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Stephen Abbott

On my way to the Math-
Fest 2011 meeting in 
Lexington, Kentucky, 
I had the pleasure 
of meeting Manjul 

Bhargava, this year’s invited Hedrick 
lecturer, on my shuttle bus from the 
airport. Although I knew something of 
his reputation, I did a quick Internet 
search at my hotel when I arrived and 
was inundated with anecdotes about 
the extraordinary talents of this young 
mathematician. 

A math prodigy, he graduated sec-
ond in his class from Harvard, received 
his doctorate at Princeton working 
under Andrew Wiles, and was invited 
to return to Princeton two years later 
as a full professor. His dissertation 
extended, in a dramatic and surprising 
way, some classical results of Gauss 
on quadratic forms, and he has since 
gone on to do groundbreaking work in 
algebraic number theory and combina-
torics. In 2005, he won a Clay Research 
Award, and in 2008 he was awarded 
the Cole Prize. 

Just last year, he announced a proof 
of a special case of the Birch and 
Swinnerton-Dyer conjecture, one of 
the seven Millennium Prize Problems. 
(These are deemed so important and 
so challenging that a complete proof 
would earn its author $1 million from 
the Clay Mathematics Institute.)

This dazzling list of accolades formed 
a curious contrast with the soft-spoken 
and humble friend I had just made on 
the shuttle bus. There was no hint of 
arrogance, no aloofness one might un-
derstandably expect from someone who 
does mathematics at such an elite level. 
I was intrigued and made a careful note 

of when Manjul was scheduled to speak. 
The Earle Raymond Hedrick Lecture 

Series has been a fixture of the MAA’s 
summer meeting. The list of speakers 
over the decades reads like a Who’s 
Who in contemporary mathematics—
Persi Diaconis, William Thurston, John 
Conway, Timothy Gowers. The invited 
speaker gives a series of three lectures 
during the meeting. The first lecture 
is always quite popular, but the typical 
pattern is for attendance to wane as the 
week goes on and as the complexity of 
the ideas goes up. Not so this year. 

Manjul’s finely tuned teaching instincts 
were on display from the beginning, and 
the positive buzz from the first lecture 
quickly went viral. By day two, napkins 
with scribbled diagrams of rational points 
on algebraic graphs started appearing in 
the various restaurants near the confer-

ence center, and at the conclusion of 
Manjul’s third lecture, his now-expanded 
audience of several hundred erupted 
with applause. For the moment, we were 
all experts in elliptic curves—or at least 
Manjul had made us feel that way.  [See 
inset article, next page.] 

In the audience, several thoughts 
went through my mind. The first was 
simply being impressed that someone 
who spends the bulk of his time at the 
frontiers of the hardest problems in 
mathematics could so gracefully adapt 
his thinking to the diverse viewpoints 
of this crowd of nonspecialists. But 
I was also struck by the warmth and 
generosity of our speaker. Our ques-
tions mattered, our understanding 
mattered, we mattered. All week Manjul 
had been ubiquitous at the gamut of 
MathFest events—he was even spotted 
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Nathan Carter and Eleanor Farrington

Doesn’t it seem strange that Fermat’s Last 
Theorem, one of the most famous ques-
tions of number theory, was proven using 
elliptic curves? Why is a theorem about 
discrete things, like integers, answered 

using smooth things, like curves?
The answer is that the geometry of a curve says a lot 

about the rational (or integral) points on that curve. For 
example, in the story “Harvey Plotter and the Circle of Ir-
rationality” [see page 10], the characters use the unit circle 
(a curve) to generate Pythagorean triples (of integers). 
The technique they use applies just as well to any second-
degree polynomial equation in two variables, which is 
called a conic.

Beginning with one rational point on the conic  
with rational coefficients, consider each line of  
rational slope through it, and find the other point of 
intersection between the line and the conic. This process 
gives us all the rational points on the conic. Thus, any 
conic containing at least one rational point contains in-
finitely many. That means there are two possibilities for 
conics: zero rational points or infinitely many.

