


Trapdoor Ciphers 

Few persons can be made to believe that it is not 
quite an easy thing to invent a method of secret 
writing which shall baffle investigation. Yet it 
may be roundly asserted that human ingenuity 
cannot concoct a cipher which human ingenuity 
cannot resolve. 

The upward creep of postal rates accompanied by the 
deterioration of postal service is a trend that may or may not continue, 
but as far as most private communication is concerned, in a few decades 
it probably will not matter. The reason is simple. The transfer of infor- 
mation will surely be much faster and much cheaper by "electronic 
mail" than by conventional postal systems. Before long it should be 
possible to go to any telephone, insert a message into an attachment and 
dial a number. The telephone at the other end will print out the message 
at once. 

Government agencies and large businesses will presumably be the 
first to make extensive use of electronic mail, followed by small busi- 
nesses and private individuals. When this starts to happen, it will become 
increasingly desirable to have fast, efficient ciphers to safeguard infor- 
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mation from electronic eavesdroppers. A similar problem is involved in 
protecting private information stored in computer memory banks from 
snoopers who have access to the memory through data-processing 
networks. 

It  is hardly surprising that in recent years a number of mathemati- 
cians have asked themselves: Is it possible to devise a cipher that can be  
rapidly encoded and decoded by computer, can be  used repeatedly 
without changing the key and is unbreakable by sophisticated cryptana- 
lysis? The surprising answer is yes. The breakthrough is scarcely two 
years old, yet it bids fair t o  revolutionize the entire field of secret com- 
munication. Indeed, it is so revolutionary that all previous ciphers, 

A CIPHER THAT DEFEATED POE 

GE JEASGDXV, 
ZIJ GL MW, LAAM, XZY ZMLWHFZEK EJLVDXW KWKE TX LBR ATGH LBMX 

AANU BAI VSMUKKSS PWN VLWK AGH GNUMK WDLNZWEG JNBXW OAEG ENWB 

ZWMGY MO MLW WNBX MW AL PNFDCFPKH WZKEX HSSF XKIYAHUL. MK NUM 

YEXDM WBXY SBC HV WYX PHWKGNAMCUK? 

In 1839, in a regular column Edgar Allan Poe contributed to a Philadel- 
phia periodical, Alexander's Weekly Messenger, Poe challenged readers to 
send him cryptograms (monoalphabetic substitution ciphers), asserting 
that he would solve them all "forthwith." One G .  W. Kulp submitted a 
ciphertext in longhand. It was printed as shown above in the issue of 
February 26, 1840. Poe "proved" in a subsequent column that the cipher 
was a hoax-"a jargon of random characters having no meaning 
whatsoever." 

In 1975 Brian J. Winkel, a mathematician at Albion College, and Mark 
Lyster, a chemistry major in Winkel's cryptology class, cracked Kulp's 
cipher. It is not a simple substitution-Poe was right-but neither is it 
nonsense. Poe can hardly be blamed for his opinion. In addition to a major 
error by Kulp there are 15 minor errors, probably printer's mistakes in 
reading the longhand. 

Winkel is an editor of a new quarterly, Cuyptologia, available from Albion 
College, Albion, MI 49224. The magazine stresses the mathematical and 
computational aspects of cryptology. The first issue (January 1977) tells the 
story of Kulp's cipher and gives it as a challenge to readers. So far only 
three readers have broken it. I shall give the solution in the answer section. 
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together with the techniques for cracking them, may soon fade into 
oblivion. 

An unbreakable code can be unbreakable in theory or unbreakable 
only in practice. Edgar Allan Poe, who fancied himself a skilled cryptan- 
alyst, was convinced that no cipher could be invented that could not also 
be "unriddled." Poe was certainly wrong. Ciphers that are unbreakable 
even in theory have been in use for half a century. They are "one-time 
pads," ciphers that are used only once, for a single message. Here is a 
simple example based on a shift cipher, sometimes called a Caesar 
cipher because Julius Caesar used it. 

First write the alphabet, followed by the digits 0 through 9. (For 
coding purposes 0 represents a space between words, and the other 
digits are assigned to punctuation marks.) Below this write the same 
sequence cyclically shifted to the right by an arbitrary number of units, 
as is shown in Figure 90. Our cipher consists in taking each symbol in 
the plaintext (the message), finding it in the top row and replacing it with 
the symbol directly below it. The result is a simple substitution cipher, 
easily broken by any amateur. 

