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Last May, Yitang “Tom” 
Zhang, a popular math 
professor at the Univer-
sity of New Hampshire, 
stunned the world of pure 

mathematics when he announced 
that he had proven the “bounded 
gaps” conjecture about the distribu-
tion of prime numbers—a crucial 
milestone on the way to the even 
more elusive twin primes conjecture, 
and a major achievement in itself.

The stereotype, outmoded though 
it is, is that new mathematical 
discoveries emerge from the minds 
of dewy young geniuses. But Zhang 
is over 50. What’s more, he hasn’t 
published a paper since 2001. Some 
of the world’s most prominent num-
ber theorists have been hammering 
on the bounded gaps problem for 
decades now, so the sudden resolu-
tion of the problem by a seemingly 
inactive mathematician far from 
the action at Harvard, Princeton, 
and Stanford came as a tremendous 
surprise.

But the fact that the conjecture is 
true was no surprise at all. Math-
ematicians have a reputation of be-
ing no-bullshit hard cases who don’t 
believe a thing until it’s locked 
down and proved. That’s not quite 
true. All of us believed the bounded 
gaps conjecture before Zhang’s big 
reveal, and we all believe the twin 
primes conjecture even though it 
remains unproven. Why?

Let’s start with what the con-
jectures say. The prime numbers 

are those numbers greater than 1 
that aren’t multiples of any number 
smaller than themselves and greater 
than 1; so 7 is a prime, but 9 is not, 
because it’s divisible by 3. The first 
few primes are: 2, 3, 5, 7, 11, and 
13.

Every positive number can be 
expressed in just one way as a prod-
uct of prime numbers. For instance, 
60 is made up of two 2s, one 3, and 
one 5. (This is why we don’t take 1 
to be a prime, though some math-
ematicians have done so in the past; 
it breaks the uniqueness, because 
if 1 counts as prime, 60 could be 
written as 2 × 2 × 3 × 5 and 1 × 2 
× 2 × 3 × 5 and 1 × 1 × 2 × 2 × 
3 × 5 ...)

The primes are the atoms of 
number theory, the basic indivis-
ible entities of which all numbers 
are made. As such, they’ve been 
the objects of intense study ever 
since number theory started. One of 
the very first theorems in number 
theory is that of Euclid, which tells 
us that the primes are infinite in 
number; we will never run out, no 
matter how far along the number 
line we let our minds range.

But mathematicians are greedy 
types, not inclined to be satisfied 
with mere assertion of infinitude. 
After all, there’s infinite and then 
there’s infinite. There are infinitely 
many powers of 2, but they’re very 
rare. Among the first 1,000 num-
bers, there are only 10 powers of 2: 
1, 2, 4, 8, 16, 32, 64, 128, 256, and 
512.

There are infinitely many even 
numbers, too, but they’re much 
more common: exactly 500 out of 
the first 1,000. In fact, it’s pretty 
apparent that out of the first x 
numbers, just about (1/2)x will be 
even.

Primes, it turns out, are interme-
diate—more common than the pow-
ers of 2 but rarer than even num-
bers. Among the first x numbers, 
about x/log(x) are prime; this is 
the prime number theorem, proven 
at the end of the 19th century by 
Hadamard and de la Vallée Pous-
sin. This means, in particular, that 
prime numbers get less and less 
common as the numbers get bigger, 
though the decrease is very slow; 
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a random number with 20 digits is 
half as likely to be prime as a ran-
dom number with 10 digits.

Naturally, one imagines that 
the more common a certain type 
of number, the smaller the gaps 
between instances of that type of 
number. If you’re looking at an even 
number, you never have to travel 
farther than 2 numbers forward to 
encounter the next even; in fact, 
the gaps between the even num-
bers are always exactly of size 2. 
For the powers of 2, it’s a different 
story. The gaps between successive 
powers of 2 grow exponentially, and 
there are finitely many gaps of any 
given size; once you get past 16, for 
instance, you will never again see 
two powers of 2 separated by a gap 
of size 15 or less.

Those two problems are easy, 
but the question of gaps between 
consecutive primes is harder. It’s 
so hard that, even after Zhang’s 
breakthrough, it remains a mystery 
in many respects.

And yet we think we know what 
to expect, thanks to a remarkably 
fruitful point of view—we think 
of primes as random numbers. 
The reason the fruitfulness of this 
viewpoint is so remarkable is that 
the viewpoint is so very, very false. 
Primes are not random! Nothing 
about them is arbitrary or subject 
to chance. Quite the opposite—we 
take them as immutable features of 
the universe and carve them on the 
golden records we shoot out into 
interstellar space to prove to the 
ETs that we’re no dopes.

If you start thinking really hard 
about what “random” really means, 
first you get a little nauseated, and 
a little after that you find you’re 
doing analytic philosophy. So let’s 
not go down that road.

Instead, take the mathematician’s 
path. The primes are not random, 
but it turns out that in many 
ways they act as if they were. For 

example, when you divide a random 
number by 3, the remainder is 0, 1, 
or 2, and each case arises equally 
often. When you divide a big prime 
number by 3, the quotient can’t 
come out even; otherwise, the 
so-called prime would be divisible 
by 3, which would mean it wasn’t 
really a prime at all. But an old 
theorem of Dirichlet tells us that 
remainder 1 shows up about equally 
often as remainder 2, just as is the 
case for random numbers. So as 
far as “remainder modulo 3” goes, 
prime numbers, apart from not be-
ing multiples of 3, look random.

