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Abstract. Extending a similar result about triangles, we show that each Heronian tetrahedron
may be positioned with integer coordinates. More generally, we show the following: if an
integral distance set in R3 can be positioned with rational coordinates, then it can in fact be
positioned with integer coordinates. The proof, which uses the arithmetic of quaternions, is
tantamount to an algorithm.

1. MOTIVATIONS. From P. Yiu in this MONTHLY [8] we learned that Heronian
triangles can be realized as lattice triangles; that is, each triangle with integer side
lengths and integer area can be positioned in the plane so that its three vertices
have integer coordinates. Yiu includes this example: The triangle with side lengths
(25, 34, 39), which has area 420, can be realized with integer coordinates as shown in
Figure 1, despite the fact that this triangle has no integer heights.

x

y

(0, 0)
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Figure 1. Heronian triangle (25, 34, 39) as a lattice triangle

We wondered whether a similar result holds for Heronian tetrahedra and asked the
following. Can each tetrahedron with integer side lengths, integer face areas, and in-
teger volume be positioned in three-dimensional space so that its four vertices have
integer coordinates? The classification of Heronian tetrahedra is incomplete (see [2]
and its references for a recent state of affairs); however, using the formulas in [1] for
computing the face areas and volume of a tetrahedron, we used a computer to de-
termine all Heronian tetrahedra with side length up to 34000, and in each case the
computer was able to find a position with integer coordinates. For example, the com-
puter found integer coordinates for the Heronian tetrahedron in Figure 2, which has
face areas 6300, 4914, 2436, 3570, and volume 35280.

To answer our question for all Heronian tetrahedra, our initial hope was to adapt
Yiu’s method. Yiu considers the Heron triangle area formula from the viewpoint of
solving for one of the edges, and deftly manipulates a corresponding discriminant
condition into a form whose integral solutions are known to be the precise sums of
squares needed to obtain integer coordinates. However, we subsequently learned from
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(0, 0, 0)

(15, –60, 20)

(96, 120, 128)

(63, 84, 56)

Figure 2. Tetrahedron (225, 200, 65, 119, 156, 87) as a lattice tetrahedron

J. Fricke [4] another method for showing Heronian triangles to be lattice triangles.
Using the arithmetic of Gaussian integers combined with their interpretation as two-
dimensional rotations, Fricke provides a constructive algorithm for rotating such a
triangle into a position with integer coordinates. Guided by that method, we were able
to show Heronian tetrahedra to be lattice tetrahedra. Using the arithmetic of Lipschitz-
integral quaternions combined with their interpretation as three-dimensional rotations,
we obtained a constructive algorithm for rotating such a tetrahedron into a position
with integer coordinates.

We shall review Fricke’s method, then cover the quaternion method, and finally
show how to recover the former as a special case of the latter.

2. FRICKE’S METHOD. Fricke views Heronian triangles as particular examples of
integral distance sets, that is, collections of points whose pairwise distances are inte-
gers. He then shows Heronian triangles to be lattice triangles for an elegantly simple
reason:

1. Heronian triangles are easily positioned with rational coordinates; and
2. each finite1 integral distance set in Q2 can be repositioned to lie in Z2.

By the area formula for triangles,1 = 1
2 · base · height, Heronian triangles have ratio-

nal heights, so the first statement is verified by Figure 3. The key to Fricke’s method
is the second statement. Since we can translate an integral distance set by one of its
points, there is no loss of generality in assuming the integral distance set to include the
origin, and the second statement becomes as follows.

x

y

a

bc

(0, 0) (a, 0)

1
2a (a2 − b2 + c2), 216 a

)

Figure 3. Rational coordinates for Heronian triangle (a, b, c) with area 1

1For our purposes here, we are not concerned with infinite integral distance sets, but note, for the sake of
completeness, that the infinite case follows from the Anning–Erdős Theorem (elegant proof in [3]): if M ⊂ Qn

is an infinite set of points such that each mutual distance is an integer, then M lies in a line, and thus can be
repositioned to lie in Z1.