In spite of its simplicity, a shift cipher can be the basis of a truly 
unbreakable code. The trick is simply to use a different shift cipher for 
each symbol in the plaintext, each time choosing the amount of shift at 
random. This is easily done with the spinner shown in Figure 91. Sup- 
pose the first word of plaintext is THE. We spin the arrow and it stops on 
K. This tells us to use for encoding T a Caesar cipher in which the lower 
alphabet is shifted 10 steps to the right, bringing A below K as is shown in 
the illustration. T, therefore, is encoded as J. The same procedure is 
followed for every symbol in the plaintext. Before each symbol is en- 
coded, the arrow is spun and the lower sequence is shifted accordingly. 
The result is a ciphertext starting with J and a cipher "key" starting with 
K. Note that the cipher key will be the same length as the plaintext. 

To use this one-time cipher for sending a message to someone -call 
him Z-we must first send Z the key. This can be done by a trusted 
courier. Later we send to Z, perhaps by radio, the ciphertext. Z decodes 

A B C D E  F G H I  J K L M N O P Q R  
0 1 2 3 4  5 6 7 8 9 A B C D E F G H  

S T U V W X Y Z 0 1  2 3 4  5 6  7 8 9  
l J K L M N O P Q R S T U V W X U Z  

Figure 90 
A Caesar cipher 
with a 10-shift 



Figure 91 Randomizer for encoding a "one-time pad" 

it with the key and then destroys the key. The key must not be used again 
because if two such ciphertexts were intercepted, a cryptanalyst might 
have sufficient structure for breaking them. 

It is easy to see why the one-time cipher is uncrackable even in 
principle. Since each symbol can be represented by any other symbol, 
and each choice of representation is completely random, there is no 
internal pattern. To put it another way, any message whatever having the 
same length as the ciphertext is as legitimate a decoding as any other. 
Even if the plaintext of such a coded message is found, it is of no future 
help to the cryptanalyst because the next time the system is used the 
randomly chosen key will be entirely different. 

One-time pads are in constant use today for special messages be- 
tween high military commanders, and between governments and their 
high-ranking agents. The "pad" is no more than a long list of random 
numbers, perhaps printed on many pages. The sender and receiver must 
of course have duplicate copies. The sender uses page 1 for a cipher, 
then destroys the page. The receiver uses his page 1 for decoding, then 
destroys his page. When the Russian agent Rudolf Abel was captured in 
New York in 1957, he had a one-time pad in the form of a booklet about 
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the size of a postage stamp. David Kahn, who tells the story in his 
marvelous history The Codebreakers, says that the one-time pad is the 
standard method of secret radio communication used by the U.S.S.R. 
The famous "hot line" between Washington and Moscow also makes use 
of a one-time pad, the keys being periodically delivered through the two 
embassies. 

If the one-time pad provides absolute secrecy, why is it not used for 
all secret communication? The answer is that it is too impractical. Each 
time it is employed, a key must be sent in advance and the key must be at 
least as long as the anticipated message. "The problem of producing, 
registering, distributing and canceling the keys," writes Kahn, "may 
seem slight to an individual who has not had experience with military 
communications, but in wartime the volumes of traffic stagger even the 
signal staffs. Hundreds of thousands of words may be enciphered in a 
day; simply to generate the millions of key characters required would be 
enormously expensive and time-consuming. Since each message must 
have its unique key, application of the ideal system would require ship- 
ping out on tape at the very least the equivalent of the total communica- 
tions volume of a war." 

Let us qualify Poe's dictum by applying it only to ciphers that are 
used repeatedly without any change in the key. Until recently all cipher 
systems of this kind were known to be theoretically breakable provided 
the code breaker has enough time and enough ciphertext. Then in 1975 a 
new kind of cipher was proposed that radically altered the situation by 
supplying a new definition of "unbreakable," a definition that comes 
from the branch of computer science known as complexity theory. 
These new ciphers are not absolutely unbreakable in the sense of the 
one-time pad, but in practice they are unbreakable in a much stronger 
sense than any cipher previously designed for widespread use. In princi- 
ple these new ciphers can be broken, but only by computer programs 
that run for millions of years! 

