 
ships that also ends (on the seventh tick) in total blankness [d 
in Fzgure 1451. 

Wainwright has experimented with various infinite fields of 
regular stable patterns, which he calls agars-rich culture me- 
diums. When, for instance, a single "virus," or bit, is placed in 
the agar of blocks shown in Figure 146 so that it touches the 
corners of four blocks, the agar eliminates the virus and re- 
pairs itself in two ticks. If, however, the alien bit is positioned 
as shown (or at any of the seven other symmetrically equivalent 
spots), it initiates an inexorable disintegration of the pattern. 
The portion eaten away contains active debris that has overall 
bilateral symmetry along one axis and a roughly oval border 
that expands, probably forever, in the four compass directions 
at the speed of light. 

Figure 146 

Agar doomed by a virus 

The most immediate practical application of cellular auto- 
mata theory, Banks believes, is likely to be the design of circuits 
capable of self-repair or the wiring of any specified type of new 
circuit. No one can say how significant the theory may eventu- 
ally become for the physical and biological sciences. It may 
have important bearings on cell growth in embryos, the repli- 
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cation of DNA molecules, the operation of nerve nets, genetic 
changes in evolving populations and so on. Analogies with life 
processes are impossible to resist. If a primordial broth of 
amino acids is large enough, and there is sufficient time, self- 
replicating, moving automata may result from complex transi- 
tion rules built into the structure of matter and the laws of 
nature. There is even the possibility that space-time itself is 
granular, composed of discrete units, and that the universe, as 
Fredkin and others have suggested, is a vast cellular automaton 
run by an enormous computer. If so, what we call motion may 
be only simulated motion. A moving spaceship, on the ultimate 
microlevel, may be essentially the same as one of Conway's 
spaceships, appearing to move on the macrolevel whereas ac- 
tually there is only an alteration of states of basic space-time 
cells in obedience to transition rules that have not yet been 
discovered. 
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So much has been discovered about Conway's "Life" since I 
first wrote the last two chapters, that it was impossible to sum- 
marize the highlights in an addendum. A book could and 
should be written about the game, an Encyclopedia of Life, or a 
Handbook of Life, that would put all the important known Life 
forms on record and thereby save Lifenthusiasts the labor of 
rediscovering them. The eleven issues that appeared of Robert 
Wainwright's periodical Lifeline continue to be the main repo- 
sitory of such data. Wainwright is said to be working on a book, 
and there are rumors of other books about "Life" that are in 
the making. In the meantime, I will try in this chapter to pull 
together some of the significant developments in "Life" since 
my second column on the game ran in Scient$c American in 
197 1 .  Because so many basic forms were independently discov- 
ered by many people, I shall not often attempt to credit first 

iscoverers. d' 
The earliest and most important group of Lifenthusiasts was 

at M.I.T., centering around William Gosper who is now work- 
ing for Xerox at their Stanford research headquarters. In the 
mid-70s the most active "Life" group was in the computer con- 
trol division of Honeywell, Inc., Framington, Mass. It included 
(alphabetical order) Thomas Holmes, Keith McClelland, Mi- 
chael Sporer, Philip Stanley, Donald Woods, and his father 
William Woods. In the late seventies, an active group of "Life" 
hackers formed at the University of Waterloo, in Canada, with 
John Abbott, David Buckingbam, Mark Niemiec, and Peter 
Raynham as the leaders. Most of what I shall report comes 
from these three groups. 

All still lifes with 13 or fewer bits have long been known. 
The block and tub are the only 4-bit stable forms, and the boat 
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Figure 147 

More still lifes 

is the only one with 5 bits. Figure 128 caught four of the five 
6-bit still lifes, missing only the aircraft carrier shown in Figure 
147. There are four 7-bit stable forms: the loaf, long boat, long 
snake, and fishhook. The fishhook or "eater" is the smallest still 
life lacking any kind of symmetry. Note that forms such as the 
boat, barge, ship, and sinking ship can be stretched to any 
length, and lakes can be made as large as you like, with any 
number of barges, boats, and ships at anchor on the lvater. 
There are nine 8-bit still lifes, ten 9-bit forms, 25 with 10 bits, 
46 with 11 bits, 121 with 12 bits, and 149 with 13 bits. The sta- 
ble pool table in Figure 148 was constructed out of long sink- 
ing ships and parts of ponds by William Woods. 