Algebraic curves with rational coefficients are more  
general; they are arbitrary-degree polynomial equations 
in two variables. Consider first only degree-one algebra-
ic curves; i.e., straight lines. You can easily find 
a method yielding all rational points on such a curve. 

A Quick Tour of Manjul Bhargava’s  
2011 Hedrick Lectures on Elliptic Curves 

(Try it!) Degree-two algebraic curves were just dis-
cussed. For higher degrees, our degree-two method does 
not apply because a line may intersect such a curve at 
more than two points. We need a new approach.

Graphing the algebraic curve over  (rather than  
) gives an object in four dimensions, called a Riemann 

surface. Faltings’s theorem is the surprising fact that the 
topology of this surface (specifically its genus) in  tells 
us something about rational solutions in . It says that 

Figure 1. How to add two rational points on an elliptic curve.

at the business meeting. Watching him 
converse with the posse of students 
gathered round him in the wake of his 
final talk, it became clear to me that this 
wasn’t a dignitary paying a cordial visit 
to the MAA community, but a member 
of the community intent on engaging it 
at every level. 

I approached him after the lecture. “If 
you have time later, I would love to do 
an informal interview with you for Math 
Horizons,” I asked, already feeling guilty 
about adding to Manjul’s busy schedule. 
Despite having a host of valid excuses 
for politely declining, Manjul agreed and 
was waiting for me in the hotel lobby 
that afternoon. 

try different things, and see what 
works.
MH:  When did this passion start 
for you? Did you teach in graduate 
school?
MB: I never taught in graduate 
school, but I taught a lot as an un-
dergraduate.
MH: Really? 
MB: Yeah, that happens a lot. At 
Harvard, the undergraduates are al-
lowed to teach.
MH:  What sorts of things?
MB: I was a TA for first-year calculus 
and the algebra sequence—things 
like that. That’s when I realized I 
loved teaching. It was my favorite 

Math Horizons: Congratulations on 
an extraordinary series of lectures 
this week—the response has been 
overwhelming.
Manjul Bhargava: Thank you.
MH: Tell me about your interest in 
teaching. Teaching is usually consid-
ered a gift—something you have or 
you don’t have.
MB: I think teaching is also some-
thing you can learn.
MH:  But your enjoyment of it seems 
very sincere, very much a natural 
part of who you are.
MB: Sure, to do anything well, 
you have to enjoy it. You need a 
passion to want to get better—to 
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extracurricular activity.
MH:  It was the same for me, actu-
ally, although I was just a tutor.
MB: Of course, my mom is a teacher, 
and I used to go and attend her 
classes.
MH: She’s a mathematics professor 
at Hofstra [University], right? She let 
you do this?
MB: All the time when I was younger 
I would say, you know, I don’t want 
to go to school today, can I just 
come with you. She was very cool 
about that.
MH: What part did this play in your 
decision to become a mathematician?
MB: Actually, as far back as I can 

remember I’ve loved math.
MH: What was it that you loved so 
much?
MB: I just liked playing around; try-
ing to understand why something 
was happening. One of my earliest 
memories was stacking oranges in a 
pyramid and trying to figure out that 
if you had n oranges on a side, how 
many did you need to make the whole 
pyramid? That was one of the first 
problems I solved: n times (n +1)  
times (n +2) over 6. [laughs] It took 
me many months to figure it out.
MH: Do you remember how old you 
were?
MB: I must’ve been around eight or 

something. My mother was pretty 
busy; she was not usually teaching 
me directly, but she was always there 
as a resource. And she let me skip 
my school to go to hers.
MH: Number theory, with its very 
primitive questions, is a common 
introduction to mathematics—but 
you have stayed with it.
MB: Hmm. This  
thing is a number theory problem—I 
just liked these kinds of questions 
from the beginning.
MH: That’s never gone away?
MB: [shrugs] That’s never gone away.
MH: Do you remember where you 
were when Andrew Wiles announced 
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any generic algebraic curve (with rational coefficients)  
of degree greater than three contains only finitely many 
rational points! But it does not say how to find them.