The three men responsible for this remarkable breakthrough are 
Whitfield Diffie and Martin E. Hellman, both electrical engineers at 
Stanford University, and Ralph Merkle, then an undergraduate at the 
University of California, Berkeley. Their work was partly supported by 
the National Science Foundation in 1975 and was reported by Diffie and 
Hellman in their 1976 paper "New Directions in Cryptography". In it 
Diffie and Hellman show how to create unbreakable ciphers that do not 
require advance sending of a key or even concealment of the method of 
encoding. The ciphers can be efficiently encoded and decoded, they can 
be used over and over again and there is a bonus: The system also 
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provides an "electronic signature" that, unlike a written signature, can- 
not be forged. If Z receives a "signed" message from A, the signature 
proves to Z that A actually sent the message. Moreover, A's signature 
cannot be forged by an eavesdropper or even by Z himself! 

These seemingly impossible feats are made possible by what Diffie 
and Hellman call a trapdoor one-way function. Such a function has the 
following properties: (1) it will change any positive integer x to a unique 
positive integer y; (2) it has an inverse function that changes y back to x; 
(3) efficient algorithms exist for computing both the forward function 
and its inverse; (4) if only the function and its forward algorithm are 
known, it is computationally infeasible to discover the inverse 
algorithm. 

The last property is the curious one that gives the function its name. 
It is like a trapdoor: easy to drop through but hard to get up through. 
Indeed, it is impossible to get up through the door unless one knows 
where the secret button is hidden. The button symbolizes the "trapdoor 
information." Without it one cannot open the door from below, but the 
button is so carefully concealed that the probability of finding it is 
practically zero. 

Before giving a specific example, let us see how such functions make 
the new cryptographic systems possible. Suppose there is a group of 
businessmen who want to communicate secrets to one another. Each 
devises his own trapdoor function with its forward and backward algo- 
rithms. A handbook is published in which each company's encoding 
(forward) algorithm is given in full. The decoding (inverse) algorithms 
are kept secret. The handbook is public. Anyone can consult it and use it 
for sending a secret message to any listed company. 

Suppose you are not a member of the group but you want to send a 
secret message to member Z. First you change your plaintext to a long 
number, using a standard procedure given in the handbook. Next you 
look up Z's forward algorithm and your computer uses it for rapid 
encoding of the ciphertext. This new number is sent to Z. It does not 
matter at all if the ciphertext is overheard or intercepted because only Z 
knows his secret decoding procedure. There is no way a curious cryp- 
tanalyst, studying Z's public encoding algorithm, can discover Z's de- 
coding algorithm. In principle he might find it, but in practice that 
would require a supercomputer and a few million years of running time. 

An outsider cannot "sign" a message to 2, but any member of the 
group can. Here is the devilishly clever way the signature works. Sup- 
pose A wants to sign a message to Z. He first encodes the plaintext 



number by using his own secret inverse algorithm. Then he encodes the 
ciphertext number a second time, using 2's public algorithm. After Z 
receives the ciphertext, he first transforms it by applying his own secret 
decoding algorithm, then he applies A's public encoding algorithm. Out 
comes the message! 

Z knows that only A could have sent this doubly encoded ciphertext 
because it made use of A's secret algorithm. A's "signature" is clearly 
unforgeable. Z cannot use it to send a message purporting to come from 
A because Z still does not know A's secret decoding algorithm. Not only 
that, but if it were to become necessary at some future time to prove to a 
third party, say a judge in a court of law, that A did in fact send the 
message, this can be done in a way that neither A,  Z nor anyone else can 
dispute. 

Diffie and Hellman suggested in their paper a variety of trapdoor 
functions that might be used for such systems. None is quite what is 
desired, but early in 1977 there was a second breakthrough. Ronald L. 
Rivest, Adi Shamir and Leonard Adleman, computer scientists at the 
Massachusetts Institute of Technology, developed an elegant way to 
implement the Diffie-Hellman system by using prime numbers. 

Rivest obtained his doctorate in computer science from Stanford 
University in 1973 and is now an associate professor at M.I.T. Once he 
had hit on the brilliant idea of using primes for a public cipher system, 
he and his two collaborators had little difficulty finding a simple way to 
do it. Their work, supported by grants from the NSF and the Office of 
Naval Research, appears in A Method of Obtaining Digital Signatures and 
Public-Key Cryptosystems (Technical Memo 82, April 1977), issued by the 
Laboratory for Computer Science, Massachusetts Institute of Technol- 
ogy, 545 Technology Square, Cambridge, MA 02139. 