What about the gaps between 
consecutive primes? You might 
think because prime numbers get 
rarer and rarer as numbers get big-
ger, that they also get farther and 
farther apart. On average, that’s 
indeed the case. But what Yitang 
Zhang just proved is that there are 
infinitely many pairs of primes that 
differ by at most 70,000,000. In 
other words, that the gap between 
one prime and the next is bounded 
by 70,000,000 infinitely often—thus, 
the “bounded gaps” conjecture.

On first glance, this might seem 
a miraculous phenomenon. If the 
primes are tending to be farther 
and farther apart, what’s causing 
there to be so many pairs that are 
close together? Is it some kind of 
prime gravity?

Nothing of the kind. If you strew 
numbers at random, it’s very likely 
that some pairs will, by chance, 
land very close together. (The 
picture at left is a nice illustration 
of how this works in the plane; the 
points are chosen independently and 
completely randomly, but you see 
some clumps and clusters all the 
same.)

It’s not hard to compute that, if 
prime numbers behaved like random 
numbers, you’d see precisely the 
behavior that Zhang demonstrated. 
Even more: You’d expect to see 
infinitely many pairs of primes that 
are separated by only 2, as the twin 
primes conjecture claims.

Among the first N numbers, 
about  of them are 
primes. If these were distributed 
randomly, each number n would 
have a  chance of be-
ing prime. The chance that n and 

are both prime should thus 
be about  So how 
many pairs of primes separated by 
2 should we expect to see? There 
are about N pairs in the 
range of interest, and each one has 
a  chance of being a twin 
prime, so one should expect to find 
about  twin primes in 
the interval.

There are some deviations from 
pure randomness whose small ef-
fects number theorists know how 
to handle; a more refined analysis 
taking these into account suggests 
that the number of twin primes 
should in fact be about 32 percent 
greater than  This bet-
ter approximation gives a prediction 
that the number of twin primes 
less than a quadrillion should be 
about 1.1 trillion; the actual figure 
is 1,177,209,242,304. That’s a lot of 
twin primes.

And a lot of twin primes is exact-
ly what number theorists expect to 
find no matter how big the numbers 
get—not because we think there’s a 

A random collection of points exhibits 
clumps and clusters.
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deep, miraculous structure hid-
den in the primes, but precise-
ly because we don’t think so. 
We expect the primes to be 
tossed around at random like 
dirt. If the twin primes conjec-
ture were false, that would be 
a miracle, requiring that some 
hitherto unknown force be push-
ing the primes apart.

Not to pull back the curtain too 
much, but a lot of famous conjec-
tures in number theory are like 
this. The Goldbach conjecture that 
every even number is the sum of 
two primes? The ABC conjecture, 
for which Shin Mochizuki contro-
versially claimed a proof last fall? 
The conjecture that the primes 
contain arbitrarily long arithmetic 
progressions, whose resolution by 
Ben Green and Terry Tao in 2004 
helped win Tao a Fields Medal? All 
are immensely diffi cult, but  
they are all exactly what one is 
guided to believe by the example of 
random numbers.

It’s one thing to know what to 
expect and quite another to prove 
one’s expectation is correct. De-
spite the apparent simplicity of the 
bounded gaps conjecture, Zhang’s 
proof requires some of the deep-

est theorems of modern 
mathematics, like 

Pierre Deligne’s 
results relat-
ing averages of 
number-theoretic 
functions with 
the geometry of 

high-dimensional 
spaces. (More clas-

sically minded 
analytic num-
ber theorists 
are already 
wonder-
ing whether 
Zhang’s proof 
can be modi-
fi ed to avoid 
such abstruse 
stuff .)

Building on the work of many 
predecessors, Zhang is able to show 
in a precise sense that the prime 
numbers look random in the fi rst 
way we mentioned, concerning the 
remainders obtained after division 
by many diff erent integers. From 
this (following a path laid out by 
Goldston, Pintz, and Yıldırım, the 
last people to make any progress on 
prime gaps) he can show that the 
prime numbers look random in a 

totally diff erent sense, having to do 
with the sizes of the gaps between 
them. Random is random!

Zhang’s success (along with the 
work of Green and Tao) points 
to a prospect even more exciting 
than any individual result about 
primes—that we might, in the 
end, be on our way to developing a 
richer theory of randomness. How 

wonderfully paradoxical: What 
helps us break down the fi -

nal mysteries about prime 
numbers may be new 
mathematical ideas that 
structure the concept of 
structurelessness itself. ■
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Number theorist Emmanuel Kowalski off ers a fi rst report 
on Zhang’s paper: http://bit.ly/10KAyvf. 

Here’s Terry Tao on the dichotomy between structure 
and randomness: http://bit.ly/11ZWyd0.

Since Zhang’s result appeared in May, several research-
ers have been working to decrease the size of the bounded 
gap. Zhang’s gap of 70,000,000 is currently down to 5,414. 
Progress can be tracked here: http://bit.ly/15yECDq.
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