So, cubic (degree-three) algebraic curves are special; 
only they exhibit all three possibilities—zero rational 
points, finitely many, or infinitely many. Therefore, cubics 
are heavily studied, particularly ones with no self-intersec-
tions or spikes; these are called elliptic curves and can be 
written in the canonical form . Despite 
this attention, there is no known method for determin-
ing which of the above three possibilities a given cubic 
falls into. The Birch and Swinnerton-Dyer conjecture is 
a famous open problem that proposes such a method. In 
2000, the Clay Mathematics Institute listed it as one of 
seven Millennium Prize Problems; a proof is awarded a 
million dollars!

We can still use a variant of the degree-two method for 
elliptic curves. Pick at least two rational points on the 
curve, and connect them with a line. It will have rational 
slope and thus intersect the curve in exactly one other 
rational point. Reflecting this point about the x-axis gives 
another new rational point (note the  in the canonical 
form). Applying this technique again and again, con-
necting old points to new ones, generates more and more 
rational points. Mordell’s theorem states that for every 
elliptic curve, there exists a finite initial set of points 
from which this technique will find all rational points on 
the curve! The size of that initial set is called the rank of 
the curve (discounting a few points we’ll explain below). 
Many unsolved questions about rank are being actively 
studied today, including finding an algorithm that gives 
that initial finite set.

This process gives us a way to reveal an important alge-

braic structure on elliptic curves. We define addition of 
two points on an elliptic curve as follows: Draw the line 
between them as before, find the third point of intersec-
tion with the curve, and take its x-axis reflection. (See 
figure 1.) This operation satisfies all the properties of an 
Abelian group, with the zero (or identity) being a “point 
at infinity,” touched by all vertical lines. The points not 
counted in the rank are those with finite order in this 
Abelian group (called torsion points). (For an exercise, 
try figuring out what the inverse of a point is.)

A weaker question than the Birch and Swinnerton-
Dyer conjecture asks how many elliptic curves have 
infinitely many rational points. Goldfeld’s conjecture 
states that the average rank of an elliptic curve is ½ and, 
furthermore, that an elliptic curve chosen at random has 
probability ½ of having rank 0, probability ½ of having 
rank 1, and a negligible probability of having rank 2 or 
higher. And that’s where things really get interesting. To 
test Goldfeld’s conjecture, people have gathered a lot of 
data on the ranks of elliptic curves and always found an 
average rank larger than ½! In fact, no one was able to 
say for sure that the average rank was even finite! Until 
last year.

Manjul Bhargava and his Ph.D. student Arul Shankar 
showed not only that the average rank of elliptic curves 
is finite, but also that it’s less than one. What’s more, 
they proved that at least 10 percent of all elliptic curves 
have no rational points (except for the identity point 
at infinity). That means at least 10 percent of elliptic 
curves satisfy the Birch and Swinnerton-Dyer conjecture. 
Did this incredible accomplishment earn Manjul and 
Arul 10 percent of the million-dollar prize? Sadly no, but 
perhaps they are on their way. 
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Laura McHugh (MAA)

Manjul Bhargava, center, talks with members of the audience after one of his lectures 
at MathFest 2011.