To explain Rivest's system we need a bit of background in prime- 
number theory. The fastest-known computer programs for deciding 
whether a number is prime or composite (the product of primes) are 
based on a famous theory of Fermat's stating that if p is prime, and a is 
any positive number less than p, then ap-' = 1 (modulo p). Suppose we 
want to test a large odd number n (all primes except 2 are of course odd) 
for primality. A number a is selected at random and raised to the power 
of n - 1, then divided by n. If the remainder is not 1, n cannot be prime. 
For example, 2*' - ' = 4 (modulo 21); therefore 2 1 is composite. What, 
however, is the connection between 2 (the randomly chosen a )  and 3 
and 7, the two prime factors of 21? There seems to be no connection 
whatever. For this reason Fermat's test is useless in finding prime fac- 



tors. It does, however, provide a fast way of proving that a number is 
composite. Moreover, if an odd number passes the Fermat test with a 
certain number of random a's, it is almost certainly prime. 

This is not the place to go into more details about computer algo- 
rithms for testing primality, which are extremely fast, or algorithms for 
factoring composites, all of which are infuriatingly slow. I content my- 
self with the following facts, provided by Rivest. They dramatize the 
staggering gap in the required computer time between the two kinds of 
testing. For example, to test a 130-digit odd number for primality re- 
quires at the most (that is, when the number actually is prime) about 
seven minutes on a PDP-10 computer. The same algorithm takes only 45 
seconds to find the first prime after 2200. (It is a 61-digit number equal to 
2200 + 235.) 

Contrast this with the difficulty of finding the two prime factors of a 
125- or 126-digit number obtained by multiplying two 63-digit primes. If 
the best algorithm known and the fastest of today's computers were 
used, Rivest estimates that the running time required would be about 40 
quadrillion years! (For a good discussion of computer methods of factor- 
ing into primes, see Donald E. Knuth's Seminumerical Algorithms, Sec- 
tion 4.5.4.) It is this practical impossibility, in any foreseeable future, of 
factoring the product of two large primes that makes the M.I.T. public- 
key cipher system possible. 

To explain how the system works, the M.I.T. authors take as an 
example of plaintext a paraphrase of a remark in Shakespeare's Julius 
Caesar (Act 1, Scene 2): ITS ALL GREEK TO ME. 

This is first changed to a single number, using the standard key: 
A = 0 1, B = 02, . . . , z = 26, with 00 indicating a space between words. 
The number is 0920190001 12 120007 180505 1 100201 5001 305. 

The entire number is now encoded by raising it to a fixed power s, 
modulo a certain composite number r. The composite r is obtained by 
randomly selecting (using a procedure given in the M.I.T. memoran- 
dum) two primes, p and q, each of which is at least 40 digits long, and 
multiplying them together. The number s must be relatively prime to 
p - 1 and q - 1. Numbers s and r are made public, to be used in the 
encoding algorithm. The encoding operation can be done very effi- 
ciently even for enormous values of r; indeed, it requires less than a 
second of computer time. 

The two prime factors of r are withheld, to play a role in the secret 
inverse algorithm. This inverse algorithm, used for decoding, consists in 
raising the ciphertext number to another power t, then reducing it 
modulo r. As before, this takes less than a second of computer time. The 



Tropdoor Ciphers I 9  I 

number t, however, can be calculated only by someone who knows p 
and q, the two primes that are kept secret. 

If the message is too long to be handled as a single number, it can be 
broken up into two or more blocks and each block can be treated as a 
separate number. I shall not go into more details. They are a bit techni- 
cal but are clearly explained in the M.I.T. memo. 

To encode ITS ALL GREEK TO ME, the M.I.T. group has chosen s = 9007 
and r =  1143816257578888676692357799761466120102182967212423 
62562561842935706935245733897830597123563958705058989075147 
599290026879543541. 

The number r is the product of a 64-digit prime p and a 65-digit 
prime q, each randomly selected. The encoding algorithm changes the 
plaintext number (09201 . . . ) to the following ciphertext number: 
199935131497805100452317122740260647423204017058391463103703 
717406259716089489275043099209626725826750128935544613538237 
69748026. 