February 2013] HERONIAN TETRAHEDRA ARE LATTICE TETRAHEDRA 141



Theorem 1. Let M ⊂ Q2 be a finite set of rational points with (0, 0) ∈ M such that
each mutual distance is an integer. Then there exists a rotation T such that T M ⊂ Z2.

Instead of rotating directly from rational to integer coordinates, we avoid denomi-
nators as follows. We first scale up to clear all denominators, then rotate into integer
coordinates that are also multiples of our scaling factor, and then scale back down. By
writing the scaling factor as a product of primes, we can even work on one prime at a
time. We claim Theorem 1 to be equivalent to the following.

Theorem 2. Let p be a prime. Let M ⊂ Z2 be a finite set of points with (0, 0) ∈ M
such that each mutual distance is an integer divisible by p. Then there exists a rota-
tion T such that T M ⊂ pZ2.

Proof of equivalence. Assume that Theorem 1 holds. To establish Theorem 2, start
with the set M from Theorem 2. Now apply Theorem 1 to the set 1

p M to obtain

T ( 1
p M) ⊂ Z2, whence T M ⊂ pZ2, thus giving us Theorem 2.

For the other direction, assume that Theorem 2 holds. Let M ⊂ Q2 be a finite set
of points such that each mutual distance is an integer. Let d be such that d M ⊂ Z2.
Let d = p1 · · · pn be a factorization into primes (repetition allowed). All distances in
d M are divisible by p1, so by Theorem 2 there exists T1 with T1(d M) ⊂ p1Z2, or
T1(

d
p1

M) ⊂ Z2. All distances in d
p1

M are divisible by p2, so by Theorem 2 there exists

T2 with T2(T1(
d
p1

M)) ⊂ p2Z2, or T2(T1(
d

p1 p2
M)) ⊂ Z2. Continuing in this fashion, we

obtain

Tn(· · · T2(T1(
d

p1 p2···pn
M)) · · · ) ⊂ Z2,

or simply (Tn · · · T2T1)M ⊂ Z2, thus giving us Theorem 1.

To prove Theorem 2, we will represent points and rotations using Gaussian inte-
gers. Recall that the ring Z[i] of Gaussian integers comprises complex numbers of the
form a + bi, where a and b are (ordinary) integers. The conjugate of u = a + bi is
u = a − bi and the norm of u = a + bi is N(u) = uu = a2 + b2. Note that N(u) is
the square of the length of u; hence, under the identification (x, y)↔ x + yi between
points in the plane with integer coordinates and Gaussian integers, statements involv-
ing distances can be translated into statements involving norms. A nonzero Gaussian
integer π gives rise to the operator

Tπ : (x, y) 7→ π

π
(x + yi), (1)

which is a rotation because the complex number π/π has norm 1. To find the appro-
priate rotation operator to prove Theorem 2, we first need some preliminaries on the
arithmetic of Gaussian integers.

Just as each number in Z can be factored into an essentially unique product of
primes (unique up to order and multiplication by units), the same is true for numbers
in Z[i], where the set of units is {±1,±i}. However, Z and Z[i] have different sets
of primes: p = 2 factors inside Z[i] as i(1 − i)2, p ≡ 3 (mod 4) remains prime in-
side Z[i], and p ≡ 1 (mod 4) splits inside Z[i] as ππ , where π and π are the two
primes (up to units) of norm p in Z[i]. To learn more about Gaussian integers, see [7,
Chapter 14].
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Lemma 3. Given u ∈ Z[i], if p is an odd prime such that p - u but p | N(u), then u
has a unique divisor of norm p (unique up to units).

Proof. From p - u follows p - u, yet p | uu, whence p is not prime in Z[i], so p ≡ 1
(mod 4). Thus p = ππ . Now π | uu while ππ - u, so π divides precisely one of u,u
(and π divides the other).

Lemma 4. Given u,u′ ∈ Z[i], if p is an odd prime such that p divides neither u nor u′,
but p divides both N(u) and N(u′), then u and u′ share a divisor of norm p if and only
if p | N(u− u′).

Proof. As before, we must have p ≡ 1 (mod 4). Write p = ππ , labeled so that π | u.
Note that π - u. If π | u′, then π | u− u′, whence p | N(u− u′), while if π - u′ then
π - N(u− u′) = N(u)+ N(u′)− uu′ − uu′, whence p - N(u− u′).

