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The importance of recreational mathema-
tics and the involvement of amateur
mathematicians has been dramatically demon-
strated recently in connection with the prob-
lem of tiling the plane with congruent pen-
tagons. The problem is to describe completely
all pentagons whose congruent images will tile
the plane (without overlaps or gaps). The
problem was thought to have been solved by
R. B. Kershner, who announced his results in
1968 (18], [19]. In July, 1975, Kershner’s arti-
cle was the main topic of Martin Gardner’s
column, “Mathematical Games” in Scientific
American. Inspired by the challenge of the
problem, at least two readers attempted their
own tilings of pentagons and each discovered
pentagons missing from Kershner’s list. New
interest in the problem has been aroused and
both amateur and professional mathemati-
cians are presently working on its solution.

Tilings by convex polygons

A polygon is said to tile the plane if its congruent images cover the plane without gaps or overlaps.
The pattern formed in this manner is called a tiling of the plane, and the congruent polygons are called
its tiles. A vertex of the tiling is a point at which 3 or more tiles meet. It is well known that any triangle
or any quadrilateral can tile the plane. In fact, any single triangle or quadrilateral can be used as a
“generating” tile in a tiling of the plane which is tile-transitive (isohedral). This simply means that the
generating tile can be mapped onto any other tile by an isometry of the tiling. The translations,
rotations, reflections, and glide-reflections which map a tiling onto itself make up the symmetry group
of the tiling. Thus, in terms of group theory, a tile-transitive tiling is one whose symmetry group acts
transitively on the tiles.

Also, for an arbitrary triangle or quadrilateral there always exists a tiling which in addition is
edge-to-edge. This means that for any two tiles, exactly one of the following holds: (i) they have no
points in common, (ii) they have exactly one point in common, which is a vertex of each tile (such a
point is also a vertex of the tiling), (iii) their intersection is an edge of each tile. Typical tilings of
triangles and of quadrilaterals having these properties are shown in [5], [25].
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1. In a given tiling, pen-
tagons marked with a
dot are oppositely con-
gruent to those which
are unmarked, i.e., the
plain tiles are ‘face up’,
and the marked tiles
are ‘face down'.

2. In each tiling there is

outlined a minimal
block of one or more
pentagons which gen-
erates the tiling when
acted on by the sym-
metry group of the
tiling.

. Angles A, B, C, D, E of

one pentagonal tile are
identified in each tiling
for use with Tables |, Il,
Ill. Sides a, b, ¢, d, e of
that tile correspond to
the following labeling:

Key to all diagrams

If we ask the natural question, “Do convex polygons of five or more sides tile the plane?”, it is
clear that the obvious general answer is “Not always.” It is clear that not every convex pentagon tiles
the plane — a regular pentagon is a prime example. However, regular hexagons do tile the plane (how
many times have you seen this pattern on a 1930’s bathroom floor?), but not all hexagons tile. A
complete description of all hexagons which do tile the plane was discovered independently by several
mathematicians and is discussed in [2], [5], [14], [18], [19], [28]. It can also be demonstrated that no
convex polygon of more than six sides can tile the plane. Thus, the problem of describing all convex
pentagons which tile the plane is the only unanswered part of our question. In what follows, we make
several observations related to the pentagonal tiling problem and report on the most recent
contributions to its solution.

Discovering tilings by pentagons

Three of the oldest known pentagonal tilings are shown in FIGURE 1. As Martin Gardner observed
in [5], they possess ‘“unusual symmetry”. This symmetry is no accident, for these three tilings are the
duals of the only three Archimedean tilings whose vertices are of valence 5. The underlying
Archimedean tilings are shown in dotted outline. Tiling (3) of FIGURE 1 has special aesthetic appeal. It
is said to appear as street paving in Cairo; it is the cover illustration for Coxeter’s Regular Complex
Polytopes, and was a favorite pattern of the Dutch artist, M. C. Escher. Escher’s sketchbooks reveal
that this tiling is the unobtrusive geometric network which underlies his beautiful ““shells and starfish”
pattern. He also chose this pentagonal tiling as the bold network of a periodic design which appears as
a fragment in his 700 cm. long print “Metamorphosis I1.”