Figure 148 

The stable pool table 
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Figure 149 

Low-period oscillators 

Hundreds of elegant oscillators have been found. Figure 149 
shows a few of' small size, with short periods. The M.I.T. 
group, early in the history of "Life," found easy ways to con- 
struct giant flip-flops (period-:! oscillators) such as the one 
shown in Figure 150. It oscillates between the patterns shown 
in black dots and circles. 

Figure 150 

A flip-flop pattern that alternates between states 
shown in black and with circles 
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Another large class of "Life" forms that have been inten- 
sively investigated are what the Honeywell group named the 
fuses. These are stems one or more bits wide, either diagonal 
or orthogonal, usually infinite in length, that burn steadily 
from one end toward the other. The simplest is the fuse shown 
in Figure 15 1 a, a diagonal of bits that either rises to infinity or 
has a stable top as shown. It simply burns itself out without 
producing any sparks or stable smoke. If you put another bit 
to the left of the lower end, it forms a tiny flame that travels 
along with the burning. 

Figure 151 

Five fuses 

Fuse b in Figure 151 oscillates with a period of 4, giving off 
sparks that fade quickly. A "dirty fuse," like the one shown in 
c in Figure 151, leaves clouds of debris behind as it burns. At 
one point it shoots off a glider. Fuse d in Figure 151, named 
the "baker" by its discoverer, McClelland, is a confused fuse 
that bakes a string of stable loaves while it burns. The last three 
fuses all oscillate with periods of 4, and all four burn with the 
speed of light. 

Fuse e in Figure 151 eventually becomes a clean fuse of pe- 
riod 4, but leaves behind a cloud consisting of three blocks, 
three beehives, two blinkers, a ship, and four gliders. William 
Woods calls it a "reverse fuse" because it explodes first, then 
burns quietly for the rest of its endless life. The harvester, de- 
scribed in the previous chapter, is of course a fuse. 

Other unusual fuses are shown in Figure 152. Fuse a, found 
by Steve Tower, has a period of 8. It leaves behind a trail of 
beacons. Fuse b abandons a twin pair of boats every four ticks. 
Orthogonal fuse c, which burns with a speed slower than light, 
consumes two tubs every 18 ticks, then changes them to traffic 
lights (four blinkers). It was discovered by Earl Abbe. Wain- 
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Figure 152 

More fuses 

wright's fuse d consumes three fenceposts every 12 genera- 
tions, and turns them into a beehive. 

Two fuses of a more complicated nature, discovered by Don 
Woods, are sho\vn in Figure 153. The cow burns at light speed, 
with period 8, slowly "chewing its cud" by eating the blocks on 
either side, bringing them back again, then eating them a sec- 
ond time. The two-glider fuse throws off two gliders every 12 
ticks. I resist the impulse to describe two close relatives of 
fuses, the wicks (infinite in both directions) and the kinkbombs. 
Kinkbombs come in three varieties: duds, firecrackers, and 
bombs, as detailed by Mark Horton in the 1 lth issue of Lifehn~. 

Figure 153 .. 1.. .. L. .... .. . .LO 0. 8. 0. 0. . i..NOOW.. 
e. . 0. . .w. e ~..Lo~ou.. r~ .. . ..., 0.00 UI.~ --3* 
0. . .. . 0.. :: .. 0. . e......... *. ,. I , * . .  

THE COW TWO GLIDER FUSE 

Two remarkable fuses 

There are 102 distinct patterns of bits within a 3 x 3 square 
(excluding rotations and reflections, but including the patterns 
consisting of nine bits and no bits). Some of these are polyo- 
minoes, some not. All the letters of the alphabet in Braille are 
among the 102. The fates of all 102 are known. Also known 
are the fates of all polyominoes through the order-7 
heptominoes. 
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Methuselah patterns are those of fewer than 10 bits which 
do not stabilize until after more than 50 generations. Two ex- 
amples were given in the previous chapter: 'I'he 5-bit R-pen- 
tomino and the pi-heptomino of T bits. The first generation of 
the pi-heptomino, by the way, reappears in tick 31, but shifted 
9 cells. Because of interaction with its exhaust, in generation 
61, it fails to make it as a spaceship. 