his proof of Fermat’s Last Theorem?
MB: That was late in college for 
me. The math students were very 
excited—emails were flying around. 
MH: And then you ended up work-
ing with Wiles. That must’ve been 
exciting.
MB: It was wonderful. He has such 
a great sense of the global picture 
of number theory. Even though I 
worked in an area that was different 
from what he does, he stayed inter-
ested in my work and was able to say 
when an idea represented a promis-
ing direction.
MH: Were you star struck at all 
when you first met him?
MB: I think I met him at the Joint 
Meetings. I had joined Princeton 
as a graduate student, but I hadn’t 
met him yet. [dawning on him] He 
was getting the Cole Prize and I was 
getting the Morgan Prize, and so we 
were on stage together. [laughs]
MH: And you leaned over and said, 
“Hey, I’m Manjul . . . ”?
MB: Hey, I’m at Princeton too! The 
next time I met him—or the next 
time we really talked—was my oral 
generals exam.
MH: Was that scary?
MB: Oh yeah. Three professors—
Conway was the chair, Wiles, and 
[Charles] Fefferman—all sitting in 
the audience while I am at the chalk-
board answering questions.
MH: Ouch. That’s what you get for 
going to Princeton.

[At this moment, an unknown Math-
Fest participant (UMP) walks up to 
our table and addresses Manjul, who 
is unfazed and perfectly cordial.]
UMP: Can I interrupt? To the 
youngest full professor at Princeton, 
I just want to say I found your talk 
enjoyable and understandable. So 
many times these Ph.D.s just want to 
talk up here [gestures above his head 
with his hand ], but you put it right 
here—and I really appreciated it.
MB: Well, I appreciate it.

UMP: Keep up the good work.
MB: Thank you. What’s your name?
UMP: My name is Joe. I’ve got a 
master’s in statistics, and I teach 
high school mathematics. I like to 
poke around at the meetings, I saw 
your [talk], and I really like the way 
you broke it down. Keep doing that.
MB: Okay, thanks.
UMP: The best mathematicians can 
break it down for the lowest common 
denominator, and I like to say that 
I’m the lowest common denominator 
in the room. Bye-bye now.
[He leaves.]
MH: So, tell me about your liberal 
arts math course that Joe Gallian 
mentioned in his introduction. Is this 
something you currently teach at 
Princeton?
MB: Yes, the first time I had about 
100 students—the next year demand 
nearly tripled.
MH: And how is the course struc-
tured? Do you use a particular text?
MB: I don’t use a text. The inspi-
ration came from a similar course 
developed by Dick Gross and Joe 
Harris at Harvard, and they wrote 
a text that I considered using, but 
the thing that makes these courses 
is that they have to be individual 
to the instructor. There has to be a 

certain passion and interest coming 
from the teacher about the particu-
lar subject being taught. It’s not so 
much which mathematics is included 
as much as what can the teacher be 
really enthusiastic about, what topics 
have they thought about from every 
possible angle.
MH: So what do you like to do?
MB: I start with music. 
MH: Really?
MB: The first third of the course is 
mathematics and music—the math-
ematics of rhythm, the mathematics 
of pitch. I’m a tabla player . . . 
MH: I’ve heard—word is that you are 
very accomplished.
MB: A lot of the examples I use come 
from ancient India—mathematics 
that was written by percussionists 
and poets of ancient times. Much of 
this is not really known by mathema-
ticians; in fact, many of the people 
who sit in on my class are mathema-
ticians and math majors who aren’t 
actually allowed to take it.
MH: You make a really good point. 
A lot of these courses for nonmajors 
cover fascinating topics . . . 
MB: Right, that our regular students 
never get a chance to learn! There is 
also a lot of history of mathematics 
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that is not known to mathemati-
cians, because, for instance, it was 
written in Sanskrit.
MH: Which you also know something 
about.
MB: My grandfather was a scholar of 
Sanskrit. One way I got interested in 
mathematics when I was young was 
through what he taught me about 
the rhythms of Sanskrit poetry.
MH: Does that end up being number 
theory too?
MB: Number theory and combinator-
ics. So here was my grandfather, a 
Sanskrit scholar, teaching me all this 
amazing combinatorics, and then 
when I went to study mathematics I 
thought, gee, I’ve already seen these 
ideas, from Sanskrit. That connec-
tion was amazing to me, and I like 
to talk about those experiences from 
my life in the courses I teach.
MH: Do you play the tabla in class?
MB: Sure, and I often bring guest 
musicians so we can show some of 
the ways these rhythmic techniques 
are actually implemented in practice.
MH: That sounds fantastic. Do you 
play a lot outside of class?
MB: I try to—it gets harder every 
year. The mathematics keeps me 
busier and busier.
MH: Do you consciously seek  
out connections between music  
and mathematics, or Sanskrit and  
mathematics?
MB: Yeah, but I love it when I’m 
not looking for them. When I was 
learning Sanskrit poetry, I had no 
idea I was encountering mainstream 
mathematics—rediscovering those 
ideas later in a math class, under 
a totally different name, and in a 
totally different guise—wow! That’s 
what makes me so excited, the un-
expected unity of two very different 
subjects.
MH: You made a comment in your 
first lecture this week that I wanted 
to discuss with you. You said that 
“geometry was for intuition and alge-
bra was for proofs.”