The three pentagonal tilings which are duals of Archimedean tilings. The underlying Archimedean tiling is shown in
dotted outline. :

FIGURE 1.
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Tile-transitive, edge-to-edge tilings by pentagons, obtained as duals of vertex-transitive tilings (shown in dotted
outline). Only in the case of (6) is a non-convex tile necessary in the underlying tiling. Tiling (8) is discussed in [4].

FIGURE 2.

Tiling (3) can also be obtained in several other ways. Perhaps most obviously it is a grid of
pentagons which is formed when two hexagonal tilings are superimposed at right angles to each other.
F. Haag noted that this tiling can also be obtained by joining points of tangency in a circle packing of
the plane [12]. It can also be obtained by dissecting a square into four congruent quadrilaterals and
then joining the dissected squares together [26]. The importance of these observations is that by
generalizing these techniques, other pentagonal tilings can be discovered.

The three Archimedean tilings which have as duals the pentagonal tilings in FIGURE 1 are vertex
transitive tilings. An edge-to-edge tiling by polygons is called vertex tranmsitive (isogonal) if the
symmetry group of the tiling is transitive on the vertices of the tiling. FIGURE 2 shows six other
edge-to-edge pentagonal tilings that arise as duals of vertex-transitive tilings of the plane. Recently, B.
Griinbaum and G. C. Shephard showed that the nine tilings of FiGures 1 and 2 are the only distinct
“types” of pentagonal tilings which are edge-to-edge and tile-transitive. Roughly speaking, two
“types” of tilings will differ if they have different symmetry groups or if the relationship of tiles to their
adjacent tiles differs. Details are given in [6]. In addition, these mathematicians have classified all
vertex-transitive tilings, and their list shows that no such tiling by convex pentagons is possible [7].

If we begin with a tiling by congruent convex hexagons, then pentagonal tilings can arise in two
different ways. First, it may be possible to superimpose the hexagonal tiling on itself so as to produce a
tiling by congruent pentagons. Tilings (8) and (9) of FIGURE 2 can arise in this way. Also, beginning
with a hexagonal tiling, it may be possible to dissect each hexagon into two or more congruent
pentagons, thus producing a pentagonal tiling. Many tilings of FIGURES 1, 2, and 3 can be viewed in this
manner. Three other examples of such tilings given in FIGURE 4 also serve to illustrate other properties
of pentagonal tilings that can occur. Note that (24) is tile-transitive but not edge-to-edge, tiling (25) is
edge-to-edge but not tile-transitive, and tiling (26) is neither edge-to-edge nor tile-transitive.

Finally, experimentation in fitting pieces together or adding or removing lines from other
geometric tilings can lead to the discovery of pentagonal tilings. FIGURE 5 illustrates this with two
tilings by a simple “house” shape pentagon.
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Tile-transitive tilings by pentagons which are not edge-to-edge.

FIGURE 3.

Methodical attacks

Pentagonal tilings appear as illustrations in several early papers which explore the general problem
of classifying plane repeating patterns (especially [11]), but it appears that the first methodical attack
on classifying pentagons which tile the plane was done in 1918 by K. Reinhardt in his doctoral
dissertation at the University of Frankfurt [28]. He discovered five distinct types of pentagons, each of
which tile the plane. More precisely, he stated five different sets of conditions on angles and sides of a
pentagon such that each set of conditions is sufficient to ensure that (i) a pentagon fulfilling these
conditions exists, and (ii) at least one tiling of the plane by such a pentagon exists. Each of these five
sets of conditions defines a type of pentagon; pentagons are considered to be of different types only if
they do not satisfy the same set of conditions. Many distinct tilings can exist for pentagons of a given
type. Reinhardt no doubt hoped that his five types constituted a complete solution to the problem,
but he was unable to show that a tiling pentagon was necessarily one of these types.

Each of the five types described by Reinhardt (called types 1 — 5 in TABLE I) can generate a
tile-transitive tiling of the plane. His thesis completely settled the problem of describing all convex
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24

Tilings by pentagons obtained by dissecting hexagonal tilings. Tiling (24) is tile-transitive, but in (25) and (26), it is
impossible to map one pentagon in an outlined block onto the other pentagon in that block by a symmetry of the
tiling. The shaded portion of (25) shows a “double hexagon” which has been dissected into 4 congruent pentagons.

