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Introduction

Recently, Fermat’s Last Theorem was proved. A long chain of arguments, based
on many mathematicians’ deep work, culminated in Wiles™ last and decisive step
(28, 25)).

FERMAT'S LAST THEOREM. Let n,a,b,c €Z with n>2. If a" +b" =c", then
abc = 0.

There have been several attempts to present the basic idea of this marvelous proof
to a wider mathematical audience ([2, 7, 8]). Another recent paper [3] provides more
details.

Wiles’ proof is based on the theory of elliptic curves, i.e., curves defined by cubic
equations. A big part of this theory is devoted to understanding the “rational points”
(points whose coordinates are rational numbers) on these curves. The set of rational
points on an elliptic curve has a natural group structure, which will be described very
briefly later. It is often very difficult, however, to find all the rational points on an
elliptic curve.

In this paper we take a much easier and more familiar example—the unit
circle—and show how to compute the group structure of its rational points. Next,
some applications are given. Finally, for comparison, we give a brief summary of
known results on the group structure for rational points on elliptic curves.

Rational Points on the Unit Circle

Let C be the unit circle in the real plane, defined by x2 + y® = 1. The rational points

on C are those for which both coordinates are in Q. For example, (3, %), (— 3, i

and (0, 1) are rational points, while (%, 1/;3—) is not. We denote the set of rational points
on C by C(Q). A rational point (£,2) on C corresponds to an integer solution to
X%+Y?%=2% with X=a,Y=>b, and Z = c. (More generally, a rational point on the
curve x" +y" =1 corresponds to an integer solution to X" +Y" =Z")

C is an abelian group under the “angle addition” &, defined by

(21, 41) ® (%9, y5) = (01X =Y, Y5, X1 Y5 + 25 Y)) (1)
for (x), y,),(x,, y,) € C. The identity element is (1, 0), and the inverse of (x, y) is
(x,— y). Note that (1) is merely the familiar “addition formula” in trigonometry using

the correspondence 60— (x, y) = (cos 6, sin 6); (1) is also the usual formula for the
multiplication in the field of complex numbers.
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It is clear from (1) that C(Q) is a subgroup of C. This raises a natural question:
What is the group structure of C(Q)?

We begin our search for an answer with some elementary facts from number theory
and algebra (see, e.g., [12]).

Every Pythagorean triple (a,b,c) (ie., a triple of integers a,b,c with ¢+#0,
satisfying a® + b2 =c?) corresponds to the rational point (£,2) on C(Q). Two
Pythagorean triples (a, b, ¢) and (a’, b’, ¢') correspond to the same point on C(Q) if
and only if (a,b,c)=r(a’,b’,c") for some r& Q\{0}. Therefore, if (a,b,c) is
primitive (i.e., if ¢> 0 and the greatest common divisor of @, b, and ¢ is 1), then
every Pythagorean triple corresponding to (£,2) must have the form (na, nb, nc) for
some nonzero integer n.

From elementary number theory we know that the parametrization (m?—
n%,2mn, m* + n?), with m, n €Z, not both 0, gives all Pythagorean triples (a, b, ¢)
with ¢ > 0. Those m and n that satisfy (1, n) = 1 and m —n = 1(mod 2) produce all
the primitive triples. (See, e.g., [23, p. 13]) It is perhaps illuminating to have a
geometric interpretation of this parametrization. The expressions m? —n* and 2mn
remind us of the double-angle formulas for cosine and sine. They come from the
well-known “rational parametrization” p: R — C of the unit circle, defined by

1-¢* 2t
p(t) (1+t2’1+t2)' )

(See Ficure 1; for more details, see [23, p. 11].) In particular,

p(%)=(m2—n2 2mn )

m?+n?’ m?+n?

p(t)

2tan~! ¢

FIGURE 1
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As the lines through (—1,0) sweep through the rational slopes, their intersections
with C, other than (—1,0), sweep through C(Q). Notice too that 134 =
cos(2tan™'(¢)), and that plg: @ —» C(@)\ {(—1,0)} is onto, since p(7%) = (u,v).
Next we consider the ring Z[i]={m + nilm,n € Z} of Gaussian integers. For
m +ni € Z[i] with m # 0, the line connecting m +ni and O intersects the vertical
line x =1 at (1, ) (see Ficure 2). Combining the above observations (by superimpos-

ing Ficure 1 and Ficure 2, with the line x = 1 in Ficure 2 aligned with the y-axis in
Ficure 1), we get a map f: Z[i]\ {0} —» C(Q) defined by

m?—n? 2mn
(3)

m2+n?’ m2+n?)’

f(m+ni) =

f(ni) is defined to be (—1,0). It is clear from (3) that any Gaussian integer on the line
of slope n/m through O yields the same value for f(m + ni).