As a challenge to Scientific American readers the M.I.T. group has 
encoded another message, using the same public algorithm. The cipher- 
text is shown in Figure 92. Its plaintext is an English sentence. It was first 
changed to a number by the standard method explained above, then the 
entire number was raised to the 9007th power (modulo r) by the shortcut 
method given in the memorandum. To the first person who decodes this 
message the M.I.T. group will give $100. 

To prove that the offer actually comes from the M.I.T. group, the 
following signature has been added: 167 1786 1 15038084424601527 1 
389168398245436901032358311217835038446929062655448792237114 
490509578608655662496577974840004057020373. 

The signature was encoded by using the secret inverse of the encod- 
ing algorithm. Since the reader has no public encoding algorithm of his 
own, the second encoding operation has been omitted. Any reader who 

Figure 92 
A ciphertext challenge worth 4100 



has access to a computer and the instructions in the M.I.T. memoran- 
dum can easily read the signature by applying the M.I.T. group's public 
encoding algorithm, that is, by raising the above number to the 
power of 9,007, then reducing it modulo r. The result is 0609181 
920001915122205180023091419001514050008211404180504000415121 
201 18 19. It translates (by the use of the standard key) to FIRST SOLVER WNS 

ONE HUNDRED DOLLARS. This signed ciphertext could come only from the 
M.I.T. group because only its members know the inverse algorithm by 
which it was produced. 

Rivest and his associates have no proof that at some future time no 
one will discover a fast algorithm for factoring composites as large as the 
r they used or will break their cipher by some other scheme they have 
not thought of. They consider both possibilities extremely remote. Of 
course, any cipher system that cannot be proved unbreakable in the 
absolute sense of one-time pads is open to sophisticated attacks by 
modern cryptanalysts who are trained mathematicians with powerful 
computers at their elbow. If the M.I.T. cipher withstands such attacks, as 
it seems almost certain it will, Poe's dictum will be hard to defend in any 
form. 

Even in the unlikely event that the M.I.T. system is breakable, there 
are probably all kinds of other trapdoor functions that can provide 
virtually unbreakable ciphers. Diffie and Hellman are applying for pat- 
ents on cipher devices based on trapdoor functions they have not yet 
disclosed. Computers and complexity theory are pushing cryptography 
into an exciting phase, and one that may be tinged with sadness. All over 
the world there are clever men and women, some of them geniuses, who 
have devoted their lives to the mastery of modern cryptanalysis. Since 
World War I1 even those government and military ciphers that are not 
one-time pads have become so difficult to break that the talents of these 
experts have gradually become less useful. Now these people are stand- 
ing on trapdoors that are about to spring open and possibly drop them 
completely from sight. 

ANSWERS 

In spite of the many errors in the published version of the cipher Poe 
could not solve, about a dozen readers, including 16-year-old James H. 
Andres, were able to crack it. The plaintext is as follows: 
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MR. ALEXANDER, 

HOW IS IT, THAT, THE MESSENGER ARRIVES HERE AT THE SAME TIME WITH THE 

SATURDAY COURIER AND OTHER SATURDAY PAPERS WHEN ACCORDING TO THE DATE 

IT IS PUBLISHED THREE DAYS PREVIOUS. IS THE FAULT WITH YOU OR THE POSTMASTERS? 

The cipher is a polyalphabetic substitution cipher working with 12 
alphabets keyed by the words "United States." Each letter indicates the 
degree of shift for a Caesar cipher. Thus the alphabet key for M, the first 
letter of the plaintext, is A = u, B = v, c = w and so on. For R, the second 
letter of the plaintext, the key is A = N, B = o, c = P and so on. 

There were 16 errors in the published cryptogram: first, J was given 
as the third letter instead of I, and second, the fifth letter in the message 
was omitted. If the second mistake had not been made, Poe might have 
guessed the opening to be "Mr. Alexander" and the solution would have 
followed easily. 