“When I was learning 
Sanskrit poetry, I  
had no idea I was  

encountering  
mainstream  

mathematics.”
MB: Well, I just meant in that par-
ticular area.
MH: Of course, but I wanted to be 
provocative and quote you out of 
context so that I could ask whether 
you think geometry—in modern 
mathematics—is being shortchanged 
in some way.
MB: What do you mean?
MH: The human brain, it seems to 
me, thinks geometrically much more 
naturally than it thinks algebraically. 
In your lecture today, when you were 
explaining the group structure on the 
rational points along elliptic curves, 
you explained it by drawing chords 
along the graphs.
MB: Yes, it’s a geometric construction. 
But then you have to ask what kind of 
structure do you get, and that’s where 
you have to do the algebra.
MH: Your point is well taken, but 
there are some subjects like, say, 
complex analysis that have divorced 
themselves from their geometric 
roots and are frequently taught as 
largely algebraic subjects, as though 
casting something in purely algebraic 
terms makes it more true.
MB: Well, it doesn’t make it more 
true. Sometimes geometry allows 
you to visualize and get a feeling for 
what should be true, and those kinds 
of discoveries couldn’t have been 
obtained simply by manipulating 
formulas—you would just get a mess, 
you wouldn’t know where to go. So 
the geometry is very critical.
MH: But sometimes I would like the 
geometry to be more than that—for 
the visualization to be enough on its 
own.
MB: That was, in a large part, what 

Grothendieck was trying to do.
MH: Tell me more.
MB: A lot of the work of [Alexander] 
Grothendieck was taking all of the 
geometric intuition that people had 
collected over the years, putting it on 
a very solid algebraic foundation, and 
making an equivalence between cer-
tain geometric language and algebraic 
language—making that connection so 
strong that in the future people could 
just think geometrically and know 
that that geometry had an algebraic 
translation. Nowadays, algebraic ge-
ometers can just proceed geometrically 
and be totally confident that what 
they are visualizing really is proved. 
That’s one way of thinking about 
Grothendieck’s contributions—making 
geometric intuition broadly usable, in 
a rigorous way.
MH: So that it becomes a properly 
justified way of doing mathematics.
MB: Exactly.
MH: I know we are talking about 
research mathematics here, but 
watching my kids’ journey through 
secondary school, I would say that 
geometry is buried amid a lot of 
symbolic manipulation techniques. 
I think that makes mathematics 
harder than it needs to be.
MB: You’re right; the human mind is 
very visual. In number theory, when 
you first state the problems, you 
don’t see geometry right away. But 
somehow, the way people go about 
solving these problems often requires 
some way of visualizing the question.

At this moment we are joined by 
another guest in the hotel lobby—a 
dignified older gentleman whom Man-
jul knows well. It is Richard Guy, the 
distinguished British number theorist, 
and it becomes apparent that he and 
Manjul have dinner plans. Well into 
his 90s, Professor Guy is still sharp 
as a tack and has come equipped with 
pen, paper, and several mathematical 
queries for his young friend. Manjul 
Bhargava, to no one’s surprise, is 
happy to oblige. 
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