FIGURE 4.

hexagons which tile the plane — there are just three types, and each of these can generate a
tile-transitive tiling. The fact that if a hexagon can tile the plane at all, then that same hexagon can
generate a tile-transitive tiling, considerably simplifies the hexagonal tiling problem. Unfortunately,
this result is not true for pentagons and this may be the reason that Reinhardt did not pursue the
problem further by trying to find other types of pentagons which tile.

In [14], pp. 81-91, Heesch and Kienzle methodically explore the problem of describing types of
pentagons which can generate tile-transitive tilings and affirm that Reinhardt’s five types are the only
convex ones possible. Most recently, B. Griinbaum and G. C. Shephard, using a classification scheme
for tilings, found exactly 81 “types” of tile-transitive tilings of the plane by quite general “tiles” [6],
and, as a result, have not only confirmed these earlier results, but also have shown that there are
exactly twenty-four distinct “types” of tile-transitive tilings by pentagons according to their
classification scheme [9]. Nine of these are edge-to-edge (tilings (1)-(9)); the other fifteen are
illustrated by tilings (10)-(24). TaBLE I summarizes information on these tilings.

In 1968, R. B. Kershner of Johns Hopkins University announced that there are 8 types of
pentagons which tile the plane [18], [19]. He devised a method different from Reinhardt’s for
classifying pentagons which can tile, and this scheme left out any assumptions of tile transitivity for
associated tilings. Happily, his search yielded three classes of pentagons not on Reinhardt’s list. His 3
new pentagonal tiles (types 6, 7, 8 on TasLE II) each have an associated tiling which is edge-to-edge
and not tile-transitive (FIGURE 6).

Although Kershner’s claim — that these three additional types of pentagons completed the list of

(28)

A “house shape” pentagon tiles in a variety of ways. Tiling (27) is a Chinese lattice design (Chinese Lattice Designs,
D. S. Dye, Dover, 1974, p. 340); (28) is a familiar geometric pattern of interlocked St. Andrews crosses. Other
patterns are (1), (14), (18).

FIGURE 5.
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International

Additional Notation for
Type, with Tile- Conditions Symmetry  Isohedral Type
characterizing  Transitive  necessary Group of type from
conditions tilings for tiling Tiling (from [6]) [9] Other tilings shown
(see [30])
1.D+E=m 24) p2 IH4 Ps—4
(10) a=d p2 IH4 Ps—5
(11) a=d 17:44 IHS Ps—8
4) a=d p2 IH23 Ps—18
) a=d pmg IH24  Ps—19
. a=eb=d
(12) b=c pgg IH5 Ps—6, (25);(33)if D=E=mp2
(13) ate=d pgg IH5 Ps—7
(14) at+td=c pgg IH6 Ps—12
.. A+2D =2m,
(15) a=d,b=c pg IH2 Ps—1 (35)lfa=b=c=d
(16) a=db=c pgg IH5 Ps—9
. D =80°and
(6) a=d,b=c cm ‘IH22 Ps—17 (40)’(41)lfa=b=c=d=e
@ a=d,b=c pgg IH25 Ps—20
a7 b=c,a=d+e g IH2 P;—2
‘ D=E=u/2,A=C, _
(18) a=db=c pmg IH15 Ps—14
@ DP=E=mA=C . IH26  P;—21 (27),(28)if B = w/2
a=d,b=c
D+B=mc=e, _
19) a=bid pg . IH3 Ps-3
2.C+E=mw (20) pgg IH6 P;—10 26)if A+C=md=e
a=d (21) peg IH6 Ps—11
.. D+2E=2mw
8) c=e pgg IH27 Ps-22 (36)lfa=c=d=e
3. A=C=D=2n/3 (22) p3 IH7 Ps—13
a=b (23) B=E=x/2 p3lm IH16 Ps—15
d=c+e
4 A=C=a/)2 9) p4 IH28 Ps—-23 (27)ifE=w/2anda=b=¢
:: "; 1)) D=E pig IH29  P,—24
5.A==/3 ) p6 IH21 Ps—-16
C=27w/3
a=bc=d

THE FIVE TYPES OF PENTAGONS which can generate tile-transitive tilings of the plane. The tiles for a given
transitive tiling are not always uniquely of one type (e.g. the tiles of tiling (19) satisfy conditions on angles and sides of
both types 1 and 2). In this table we have listed each transitive tiling only once, thus identifying its tiles by just one
type.