As for the $100 challenge cipher, no one has cracked it. Rivest told 
me in 1988 that he no longer has a record of the message or the primes 
he used. However, since I gave the public key, he will be able to verify a 
solution if he receives one. 
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When I wrote the preceding chapter for a column in the 
August 1977 issue of Scientific American, I certainly had not anticipated 
the intense furor it would arouse. As I reported, Ronald Rivest had 
offered to send a copy of the M.I.T. memo giving details about what soon 
came to be known as the RSA cryptosystem (after the initials of the three 
mathematicians) to anyone who sent M.I.T. a stamped self-addressed 
envelope. This offer prompted Joseph Meyer, an angry employee of NSA 
(National Security Agency), to fire off threatening letters to the leaders of a 
coming symposium on cryptography, warning them that public disclosures 
of trapdoor systems violated national security laws. 

M.I.T. had been flooded with some 7,000 requests from all over the 
world for its trapdoor-cipher memo, but Meyers's letter put a stop to the 
mailing. It was almost a year before M.I.T. attorneys concluded that 
the memo violated no laws and allowed the mailing to be resumed. 
Since then an uneasy truce has prevailed between NSA and researchers 
on public-key cryptosystems. There has been no outright censorship and 
no one has gone to jail, but there has been much voluntary censorship by 
mathematicians. High-level research within NSA remains top secret, and 
it is impossible for outsiders such as myself to know what NSA knows. 
The acronym NSA, it has often been said, stands for "Never Say Any- 
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thing" or (reflecting NSA's efforts to keep out of the limelight) "No Such 
Agency." 

It is not hard to understand why NSA became so jittery. Publication 
of seemingly break-proof ciphers obviously allows other nations to adopt 
codes that NSA might be unable to crack, and, as long as there is 
freedom here to publish techniques for breaking such ciphers, any na- 
tion using a breakable code would at once stop using it. Moreover, as I 
implied, if truly unbreakable codes become common around the world, 
it would almost put NSA out of business." 

For many years U.S. banks and corporations have been protecting 
their communications with a system called Data-Encryption Standards 
(DES), developed by IBM and approved by the National Bureau of Stan- 
dards. The DES is a "symmetric" system, meaning that it codes and 
decodes by the same procedure, not an "asymmetric" trapdoor system. 
Nevertheless, it is extremely difficult to break if its key uses a large 
number of bits. There is evidence that NSA persuaded IBM to hold its 
key size down to 56 bits so that in case foreign governments chose to 
adopt DES, NSA could still break their codes. Although DES is still being 
used, Bell Telephone rejected it for security reasons, and it has come 
under heavy fire, especially from Diffie and Hellman, who consider it too 
weak to survive many more years. 

Chief rivals to the RSA system have been the so-called knapsack 
systems. Knapsack problems are a large family of combinatorial tasks 
that involve finding among a set of numbers a subset that will "fit," 
subject to various constraints, inside a hypothetical "knapsack." The 
simplest example, known as the subset-sum problem, is to select from a 
set of integers a subset that will add to a specified value. Subset-sum 
problems are common in the puzzle books of Sam Loyd and Henry 
Dudeney, often in the form of a target whose concentric rings are as- 
signed different numerical values. The task is to determine how shots 
can be fired at the target to obtain hits that add exactly to a given sum. 
Such puzzles are not hard to solve by trial and error when the set of 
numbers is small, but they become enormously difficult as the set in- 
creases in size. 

A combinatorial task is called "hard" if it can be shown that no 
computer algorithm can solve it in "polynomial time." This results from 

*A good discussion of the pros and cons of the debate between NSA's desire for 
security and the mathematical community's desire for openness will be found in David 
Kahn's 1983 book, Kahn on Codes, pp. 198-203. 
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the fact that as a certain parameter of the problem increases, the time 
required to solve the problem grows at an exponential, or "nonpolyno- 
mial," rate. Studies of such problems belong to a new branch of mathe- 
matics and computer science called "complexity theory." A great deal of 
work has been done and is continuing on a special class of problems 
called NP-complete (NP for nondeterministic-polynomial). There are now 
hundreds of such problems, all believed to be hard (though no proof has 
yet been found), and all related so that if an algorithm is found for solving 
one of them in polynomial time, it will at once solve all of them. The 
subset-sum problem is NP-complete. 