Other examples of Methuselahs are shown in Figure 154. 
The first one, u is the smallest known. It becomes the R-pen- 
tomino in two ticks, giving it a life of 1,105 generations. Me- 
thuselah b stabilizes (six blocks, twelve blinkers, one loaf) after 
608 generations, c (the thunderbird) lasts 243 ticks, and d goes 
to 1,108. The heptomino e stabilizes after 148 ticks, having 
produced three blocks, a ship, and two gliders. The acorn f ,  
found by Charles Corderman, is the most amazing Methuselah 
known. It lives for 5,206 generations! When it stabilizes as an 
"oak" of 633 bits, it has produced numerous gliders, 13 of 
which escape. 

Figure 154 

Methusalehs 

The Honeywell group tracked the life histories of the first 
nine members of the 5-cell crosses, of which the simplest are 
shown in Figure 155. The first is a portion of an infinite trellis 

Figure 155 

The five-cell cross series 
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consisting of solid horizontal and vertical rows, two cells apart, 
that surround an infinity of empty 2 x 2 squares. Like the infi- 
nite trellis, this cross vanishes in one tick. The next cross dis- 
appears in 8 ticks. The third ends with many traffic lights in 6 
ticks, and the fourth stabilizes after 34 ticks with eight blinkers, 
having produced a truly spectacular display of fireworks along 
the way. (Its 19th generation is a beautiful ring of blocks with 
a checkerboard in the center.) Order-5 and order-7 crosses in 
this sequence stabilize as four pulsars in 36 and 21 ticks re- 
spectively, orders 6 and 8 go to four pulsars and a tub in 36 
and 21 ticks respectively, and order-9 ends after 42 ticks with 
16 blocks and 8 blinkers. 

William Gosper, in 1971, found the eater (fishhook), the in- 
credible 7-bit stable form shown with circles in Figure 156. It 
has the ability to consume an enormous variety of "Life" forms, 
then quickly repair itself. The first four pictures show the eater 
about to ingest a glider, blinker, pre-beehive, and a lightweight 
spaceship. In the fifth picture two eaters are poised to devour 
one another. This is prevented by their amazing ability to self- 
repair, so the pattern oscillates with period 3. The last picture 
shows how two gliders collide to produce an eater on the 13th 
tick. In recent years eaters of larger size have been discovered, 
with a variety of bizarre feeding habits. 

Figure 156 

The eater (circles) and some of its prey 

Extensive investigations have been made of different kinds 
of agars (regular patterns that are infinite in two dimensions), 
the procrastinators (forms that take more than 50 ticks to 
become a single simple stable form), and puffer trains. The 
puffers leave a trail of permanent smoke. Three are shown in 
Figure 15'7. The first, discovered by Gosper, is an engine es- 
corted between two lightweight spaceships. It puffs along at 
half the speed of light until after more than 1,000 ticks it de- 
velops a period of 140. Paul Schick discovered an entire family 
of puffer trains, the simplest of which, shown in b, leaves noth- 
ing behind. The pair of mirror-image lightweight spaceships 
pull a l o n ~  the s) >nmetrical heptomino engine with a period of 
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Figure 157 

Puffer trains 

12. The switch-engine puffer train c in Figure 157, moves too 
slowly (one-twelfth the speed of light) to be of much use. It 
travels diagonally like a glider, eventually producing eight 
blocks every 288 generations. No escorting spaceships are 
needed, but without the stabilizing block its smoke catches up 
with the engine and destroys it. 

The first Garden of Eden pattern, reproduced in Figure 
158, was found by Roger Banks in 1971. It required an enor- 
mous computer search of all possible predecessor patterns. 
The confining rectangle (9 x 33) holds 226 bits. The only other 
Garden of Eden pattern known was found by a French group 
in 1974, led by J. Hardouin-Duparc, at the University of Bor- 
deaux. It is inside a rectangle of 6 x 122. 

Figure 158 

A garden of Eden 

Although any "Life" pattern generates only one successor, 
the converse is not true. A given pattern may have two or more 
predecessors. This is why searching for Garden of Eden pat- 
terns is so difficult-the computer has to look at all possible 
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predecessors at each backward tick. If the universe eventually 
turns out to be one monstrous cellular automaton, one may 
reasonably ask whether there is an initial Garden of Eden state 
that required a creation because it has no predecessor pattern. 
By the way, the fact that a "son" of a Garden of Eden pattern 
may have more than one "father" has led Conway to offer $50 
to the first person who can find a pattern that has a father but 
no grandfather. The existence of such a pattern is still an open 
question. 