Remark. Since all Gaussian integers of norm 2 differ by a unit, one can show that
Lemma 3 and Lemma 4 hold also for p = 2, but we do not need that case.

Lemma 5. Let p be a prime. If u ∈ Z[i] satisfies p - u but p2 | N(u), then u has
a factorization of the form u = π 2s for a unique π of norm p (unique up to units).
Furthermore, if u′ ∈ Z[i] satisfies the same hypotheses as u, then u′ has a factorization
u′ = π 2s′ (where π is the same as for u) if and only if p | N(u− u′).

Proof. We must have p odd since 2 - u is incompatible with N(u) ≡ 0 (mod 4).
By Lemma 3, u has a unique divisor π of norm p. Write u = πw. Now p - w but
p | N(w). By Lemma 3, w has a unique divisor of norm p, which is then a divisor
of u, and thus must be π . For the second part, apply Lemma 4.

We are now ready to prove Theorem 2.

Proof of Theorem 2. By replacing distance statements with norm statements under the
identification (x, y)↔ x + yi, we get that M is a set of Gaussian integers satisfying

p2 | N(u) and p2 | N(u− u′), for all u,u′ ∈ M .

If p | u for all u ∈ M , then already M ⊂ pZ2. Otherwise, there exists u with p - u. By
Lemma 5, there exists π of norm p with π2 | u. Let u′ ∈ M . If p - u′, then Lemma 5
tells us that π2 | u′. If p | u′, then p - u− u′. Hence, Lemma 5 tells us that π2 | u− u′,
whence π 2 | u′. Either way, π 2 divides every point in M ; therefore, Tπ M ⊂ pZ2,
where Tπ is the rotation operator (1).

3. EXAMPLE OF FRICKE’S METHOD. We wish to realize the Heronian triangle
(65, 17, 80), which has area 288, as a lattice triangle. Under the identification (x, y)↔
x + yi, we position the triangle initially with rational coordinates, and then scale up
by 5 · 13 to clear denominators, as shown in Figure 4. The scaled vertices satisfy the
hypotheses of Theorem 2 for p = 5 and p = 13.

0 65 0 4225

5168 + 576i5168
65 + 576

65 i

Figure 4. Heronian triangle (65, 17, 80), positioned initially with rational coordinates, then scaled up to lattice
triangle 5 · 13 · (65, 17, 80)
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We first consider p = 5. We observe 5 - 5168+ 576i but 5 | N(5168+ 576i). Thus
we seek the unique Gaussian prime π of norm 5 that divides 5168+ 576i, whose exis-
tence is guaranteed by Lemma 3. We note that checking π | 5168+ 576i is equivalent
to checking 5 | (5168 + 576i)π . To find the candidate primes of norm 5, we write
5 = 22 + 12 = (2+ i)(2− i), and conclude π = 2− i by verifying

(5168+ 576i) · 2− i = 5 · (1952+ 1264i).

Lemma 5 ensures (2− i)2 divides all coordinates, allowing us to rotate by T2−i; that is,
we multiply all coordinates by (2+ i)/(2− i). The result is a new position in which all
coordinates are divisible by 5, allowing us to scale down by 5, as shown in Figure 5.

0

2535 + 3380i

2640 + 4480i

0

507 + 676i

528 + 896i

Figure 5. Lattice triangle 5 · 13 · (65, 17, 80) first rotated by T2−i and then scaled down to lattice triangle
13 · (65, 17, 80)

Next consider p = 13. The vertices of our scaled and rotated triangle still satisfy
Theorem 2 for p = 13 and we observe 13 - 528 + 896i; thus, we seek the unique
Gaussian prime of norm 13 = (2 + 3i)(2 − 3i) that divides 528 + 896i, and it turns
out to be 2+ 3i:

(528+ 896i) · 2+ 3i = 13 · (288+ 16i).