TABLE 1

pentagons which tile — was later shown false, still his discovery was important. It confirmed that there
are pentagons whose associated tilings cannot be tile-transitive, thereby answering a question raised by
J. Milnor in [24, p. 499]. His search for pentagons which tile had been a methodical one; yet still, in his
own words, he ‘“made at least 2 errors, one of commission, and one of omission”.

Contributions by amateurs

The publication of the problem and Kershner’s list by Martin Gardner in [5] stimulated amateurs
to try to find pentagons which tile. Richard James III, a California computer scientist, read the
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Type, with Illustrative

characterizing tile and Symmetry group
conditions tiling number of tiling Remarks
6. C+E=m (29) p2 2-block transitive. Associated
A=2C P = block tiling (29)-B is isohedral
E
a=b=¢e type IH4.
=d A B

7.2B+C =27 (30) pgg 2-block transitive. Associated block
2D +A =2=w tiling (30)-B is isohedral type IH6.
a=b=c=d

8. 2A+B =27 (31) pgg 2-block transitive. Associated block
2D +C =27 tilings (31)-B and (31)-B’' are type
a=b=c=d IH6.

9. 2E+B =27 (34) pgg 2-block transitive. Associated block
2D +C =27 tiling (34)-B is type IH53.
a=b=c=d

10. E=m/2 32) p2 D is bounded:
A=7-D E m —tan"'(4/3) < D < tan™'(4/3)
7+ D b
=7 < (33) if cmm 3-block transitive. Associated block
m—D A B D=x/2, tilings (32)-B and (33)-B are type
= IHA4.
pgg 2-block transitive. Associated block

tiling is type IH6.

p8g 2-block transitive. Associated block
tiling is type IH6.

j2:44 2-block transitive. Associated
block tiling is IHS.

Eight Types of Pentagons which Tile, but for Which No Tile-Transitive Tiling Exists.

TABLE II.

problem and decided not to look at Kershner’s list, but see if he could find some pentagonal tilings
himself. Familiar with the common tiling by octagons and squares, and noting that an octagon is easily
dissected into four congruent pentagons by perpendicular lines through its center, he attempted to
change the familiar tiling into a pentagonal one. He was successful and sent an example to Martin
Gardner [17]. FIGURE 7 shows two tilings by pentagons of James’s type (type 10 on TasLE II). James’s
discovery served to point out a hidden assumption in Kershner’s search — he had, in fact, only been
looking for pentagons which could tile in an edge-to-edge manner, or in a manner in which every tile
was surrounded by six vertices of the tiling (as, for example, in tilings (10) through (24)). James’s
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pentagons are only capable of tiling in a manner which is not tile-transitive and not edge-to-edge. In
addition, some pentagons in this tiling are surrounded by 5 vertices of the tiling, others are surrounded
by 7 vertices of the tiling.

Marjorie Rice, a Californian with no mathematical training beyond “the bare minimum they
required ... in high school over 35 years ago”, also read Gardner’s column and began her own
methodical attack on the problem. Her approach was to consider the different ways in which the
vertices of a single pentagon could “come together” to form a vertex of a tiling by congruent images of
that pentagon. These considerations forced conditions on the angles and sides of the pentagon if it was
to tile, thus giving either a description of a pentagon which could tile in a prescribed manner, or
forcing the conclusion that no pentagon could be constructed which satisfied the conditions.