The most spectacular of the new developments in "Life" in- 
volve gliders and their collisions. Gosper's group found new 
types of glider guns, more compact spaceship factories pro- 
duced by glider crashes, and innumerable "Life" forms that eat 
gliders or reflect them back at different angles. Before its 
members broke up to go their separate ways, the M.I.T. group 
managed to complete a 17-minute film about their discoveries 
that has become a classic. 

A pure glider generator is one that generates one or more 
gliders with no debris left over. Two elegant ones found by the 
Honeywell group are shown in Figure 159. The biloaf left in 
four ticks produces two gliders going opposite ways. The 4-8- 
12 diamond right in 15 ticks forms four gliders headed in four 
different directions. Half a dozen 5-bit forms turn into a single 
glider, and more than a hundred 6-bit forms do the same. A 
search for predecessors of the original Gosper glider gun 
turned up a pattern of 21 bits that is the smallest known, 
though it seems possible there may be a way of positioning just 
four gliders (20 bits) so that they crash and form a gun. 

Figure 159 

Two glider-generators 

I mentioned earlier Gosper's way of placing eight guns so 
that their gliders crash to form a spaceship factory which fires 
off a middleweight spaceship about every 300 generations. 
Gosper soon improved this to four guns and one pentadecath- 
lon. This pattern produces a factory that shoots off lightweight 
or middleweight spaceships (depending on the timing) every 
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60 ticks. Wainwright positioned three "newguns" that generate 
a middleweight spaceship every 46 generations. 

Lifenthusiasts have investigated thousands of ways that glid- 
ers and spaceships can collide to produce an incredible variety 
of stable patterns (including the null pattern of nothing at all), 
as well as patterns that change, and patterns that produce new 
gliders andlor spaceships. Figure 160 shows some unusual col- 
lisions found by the Waterloo group. On the left is the pattern 
just before the crash; on the right, the outcome after the indi- 
cated number of ticks ( t  = ticks). 

The breeder is one of the most remarkable life forms found 
by the M.I.T. group; remarkable because its population growth 
is so rapid. Figure 161 is a photograph of a computer scope 
that shows the breeder breeding gliders. The little dots are 
gliders, about 1,000 of them inside the triangular region. The 
breeder consists of ten puffer trains moving east, their exhaust 
carefully controlled so that they generate gliders that crash to 
form guns that instantly spring into action along the horizontal 
axis. The picture shows the breeder at generation 3,333. 
Thirty guns are firing northeast at a rate of one glider per tick. 
The firing rate increases without limit until at about tick 6,500 
the number of gliders starts to exceed the age of the breeder. 
Seeing the breeder in action was one of the most awesome high 
points of my visit to M.I.T. 

When I wrote the previous chapter for the February 1971 
issue of Scientijic American, I raised the question of ~vhether the 
rules of "Life" permit the construction of a universal com- 
puter. I had the pleasure of reporting the next month that 
"Life" is indeed universal. Gosper at hf.1.T. and Conway at 
Cambridge independently "universalized" the "Life" space by 
showing how gliders could be used as pulses to simulate a Tur- 
ing machine. Exactly how this is done is too complicated to go 
into here, but you will find it clearly outlined by Conway in the 
second volume of Winning Ways, the book he coauthored with 
Elwyn Berlekamp and Richard Guy. 

The universality of "Life" means that it is possible in princi- 
ple to use moving gliders to perform any calculation that can 
be perfbrmed by the most powerful digital computer. For ex- 
ample, one can arrange a formation of glider guns, eaters, and 
other "Life" forms so that a stream of gliders, with gaps in the 
right places, will calculate pi, e, the square root of 2, or any 
other real number to any number of decimal places. Of course, 
it would be a very inefficient way to do such calculations, none- 
theless they are possible if you have a large enough field and 
sufficient ingenuity to build the needed "machine.'' 