We now rotate by T2+3i, that is, we multiply all coordinates by (2− 3i)/(2+ 3i). As
all coordinates were divisible by (2 + 3i)2, the result is a new position in which all
coordinates are divisible by 13, allowing us to scale down by 13, as shown in Figure 6.
The final result is the original triangle (65, 17, 80) realized as a lattice triangle.

0

429 – 728i 624 – 832i

0

33 – 56i 48 – 64i

Figure 6. Lattice triangle 13 · (65, 17, 80) first rotated by T2+3i and then scaled down to the original triangle
(65, 17, 80), now positioned as a lattice triangle

4. TETRAHEDRA. Analogously to Fricke’s method, we show that each Heronian
tetrahedron is a lattice tetrahedron by establishing the following:
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1. Heronian tetrahedra are easily positioned with rational coordinates; and
2. each finite integral distance set in Q3 can be repositioned to lie in Z3.

By the volume formula for tetrahedra, V = 1
3 · base face area · height, Heronian tetra-

hedra have rational heights, so the first statement is verified by Figure 7.

a

bc
d

e f

(0, 0, 0) (a, 0, 0)

P

1
2a (a2 − b2 + c2), 21/a, 0

)

P =
(

1
2a (a2 − f 2 + e2), 1

8a1
(b2 − c2)(e2 − f 2) + a2(b2 + c2 − 2d2 + e2 + f 2) − a4

)
, 3V/1

)
,

where 1 is the area of face abc and V is the volume of the tetrahedron.

Figure 7. Heronian tetrahedron positioned with rational coordinates

As in the two-dimensional case, the key is the second statement, which we state
more precisely as follows.

Theorem 6. Let M ⊂ Q3 be a finite set of rational points with (0, 0, 0) ∈ M such that
each mutual distance is an integer. Then there exists a rotation T such that T M ⊂ Z3.

By the same argument showing Theorem 1 to be equivalent to Theorem 2, Theo-
rem 6 is equivalent to the following.

Theorem 7. Let p be a prime. Let M ⊂ Z3 be a finite set of points with (0, 0, 0) ∈ M
such that each mutual distance is an integer divisible by p. Then there exists a rota-
tion T such that T M ⊂ pZ3.

To prove Theorem 7, we will use the arithmetic of Lipschitz-integral quaternions
and their interpretation as three-dimensional rotations. A quaternion t = t0 + t1i +
t2j + t3k is Lipschitz-integral when ti ∈ Z. The Lipschitz-integral quaternions com-
pose a noncommutative ring L with 8 units: {±1,±i,±j,±k}. Given t, the conjugate
is t = t0 − t1i− t2j− t3k, the norm is N(t) = tt = t2

0 + t2
1 + t2

2 + t2
3 , and t is pure when

t0 = 0, i.e., t = −t. Under the identification (x, y, z)↔ x i+ yj+ zk, points with in-
teger coordinates are identified with pure Lipschitz-integral quaternions. We observe
again that statements about distances can be translated into statements about norms.
Each (not necessarily pure) Lipschitz-integral quaternion t gives rise to a rotation op-
erator that takes pure quaternions to pure quaternions:

Tt : (x, y, z) 7→ 1
N(t) t(x i+ yj+ zk)t. (2)

Compared to the ring Z[i] of Gaussian integers, where only certain primes p ∈ Z
occur as a norm but then the factorization p = ππ is essentially unique, the arithmetic
in L is unusual. Each prime p ∈ Z occurs as a norm (as a consequence of Lagrange’s
four-square theorem), but the factorization p = tt is never unique (not even up to
left unit multiplication, right unit multiplication, or conjugates); for example, consider
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5 = (2+ i)(2− i) = (2+ j)(2− j). Jacobi’s four-square theorem tells us that, for each
prime p ∈ Z, there are p + 1 primes in L of norm p (up to multiplication by units).
Fortunately, the arithmetic in L turns out to be sufficiently reasonable for our needs.

Lemma 8. Given u ∈ L, if p is an odd prime such that p - u but p | N(u), then u has
a unique right divisor of norm p (unique up to left unit multiplication), and u has a
unique left divisor of norm p (unique up to right unit multiplication).

Proof. See [6, Theorem 1].