This essentially combinatorial search yielded over forty different tilings by pentagons and included
a tiling by a new type of tile not on Kershner’s list. Her discovery (type 9 on TasLE II) showed that
Kershner’s search (which was similar to hers) erroneously eliminated the possiblity of this type of
edge-to-edge tiling. A later methodical search by Rice considered twelve different classes of
pentagons, each class corresponding to a description of which sides of a given pentagon are equal.
Possible tilings for each class were sought — and for every class at least one tiling was found. Over 58
diagrams of distinct tilings were produced in this effort, most of them non-transitive tilings by tiles of
type 1. Even though she missed several of the 24 tile-transitive tilings, her scheme was complete
enough to produce a tiling for every one of the pentagons of types 1-10 in TasLes I and II. No other
new types of tiles were produced in this effort. FIGURE 8 shows three of Rice’s tilings for the class of
pentagons having four equal sides, including tiling (34) associated to her type 9. (The pentagons in
tilings (30) and (31), FiGURE 6, also have 4 equal sides.)

Block transitive tilings

The solution of the hexagonal tiling problem was simplified by a theorem which reduced the
problem to one of hexagons capable of producing tile-transitive tilings. Although this theorem is
clearly false for the case of pentagons which tile, we can observe that for each pentagon of types 1
through 10, there exists a tiling containing a minimal ‘block’ of congruent pentagons which has the
property that (i) the tiling consists of congruent images of this block and (ii) this block can be mapped
onto any other congruent block by an isometry of the tiling. If a minimal such block contains n
pentagons, we will say that the tiling is n-block transitive. Thus a tile-transitive tiling is 1-block
transitive. We remark that for n = 2, a given n-block transitive tiling may have several non-congruent
minimal n-blocks. We have outlined two such 2-blocks in tiling (31).

If we remove the interior edges of pentagons in the heavily outlined blocks shown in the tilings in
FiGuREs 6, 7, and 8§, the resulting transitive block tilings reveal information not immediately apparent
from these pentagonal tilings alone. In FiGURE 9, we can see that each of Kershner’s tilings (29), (30),
(31) produces a block tiling in which each block is surrounded by six vertices of the tiling. Thus, these
block tilings are formed by non-convex tiles which are topological hexagons. The Kershner tilings are
obtained from these ‘hexagonal’ tilings by bisecting each ‘hexagon’ into two congruent pentagons.
This method parallels the technique noted earlier of obtaining pentagonal tilings by bisecting
hexagonal tilings. The reader can verify that the 2-block transitive tilings (25), (26), (35) are also
obtained by bisecting blocks which tile as topological hexagons.

Tilings (32), (33) of James’s pentagons also have associated block tilings of topological hexagons
(Ficure 9). In this case, however, each ‘hexagon’ has been dissected into 3 congruent pentagons, an
occurrence that has no parallel in any of the pentagonal tilings known prior to James’s discovery. It
might be appropriate to note here that the symmetry group of the block tiling (33) - B of FIGURE 9 is
p2, which is a proper subgroup of the symmetry group of the pentagonal tiling (33). (The names of
tiling symmetry groups are given in TaBLes I and II.) This occurrence is not surprising, since the
removal of some edges of the pentagonal tiling can cause loss of some symmetries of the pattern (in
this case, reflections).
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(30) @y

Tilings for each of the three types of pentagons discovered by R. B. Kershner. Each tiling is 2-block transitive, and
there exists no tile transitive tiling for these types of pentagons. Two non-congruent 2-blocks are outlined in tiling
(31); each of these generates a block-transitive tiling.

FIGURE 6.

(33)
Tilings by type of pentagon discovered by Richard James III. The tilings consist of strips of attached octagons,
separated by strips of bow ties. Each octagon contains four pentagons, and each bow tie contains two pentagons,

which are in opposite orientation from those in the octagons. The tilings are 3-block transitive.

FIGURE 7.

(34) (35) (36)

Three tilings discovered by Marjorie Rice, each containing congruent pentagons having four equal sides. The tile in
(34) is type 9, and was a new addition to Kershner’s list. The tile in (35) is type 1, the tile in (36) is type 2. All tilings
are 2-block transitive, and for type 9, no tile-transitive tiling exists.