In Winning Wajs Conway uses Fermat's last theorem to illus- 
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Figure 161 

The breeder 

trate "Life's" computing power as well as its limitations. A 
"Life" machine can be constructed that will steadily test the val- 
ues of the four variables in Fermat's famous formula. The pro- 
gram could be designed to halt, say by fading away, if it found 
a counterexample to Fermat's conjecture. On the other hand, 
if the conjecture is true, the "Life" machine will keep searching 
forever for the right combination of values. We know from un- 
decidability theory that there is no way to know in advance 
whether any given problem is solvable, therefore there is no 
way to know in advance whether any given pattern in "Life" 
will continue to change or to reach a stable end. 

In 1981, in a letter telling me he had found "Life" to be uni- 
versal, Conway added a note on the back of the envelope. "If 
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(ask Gosper) gliders can crash to form a pentadecathlon, then 
I can produce self-replicating machines, and it's undecidable 
whether a given machine is self-replicating." 

I cannot remember if I asked Gosper this question, but at any 
rate, gliders can crash to form pentadecathlons, and Conway states 
flatly, in Winning Ways, that self-replicating machines can be con- 
structed in "Life" space. We are not speaking now of moving 
forms like spaceships, but of machines that will build exact copies 
of themselves. The  original machine may either remain in the 
space or  it can be programmed to self-destruct after it has repli- 
cated itself. So far as I know no one has built such a machine, but if 
Conway is right (his proof has not been published), it is possible to 
build them. 
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Conway also asserts in Winning Ways that he has proved that 
"Life" patterns exist which move steadily in any desired ra- 
tional direction, recovering their initial forms after a fixed 
number of moves. As for spaceships (which move without pro- 
ducing smoke), no new ones have been discovered other than 
those already known to Conway in 1970. 

Conway goes on to speculate that if you imagine a sufficiently 
large broth of randomly placed bits, one would expect that by 
pure chance self-replicating creatures would arise, and those best 
adapted to survive would live longer than the others. Interactions 
with the environment would produce mutations. As in organic 
evolution, most mutations would be harmful, but some would 
have survival value. "It's probable," Conway writes, "given a 
large enough 'Life' space, initially in a random state, that after a 
long time, intelligent self-reproducing animals will emerge and 
populate some parts of the space." 

I would prefer the word "possible" here to "probable," but 
there is no question that "Life's" analogy with biological evolu- 
tion on earth is remarkable. One science fantasy writer, the 
widely read Piers Anthony, plays with this theme in his 1976 
novel, Ox. Diagrams of "Life" patterns head each chapter, and 
the book's plot involves intelligent, sentient beings called "pat- 
tern entities" or  "sparkle clouds" that have evolved by just the 
process Conway imagines, in a cellular space of dimensions 
higher than our spacetime. Their beha~:ior is totally deter- 
mined by transition rules, but like us they imagine themselves 
to have free ~rills. There is an amusing Chapter 11 in which 
Cal explains the rules of "Life" to Aquilon and she experi- 
ments with some simple patterns. 

"Try this one," Cal suggests, giving her the R-pentomino: 

"That's similar to the one I just did. You've just tilted it 
sideways, which makes no topological difference, and added 
one dot." 

"Try it," he repeated. 
She tried it, humoring him. But soon it was obvious that 

the solution was not a simple one. Her numbered patterns 
grew and changed, taking up more and more of the working 
area. The problem ceased to be merely intriguing; it became 
compulsive. Cal well understood this; he had been through it 
himself. She was oblivious to him now, her hair falling across 
her face in attractive disarray, teeth biting lips. "What a dif- 
ference a dot makes!" she muttered. 

In Chapter 13 Aquilon, still tracking the pattern's fate, ex- 
claims: "This K-pentomino is a menace! I'm getting a head- 
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ache! It just goes on and on." Gosper once said that to him the 
most impressive aspect of Conway's game is how it demon- 
strates the impossibility of predicting the outcome of processes 
that are rigidly determined by extremely simple rules of 
change. After Aquilon has learned about gliders and glider 
guns, she remarks: "If I were a pattern, I'd be very careful 
where I fired my gliders! That game plays a rough game!" 