Lemma 9. Given u,u′ ∈ L, if p is an odd prime such that p divides neither u nor u′,
but p divides both N(u) and N(u′), then u and u′ share a divisor of norm p (either the
same left divisor, or the same right divisor, or both) if and only if p | N(u− u′).

Proof. See [6, Theorem 7].

Remark. As in the two-dimensional method, we do not need Lemma 8 and Lemma 9
for the case p = 2, but unlike the two-dimensional method, where the corresponding
lemmata held for p = 2, here they do not. For example, 1 + i + j + k admits both
1+ i and 1+ j as right divisors, and 1+ i and 1+ j do not share a divisor of norm 2,
yet 2 | N(i− j).

Lemma 10. Let p be a prime. If u ∈ L is pure and satisfies p - u but p2 | N(u), then
u has a factorization of the form u = tst for a unique t of norm p (unique up to left
unit multiplication). Furthermore, if u′ ∈ L satisfies the same hypotheses as u, then u′

has a factorization u′ = ts′t (where t is the same as for u) if and only if p | N(u− u′).

Proof. We must have p odd, since 2 - u is incompatible with N(u) ≡ 0 (mod 4). By
Lemma 8, u has unique left and right divisors of norm p. Let t be the right divisor.
Conjugating u = wt gives u = t(−w), so t must be the left divisor. Now p - w but
p | N(w). By Lemma 8, w has a unique left divisor of norm p, which is then a left
divisor of u, and thus must be t. For the second part, apply Lemma 9.

We can now prove Theorem 7.

Proof of Theorem 7. Using the identification (x, y, z) ↔ x i + yj + zk, we get that
M is a set of pure Lipschitz-integral quaternions satisfying

p2 | N(u) and p2 | N(u− u′), for all u,u′ ∈ M .

If p | u for all u ∈ M , then already M ⊂ pZ3. Otherwise, there exists u with p - u. By
Lemma 10, there is a factorization u = tst where t has norm p. For any other u′ ∈ M ,
if p - u′, then Lemma 10 tells us that u′ = ts′t, while if p | u′, then p - u − u′, so
Lemma 10 tells us that u− u′ = ts′t, whence u′ = t(s− s′)t. Either way, every v ∈ M
factors in the form v = tsvt, whence p2 | tvt; therefore, Tt M ⊂ pZ3, where Tt is the
rotation operator (2).

Remark. During preparation for publication, we learned of the work of W. F. Lun-
non [5] on the same topic. Lunnon pointed out to us (private communication, 2012)
that Fricke’s method goes through almost unchanged when the definition of integral
distance sets is relaxed to require only the square of the mutual distances to be in-
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tegers. Indeed, with that relaxed definition, only minor changes are required in the
statements of Theorem 2 and Theorem 7 (and the proofs of equivalence to Theorem 1
and Theorem 6), while the preparatory lemmata and actual proofs of Theorem 2 and
Theorem 7 go through unchanged. We kept Fricke’s original definition for simplicity
of presentation.

5. TETRAHEDRON EXAMPLE. We wish to realize the Heronian tetrahedron
(612, 480, 156, 185, 319, 455), which has volume 665280, and whose face (612, 480,
156) has area 22464, as a lattice tetrahedron. Under the identification (x, y, z) ↔
x i+ yj+ zk, we position the tetrahedron initially with rational coordinates, as shown
in Figure 8. To clear denominators, we scale up by 13 · 17 to obtain the vertices

0, A = 135252i, B = 30420i+ 16224j, and C = 48620i+ 47124j+ 19635k.

The scaled vertices satisfy the hypotheses of Theorem 7 for p = 13 and p = 17.

i

j

k

0

612

220i + 2772
13 j + 1155

13 k

2340
17 i + 1248

17 j

Figure 8. Tetrahedron (612, 480, 156, 185, 319, 455) positioned rationally

We consider p = 13 and observe 13 - C but 13 | N(C). Thus, we seek the unique
quaternion t of norm 13 that divides C on the right, whose existence is guaranteed by
Lemma 8. We note that the divisibility condition is equivalent to 13 | Ct. There are 14
quaternions of norm 13 (up to multiplication by units), which we find by expressing
13 as a sum of four squares in all possible ways as 13 = 22 + 32 and 13 = 12 + 22 +
22 + 22. The first expression leads to 6 quaternions of norm 13: 2 ± 3i, 2 ± 3j, and
2± 3k. The second expression leads to 8 quaternions of norm 13: 1± 2i± 2j± 2k.
We conclude t = 2− 3i by verifying

C · 2− 3i = 13 · (−11220+ 7480i+ 11781j− 7854k).