FIGURE 8.
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FiGURE 9 shows the surprising fact that Rice’s tiling (34) of type 9 pentagons has as its associated
block tiling one in which each block is surrounded by just 4 vertices of the tiling. Thus tiling (34) is
produced by dissecting a transitive tiling of topological quadrilaterals (Rice’s tiling (36) is also
obtained from ‘quadrilateral’ blocks). This dissection of a ‘quadrilateral’ tiling to produce a
pentagonal tiling is most unexpected, since ordinary quadrilateral tiles (convex or non-convex), when
bisected, produce either triangles or new quadrilaterals.

It is now easy to speculate that new types of pentagons which tile can be discovered by considering
blocks of two or more congruent pentagons and determining if such blocks can tile transitively. A
preliminary version of this article prompted Rice to examine a particular family of blocks, with hopes
of determining new 2-block transitive pentagonal tilings. She observed that several of the 2-block
transitive tilings previously discussed could also be viewed as tilings by blocks of four pentagons where
these larger blocks had the outline of two hexagons stuck together. FIGURE 10 contains a schematic
diagram of these “double hexagon” blocks, with the types of dissections of these blocks considered by
Rice. Over sixty 2-block transitive tilings of pentagons were discovered in this way, some previously
known ((25) and (26), for example), and some new. Best of all, two of the new tilings showed new types
of pentagons! Just as this article was going to press, Marjorie Rice discovered yet another new tile as
the result of a further search for new 2-block transitive tilings. FIGURE 10 shows the tilings associated to
these new tiles (types 11, 12, and 13 on ‘Table II).

It is quite likely that still other new types of pentagons which tile can be discovered by considering
dissections - of transitive block tilings. The enumeration of the 81 types of isohedral tilings in [6]
(complete with helpful diagrams) makes this task feasible. Checking possibilities will be an extremely

(29)-B (30)-B (31)-B

(32)-B (33)-B g ; (34)-B

Transitive tilings by blocks outlined in tilings (29) through (34).

FIGURE 9.
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37 (39)

Marjorie Rice’s schematic drawings of the “double hexagon” blocks of 4 pentagons. By adjusting sides and angles,
many blocks of 4 congruent pentagons which tiled were found. Tilings (37) and (38) are for pentagons of types 11 and
12, respectively. Both are formed by blocks of the type shown at the lower left in the schematic diagram. Tiling (39) is
for a type 13 pentagon, and is formed by blocks like those shown at the upper left in the schematic diagram.

Ficure 10.

lengthy task, however, with a great deal of built-in repetition. This is assured by the fact that a given
pentagonal tiling may have many distinct n-blocks which produce transitive block tilings and the
additional fact that a single pentagonal tile may produce many distinct tilings. In order to determine if
the list of types is complete, a theorem is needed to put some kind of bound on the possibilities. For
the known pentagons which tile, there always exists an n-block transitive tiling for n = 3. It is natural
to hope that the following theorem is true: A pentagon tiles the plane only if there exists an n-block
transitive tiling by that pentagon for n = 3.

Equilateral pentagons which tile

Although regular pentagons cannot tile the plane, a surprising variety of equilateral pentagons do.
Of the 13 types of pentagons which tile it is obvious that types 3, 10, 11, 12, and 13 cannot be
equilateral. Using construction techniques, together with familiar trigonometric relations, and the
extension of these relations found in [20], we determined all possible equilateral pentagons of known
types which tile. Types 1 and 2 provide distinct infinite families of equilateral pentagons. For types 4, 7
and 8, there is a unique equilateral pentagon of each type. Types 5, 6 and 9 cannot be equilateral. In
order to investigate the equilateral case for types 7, 8 and 9, we studied the general class of equilateral
pentagons PQRST satisfying the condition 2P + Q = 2. FIGURE 11 contains information on this class.
TasLE III contains a summary of details for all known types of equilateral pentagons which tile.

Since any two congruent equilateral pentagons will match edge to edge in any order, the
possibilities for tilings are great. In attempting to determine all equilateral pentagons which tile,
Marjorie Rice produced many interesting tilings. In addition, Martin Gardner’s article inspired
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TABLE III.

Typel. D+E=m

\

Equilateral Pentagons Known to Tile. Types 1-2

Construction

Choose angle E.