Ralph Merkle was the first to base a knapsack system on subset-sum, 
and for a short time it was preferred to RSA because it was faster to code 
and decode. Then in 1982 Adi Shamir, the Israeli member of the M.I.T. 
team, found an algorithm that solved "almost all" knapsack systems in 
polynomial time. Ralph Merkle had offered a $100 prize to anyone 
breaking his system, and Shamir collected it. Merkle then increased the 
complexity of his system to what he called a "multiply iterated" version, 
offering $1,000 to anyone who could break it. Ernest Brickell of Sandia 
Laboratories won the second prize in 1984. The subset-sum problem 
continues, however, to be NP-complete, and it is possible that new 
cipher systems based on it or on other knapsack problems will withstand 
the onslaught of new algorithms. Rivest and B. Chor have proposed a 
knapsack system based on the logarithms of large primes that has not so 
far been cracked by the Sandia techniques. It has been reported that NSA 
thought of knapsack codes about a decade before Merkle did but, in 
keeping with its "Never Say Anything" policy, has kept mum about it. 

The factoring of large numbers is not in the NP-complete family, but 
it is thought to be hard, and so far no one has found a way to factor large 
numbers in polynomial time. However, such techniques have been 
steadily improving along with methods of testing the primality of big 
numbers. Fast procedures for testing primality in "near polynomial 
time" were discovered in the 19801s, and in 1982 a team at Sandia Labs, 
under the direction of Gustavus Simmons, succeeded (with a Cray su- 
percomputer) in factoring the Mersenne number 2521 - 1, an integer of 
157 digits. It took the Cray about 32 hours to find the number's three prime 
factors. Until this breakthrough, mathematicians had estimated that a Cray 
computer would need millions of years to factor a number with more than 
100 digits. 

In view of these new factoring techniques, no one can rule out the 
possibility of a polynomial-time algorithm that would topple the RSA 
system. When the system was first announced, numbers of 80 digits were 
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recommended for the two primes p and q. It is now recommended that 
each of these primes be at least 100 digits. It is best that they be nearly 
the same size, that p plus or minus 1 and q plus or minus 1 should each 
have at least one large prime factor and that the greatest common 
divisor of p - 1 and q - 1 be fairly small. Up to now the RSA system has 
remained secure. Computer chips for fast coding and decoding are 
available from RSA Data Security, Inc., 10 Twin Dolphin Drive, Red- 
wood City, CA 94065. 

A variety of fascinating spin-offs have resulted from the basic ideas 
behind trapdoor codes. It occurred at once to Robert Floyd, a computer 
scientist at Stanford, that such systems could be used by two people in 
communication by mail (paper or electronic) to make random decisions 
in ways that are immune to cheating. For example, two people in touch 
by telephone can agree on the outcome of a random flip of a coin or the 
outcome of a die toss. In June 1978 Floyd sent me a letter outlining how 
two persons could play backgammon by mail or telephone. Picking up 
Floyd's cue, Rivest, Shamir and Adleman wrote a paper on "mental 
poker" in which they explained how two players who did not trust each 
other can actually play a fair game of poker over the phone without using 
any cards." 

Another spin-off was the development of ingenious systems for mak- 
ing secure the transmission of scientific data over electronic networks. 
Consider, for instance, research conducted by instruments that have 
been landed on Mars. Researchers need to be sure that when they link to 
these instruments, they are not linked to some other data source and that 
no one else can alter the data being transmitted or can alter their 
instructions to the instruments. In brief, they need to be assured of the 
network's authenticity, integrity and secrecy.t 

The most startling, almost unbelievable, spin-off has been the devel- 
opment of what are called "zero-knowledge proofs." Suppose a mathe- 
matician discovers a proof of a certain theorem. He wants to convince 
his colleagues that he actually has the proof but doesn't want to disclose 
the proof itself. In 1986 it was shown that this could be done with special 

*"Mental Poker" was first published in 1979 as a technical report of the M.I.T. 
Laboratory of Computer Science. It is reprinted in The Mathematical Gardner, edited 
by David Klarner (Prindle, Weber, and Schmidt, 1981). On coin flipping, see "Coin 
Flipping by Telephone," Manuel Blum, SIGACT News, 15, 1983, pp. 23-27. 
tFor a good summary of recent developments in this area of "telescience," see Peter 
Denning's "Security of Data in Networks," in American Scientist, 75, JanuaryJFebruay 
1987, pp. 12-14. For more detailed information see Dorothy Denning's book 
Cryptography and Data Security (Addison-Wesley, 1982). 
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cases of NP-complete problems. For example, consider the NP-complete 
task of finding a Hamiltonian circuit-a path that goes through all 
points of a graph just once and returns to the starting point. Suppose that 
for a given graph with a large number of points it is not known whether it 
has a Hamiltonian circuit. A mathematician wishes to convince his 
colleague that he has found such a circuit, but he doesn't want to reveal 
the actual circuit. It is hard to comprehend, but there are now tech- 
niques by which he can do this. 