The proof of Theorem 7 tells us that all vertices have the form (2− 3i)s(2− 3i), al-
lowing us to rotate by T2−3i; that is, we multiply all coordinates by 2+ 3i on the right,
by 2− 3i on the left, and then divide by 13. The result is a new position in which all
coordinates are divisible by 13, allowing us to scale back down by 13, and we obtain
the vertices

0, A′ = 10404i, B ′ = 2340i− 480j− 1152k, C ′ = 3740i− 3927k.

We now consider p = 17. The vertices still satisfy Theorem 7 for p = 17 and we
observe 17 - B ′. Thus, we seek the unique quaternion t of norm 17 that divides B ′ on
the right. There are 18 quaternions of norm 17, which we find by writing 17 as a sum
of 4 squares in all possible ways as 12 + 42 (this leads to 6 quaternions of norm 17)
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and 32 + 22 + 22 (this leads to 12 quaternions of norm 17). The quaternion we seek is
t = 3− 2j− 2k:

B ′ · 3− 2j− 2k = 17 · (192+ 492i− 360j+ 72k).

After rotating by T3−2j−2k and then scaling down by 17, we obtain the vertices

0, 36i− 432j+ 432k, 36i− 144j+ 48k, and 176i− 264j+ 33k.

The position as a lattice tetrahedron is shown in Figure 9.

x

y

z

(0, 0, 0)

(36, –432, 432)

(36, –144, 48)

(176, –264, 33)

Figure 9. Tetrahedron (612, 480, 156, 185, 319, 455) as a lattice tetrahedron

6. RECOVERING FRICKE’S METHOD FROM THE THREE-DIMENSIONAL
CASE. Since the two-dimensional approach for triangles using Gaussian integers is
almost statement-for-statement analogous to the three-dimensional approach for tetra-
hedra using Lipschitz-integral quaternions, it seems that the former ought to be a spe-
cial case of the latter. This is indeed true.

Theorem 11. In the proof of Theorem 7, if each u ∈ M ⊂ Z3 has z = 0, i.e., M ⊂ Z2,
then among the left associate choices of rotation operator Tt, there exists one that
keeps M in the xy-plane, i.e., has the z-axis as its axis of rotation.

Proof. For t = t0 + (t1i+ t2j+ t3k), the axis of rotation of Tt is identified by the vector
(t1, t2, t3). Thus Tt has the z-axis as its axis of rotation precisely when t has the form
t = t0 + t3k. Tracing the proof of Theorem 7 back through Lemma 10 to Lemma 8,
we must therefore show the following. If u = u1i + u2j is a pure Lipschitz-integral
quaternion, representing a point in the xy-plane, with p - u but p | N(u) for an odd
prime p, then u admits a right divisor t of norm p of the form t = t0 + t3k.

The equation u = vt is equivalent to ut ≡ 0 (mod p). By assumption, u2
1 ≡ −u2

2,
and p - u tells us that u1 6≡ 0, so −1 is a square modulo p. Let s2 ≡ −1, where we
choose the sign on s so that u1 ≡ su2. This also means p ≡ 1 (mod 4), so there exist
a, b with p = a2 + b2, and here we choose signs so that a ≡ −sb. Let t = a + bk.
Then N(t) = p and ut ≡ 0.
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To recover the Gaussian version of Fricke’s method, we identify t = t0 + t3k with
the Gaussian integer π = t0 + t3i, and identify points (x, y, 0) with x + yi. Then the
quaternion rotation operator Tt morphs into the Gaussian rotation operator Tπ , Lem-
mata 8–10 respectively morph into Lemmata 3–5, and the statement and proof of The-
orem 7 morph into the statement and proof of Theorem 2.
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