Construct sides AE = ED by drawing circle I with center at E.
Construct circle II with center D and radius DE. Find vertex C on
circle II so that DC| AE. Construct CB = AB. The pentagon
ABCDE has the outline of an equilateral triangle atop a rhombus.
Draw circle III with radius equal to DE, and with center M, the
intersection of circle I and circle II. Then for each pentagon ABCDE,
vertex A lies on circle I, vertex C lies on circle 11, and vertex B lies
on circle IIL

The diagram shows representatives of this type for g =E< 2?" .
Angles
m 2m ZAm_ _T
—3-<E<3 A—3 E C—3+E
m
B=3 D=7n-E
Ilustrative tilings
Tile-transitive: Non-transitive:
@), (5), (6), (7), (10), (25)
(11), (12), (15), (16), (24). For D = 80° (35), (40), and (41).

For E = ’5’ (1) and (18).

Construction

Choose angle E.

Construct sides AE = ED by drawing circle I with center at E.
Extend EA to M on circle I. Construct circle II with center A and
radius AE. Find point B on circle II so that DB = DM ; construct
ADCB =ADEM, (so C=m—E). Join AB to form pentagon
ABCDE.

To obtain the description of the angles, draw segment DA, and
denote y = {BDA and 6 = <DBA. Note AMDA is a right triangle,
with {DMA = E/2 and {DAM = C/2. These facts, together with
the law of cosines for ADBA lead to the angle relationships given.

The diagram shows representatives of this type for "5" <E< 2?7" )

Angles
) 0 = arcos (ﬂ‘l&ﬁ)
T<«g<<Z 4cosE/2
3 3
C=n-E =2+
3
= ; B=E2+6
y = arcos (4sinE> ; /
3
A="-E2-6-
7 < v =arcos(3/4) 2 ~E Y

Ilustrative tilings

Tile-transitive:
(8), (20), (21). Special cases:
Non-transitive: (36) Types 4 and 8 below.

40
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Types 4-7 Equilateral Pentagons Known to Tile. TaBLE III.

Construction

Follow the construction of type 2 above for chosen angle E = 7/2,
then re-label the vertices of the pentagon replacing E by A, D by B,
etc., in clockwise order. Angles can be established easily using right
triangle relationships.

Angles

T
A=C=§ B =27 —-2D ~131°24
D=E =§+arcos%~ 114°18'

Ilustrative tiling: (3) and tilings listed for type 2 above.

Type 5
2 . .

A= 7—37 C= —317 Impossible. The conditions A = /3, C =27/3 imply that the pentagon would have to
be of type 2 above. For A = 7/3, the construction yields a limiting quadrilateral of the
type 2 family, i.e., an equilateral “‘pentagon” with E = .

Type 6. Impossible. The conditions C + E = 7 and A = 2C imply that the pentagon would have
to be of type 2 above, with 7/3 < C < m/2. Then /2 < E <2m/3 implies —1<cosE <

C+E=mA=2C —1/2 and cos E/2>0, so arcos 6§ <0. Thus 6 > /2, and since y > 7/6, we have
3CR2=A-C2=m—60—v<m/3, a contradiction to w/3<C.

Type 7. Construction

2B+ C=2m 2D+ A =2m

Let B=P and C=Q in FIGURE 11; then D=R, E=S, A=T.
Adjust vertex R on line [ until2D + A = 27 (a unique solution). Let
¢ = LCBE. The angle relations indicated in figure 11, together with
the additional condition 2D + A =2, give the following general
conditions on angles:

= —— - —_ 2
B=7 2‘+¢ D=nm-A/
C=m+A-2¢ E=§—,A+¢

The extended law of cosines in [20] gives sing =1—cosA; ¢ =
o — arcsin (sin ¢). In addition, the following equations can be ob-
tained, the first from FIGURE 11, the second by combining law of
cosines for ACDE and law of sines for ACBE:

cosC—cosE =1/2

16sin*D + 8sin’D +4cosD =5
To obtain the angle approximations given, we noted by construction
that A was close to 89°. We then computed the angles of the
pentagon as A ranged over values within 1° of 89°, and computed the
error in the above equations for this range. The angles given produce
an error of less than .001 in both equations.