In 1986 Manuel Blum, a computer expert at the University of Califor- 
nia, Berkeley, found a way to apply zero-knowledge proofs to any mathe- 
matical problem! The procedure consists essentially of a dialogue be- 
tween the "prover" and the "verifier" who wants to be convinced that 
the proof exists. The verifier asks a series of random questions, each to 
be answered by yes or no. After the first question, the verifier is con- 
vinced that the prover has a 112 chance of being wrong. After the second 
question, he is convinced the prover has a 114 chance of being wrong. 
After the third question, the probability drops to 118, and so on, with the 
denominators increasing in a doubling series. After, say, 100 questions 
the chance that the prover is lying or doesn't have a proof becomes so 
close to zero that the verifier is convinced beyond any shadow of a 
doubt. After 300 questions the denominator is Z3O0, which is more than 
the number of atoms in the universe. There is never absolute certainty 
that the proof exists, but it is so close to certainty that all doubt vanishes. 
See the Bibliography for some nontechnical pieces about this surprising 
new development. 

Do zero-knowledge proofs have practical applications beyond satis- 
fying the egos of mathematicians who want to announce a discovery 
before anyone else does and before they have published the details? They 
do indeed. Adi Shamir, now at the Weizman Institute in Israel, found a 
way to make use of zero-knowledge methods for creating unforgeable ID 
cards, Think of a computer chip within such a card that can engage in 
rapid dialogue with a computer chip in an instrument used for verifying 
the ID. Within a few seconds enough random questions have been asked 
and answered to convince the verifier "beyond any shadow of a doubt," 
even though the verification cannot be absolutely certain. There have for 
decades been methods of showing that large numbers are almost cer- 
tainly prime, such as by using probabilistic techniques, but finding simi- 
lar methods for validating an ID card came as a big surprise. 

The implications of unforgeable ID cards for military as well as 
civilian use are so enormous that when Shamir applied for a U.S. patent, 
the Army ordered that all documents and materials related to such cards 
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be destroyed. This aroused such a storm of protest from the mathemati- 
cal community that the government quickly rescinded the order, giving 
as its reason that it could not impose such restraints on a mathematician 
who was not a U.S. citizen. No one knows if NSA had any role in this 
attempt at censorship. For a good account of the flap, see the New York 
Times 1987 article cited in the Bibliography. 

Inventions of new public-key cryptosystems and new ways to break 
them, as well as their applications to the security of networks and to 
identification techniques, are occurring so rapidly that by the time you 
read this chapter, much of it may be out of date. The science of crypto- 
logy is undergoing a curious revolution, and no one can predict just 
where it will lead. Let me close with some whimsical dialogue from 
Romanoff and Juliet, a play by Peter Ustinov first produced in New York 
City in 1957. 

The scene occurs at the close of the second act. The General (played 
by Ustinov) is president of what is identified only as the smallest nation 
in Europe. Hooper Molesworth is the country's American ambassador. 
Vadim Romanoff is the Russian ambassador. Molesworth's daughter 
Juliet and Romanoff's son Igor are lovers. 

In the American Embassy, the General says to Molesworth: 

"Incidentally, they [the Russians] know your code." 

Molesworth replies: "We know they know our code. We only give 
them things we want them to know." 

Crossing over to the Russian Embassy, the General remarks to 
Romanoff: 

"Incidentally, they [the Americans] know you know their code." 

Romanoff says: "That does not surprise me in the least. We have 
known for some time that they knew we knew their code. We 
have acted accordingly - by pretending to be duped." 

Returning to the American Embassy, the General says to 
Molesworth: 

"Incidentally, you know-they know you know they know you 
know. . . . ,, 

Molesworth is now genuinely alarmed. 
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"What? Are you sure?" 

"I'm positive." 

"Thank you-thank you! I shan't forget this." 

The General is amazed. 

"You mean you didn't know?" 
"No!" 

In 1957 a dialogue like this was at least believable. Could it occur 
today? Maybe NSA knows. 
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