"It does," Cal replies. "As does all nature." 
Much work has been done on variants of "Life": playing by 

other rules, and on other lattices such as triangular or hexag- 
onal, and in dimensions higher than two. One-dimensional 
"Life" has also been explored-see the articles by Jonathan 
Millen and Munemi Miyamoto. "Life" has been investigated on 
wraparound fields that are cylinders and toruses, and even 
Moebius surfaces and Klein bottles. Some interesting results 
have emerged, but nothing compares with "Life" in the com- 
bination of richness of interesting forms with such simple tran- 
sition rules. This is a tribute to Conway's intuition, and to the 
thoroughness with which he and his friends initially explored 
hundreds of alternate possibilities, including games with two or 
more sexes. Attempts have also been made to invent competi- 
tive games based on "Life," for two or more players, but so far 
without memorable results. 

"Life" may have some practical uses. There have been at- 
tempts to apply it to socioeconomic systems, and a generaliza- 
tion of "Life" has been suggested as an explanation of why 
some nebulas have spiral arms (see the article by Kenneth 
Brecher). Arthur Appel and Arthur Stein, at IBM, found a 
way of applying rules similar to "Life's" in programs designed 
to identify the hidden edges in computer drawings of' solid 
shapes. 

I spoke earlier of the possibility that the universe is a vast 
cellular automaton, operated by the movements of ultimate 
particles (perhaps not yet discovered) according to unknown 
transition rules. Physicists are now searching for a GUT 
(Grand Unification Theory) that will bring together all the 
forces of nature into one unified theory based on a gauge 
structure. As physicist Claudio Rebbi explained in his article on 
"The Lattice Theory of Quark Confinement" (ScientiJic Arneri- 
can, February 1983), a popular approach is to think of the 
gauge game as being played by particles on an abstract lattice 
of four-dimensional cubes-a sort of spacetime "Life." This 
suggestion was made in 1974 by Kenneth Wilson, and is now 
known as lattice gauge theory. 

The game metaphor for GUT carries with it the implication 
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that the basic particles of the universe (pieces), the fundarnen- 
tal laws (transition rules), and spacetime (board) are not logical 
necessities. They are simply given. It is folly, as Hunle and the 
positivists have taught us, to ask why they are what they are. 
Like chess players, physicists should accept the game and enjoy 
their (endless?) task of trying to guess how it is played, not 
waste energy speculating on why the game is designed the way 
it is. Now we are back to Leibniz and his stupendous vision of 
a transcendent Mind, contemplating all possible games, then 
choosing for our universe the Game that best suits the Mind's 
incomprehensible purposes. 
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Postscript 1994

All readers of Chapter 2 surely know that in 1993 Andrew Wiles
announced a proof of Fermat’s last theorem. After much fanfare
in the media, and articles in science and math periodicals, a seri-
ous gap was found in the proof. Wiles is confident he can over-
come the snag, but at the time of this postscript the flaw had not
been corrected. In September of 1994 Fermat’s conjecture
became a theorem at last when R. Taylor and A. Wiles
announced they had found a way around the difficulty of Wiles’s
earlier approach.

Noam P. Elkies found an infinity of fourth powers that equal
the sum of three distinct fourth powers. See his paper “On A4 +
B4 + C4 = D4,” in Mathematics of Computation, Vol. 51 (1988),
pages 825–835. A later computer search by Roger Frye found
only one solution for D4 less than one million: 958004 + 4145604

+ 2175194 = 4224814. No wonder the question remained so
long unanswered!

Minimum lengths for Golomb rulers through 19 marks have
now been proved, extending the chart shown on page 163. The
shortest 12-ruler is 2,4,18,5,11,3,12,13,7,1,9 (length 85), and
the shortest 13 ruler is 2,3,20,12,6,16,11,15,4,9,1,7 (length
106). Both were proved unique by Douglas Robertson. The
shortest rulers of 14 and 15 marks are 127 and 151. The latter
was shown unique in 1985 by James B. Shearer. The shortest
ruler of 16 marks has a length of 179.

In 1993 W. Olin Sibert proved that 199 and 216 are optimal
lengths for 17 and 18 marks. Apostolos Dollas has shown that the
shortest length for 19 nodes is 246. He is planning to work on 20
marks, for which the conjectured minimum length is 283. More
than 200 papers on Golomb rulers have appeared since I first
introduced them in the column here reprinted as Chapter  15.

The total number C(n) of n × n Costas arrays (two-dimension-
al analogs of Golomb rulers) has now been enumerated for all n
equal or less than 22. Much of this work has been done by Oscar
Moreno and his group at the University of Puerto Rico, at Rio
Piedras. It is still not known whether there are Costas arrays for
n = 31 and 32.