Angles
A "‘89016’ C~70°55, o ’ "
B ~ 144°32'30" D ~135°22 E ~99°54'30

Ilustrative tiling: (30)
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TABLE III. Equilateral Pentagons Known to Tile. Types 8-9

Type 8. Construction
2A+B =2mw. Let A=P and B = Q in FIGURE 11; then C=R, D=S, E=T.
2D+ C=2m Adjust vertex R on line ! until 2D + C =27 (a unique solution).

This is the unique pentagon of the family in FIGURE 11 satisfying
Q =R, P=S8. To see this, add construction lines to our pentagon
ABCDE as follows.

Extend EA to M and ED to N. Let X be the intersection of the
bisectors of angles B and C; draw AX, BX, CX, DX. Then
AXCD = AXCB = AXBA 50 <XAB = C/2 and {XDC = B/2. Now
<MAB = B/2, and {NDC = C/2, which implies {XAD = {XDA.
Thus BX = CX and so angles B and C are equal, angles A and D
are equal.

The explicit value for cos E can be obtained using the extended law
of cosines in [20].

Angles
\/ E - 3 —_ — ™ E o /
E = arcos n A—D—2+2~13O39
~ 81718 C+E=mandB+E=m
B=C=m—-E~9842 show this is also type 2.
Illustrative tilings
(31) and tilings listed for type 2 above.
Type 9. Impossible. The angle condition 2D + C = 27 puts it in the family in FIGURE 11, with
_ P =D, Q =C, E = T. The condition 2E + B = 27 implies E > /2, which contradicts
2E + B =2m the condition in FIGURE 11 that E = /2.
2D+ C =27

George Szekeres and Michael Hirschhorn of the University of New South Wales to conduct a
week-long study group of Form 5 high school students on tilings by equilateral pentagons [16]. Both
Rice and the Australian class discovered that a particular type 1 pentagon (A = 140°, B = 60°,
C=160°, D =80°, E =100° could tile in curious ways (FiGure 12). Both discovered tiling (40)
composed of zigzag bands in which the pentagons can fit together in two distinct ways. The
particularly beautiful tiling (41), having only rotational symmetry, was discovered by Hirschhorn.
Since there are eleven ways in which the angles of this pentagon can be combined to make 360°,
several other unusual tilings are also possible, including another design having only rotational
symmetry. For this reason, Hirschhorn has dubbed it the “versa-tile.”

Some questions

The general problem of determining all convex pentagons which can tile the plane remains
unsolved. Is our list of 13 types which tile complete? We doubt it. Even though a complete solution of
the problem appears to be difficult (certainly lengthy), perhaps the full answer to some special cases
can be obtained. We have noted that the list of types of pentagons which can generate a tile-transitive
tiling is complete (types 1 through 5). Are the only tiles capable of edge-to-edge tilings types 1, 2, 4, 5,
6, 7, 8 and 9?7 Is the list of equilateral pentagons which tile complete? I hope these questions will
stimulate further activity on the problem.
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¢
o<
P>2T7r
2P+ Q=27
3<T=3
7§T<R<7r

—1/2+cos Q =cos S

The family of equilateral pentagons for which 2P + Q = 27 can be envisioned as generated by a flexible
equilateral pentagon, hinged at the vertices, with side PT held fixed, while R rides up and down line / (causing
vertices Q and S to ride along arcs on circles I and II respectively). The formal construction is as follows:

The conditions on the angles listed above follow easily from this construction.

Three pentagons in this family are known to tile the plane. In addition to the unique type 7 and unique type 8
(which is also type 2) listed in Table III, there is a unique type 1 pentagon: P=150°, Q=60°, R=150°, $=90°,

Choose angle P > 27 /3. Construct sides PT = PQ by drawing circle I with center at P.
Construct line ! perpendicular to PT at P. Find vertex R on line [ so QR=QP (then
2P+Q=27). Draw circle II with center T, radius PT. Find vertex S on circle II so that
RS=ST and PQRST is convex.

T=90°.
FIGURE 11.
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