. n . . . . (m, n)
L] L] L] Ld L] L]
L] Ld L] L] L] L]
n
o m
FIGURE 2

The keys to our approach are the simple facts that f is an onto map from Z[i]\ {0}
(which is almost a group under multiplication but for the lack of inverses, i.e., a
semigroup) to the group C(Q), and that f preserves multiplication. This, again, is the
double-angle formulas (see Ficure 1): If m + ni corresponds to angle 8 = tan~!(n /m),
then f(m + ni) € C(Q) corresponds to 2. The following properties are also clear:

f(m—ni) ®f(m+ni) =(1,0), (4)
f(m+ni) =(1,0) (resp. (—1,0)) ifandonlyif n=0 (resp. m=0). (5)

The homomorphism f: Z[i]\ {0} - C(Q) will enable us to explore C(Q), using the
well-known properties of Z[i]. The Lemma below shows the advantage of doing so.
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The Group Structure of C(Q)

Now for k=1,2,3, let (¢;,s) € C(Q), (¢, s,) =f(my +nii). Then (¢, )=
(cy,85) ®(cy,85) if and only if (m; +n,i)l’ = (my + nyi)(my + nyi)l for some
I, I € Z\{0}. Thus, the elements f(m + ni) € C(Q) with m + ni irreducible in Z[i]
suffice to generate C(Q).

Let us recall some basic properties of Z[i]. (For more details, see [12].) First, Z[i]
is a unique factorization domain (in fact, a Euclidean domain) with units +1 and +i.
Second, the norm N in Z[i], defined by

N(m +ni) = (m+ni)(m—ni) =m?+n?,

is a homomorphism from the multiplicative semigroup Z[i]\ {0} to the multiplicative
semigroup N of natural numbers. Third, Z[i] has three types of irreducible elements:

(i) For a rational prime (i.e., a prime number in Z) p = 1(mod 4), p can be written,
uniquely up to sign and order, as the sum m? + n? of two squares. For such m
and n, m + ni is irreducible in Z[i] of norm p.
(ii) For a rational prime p = 3(mod4), p remains irreducible in Z[i] of norm pz.
(iii) 14 ¢ and 1 —i are irreducible, each with norm (1 +i)(1 —i)=2.

For irreducible elements p of type (i), f(p)=(1,0), the identity in C(Q). For
irreducible elements 1+ of type (iii), f(1+i)=(0,+ 1), which have order 4 in
C(Q). For each p = 1(mod4), we pick, for definiteness, integers m, and n, so that
p= mi + nf,, m,>mn,>0. Then

2 2
m:—n? 2m_n
{(mg+ng’m2-}l)-n};)} U {(O’l)}
14 P P 14 p=(mod 4)

is a set of generators for C(Q). Now we show that no relation exists among these.
generators, other than that (0,1) has order 4. First we handle generators of type (i):

LEMMA. There is no non-trivial relation in

2 _ .2
{(mp n, Zmpnp )}
2 PR 2
Myt My Ty [ i (mod 9

Proof. Let p,,...,p; be rational primes, all congruent to 1 modulo 4. Let
mp=m,.n;=n,, and suppose that

J ]
a, f(m,+ni)® - ®a,f(m,+n,i)=(1,0) (6)

for integers a,,..., a;. Then

(my +nyi)" . (my + i) =1 @)

for some [,1’ € Z\{0}. Let [=q,q,... and I'=qq;... with g; and q; rational
primes. We may assume, by unique factorization, that [ = 1. So

(my+n) " (my 1) =qlq ... (8)

By unique factorization again, each g is associated with a product of two factors, each
the complex conjugate of the other, of the left side of (8). The images of such a pair of
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factors under f are inverses of each other by (4) and (5). Unless all a; = 0 this leads to
a contradiction, since all m; and n; are positive. Thus (6) is a trivial relation. i

If, on the other hand, a relation involves (0, 1) (= f(1 + 1)), then the “quadruple” of
this relation has the form (6), and is therefore trivial by the Lemma. It follows that the
original relation is a consequence of the relation 4-(0,1) = (1,0).

To finish the analysis of C(Q) we invoke a special case of Dirichlet’s Theorem on
primes in arithmetic progression. This case was proved by Euler [5] in 1775:

There are infinitely many primes congruent to 1 modulo 4.
Combining the results above, we get the structure theorem for C(Q).
THEOREM 1. The abelian group C(Q) is the direct sum of infinitely many cyclic
subgroups:
c@=ce( & c)
p=1(nod 4)

where C, is generated by (0,1) (an element of order 4), and C,, is the infinite cyclic
group generated by

2 _ .2
(mp n, 2mpnp)
>

2 2 9 2
mp+np m, +np

, . . ; 2 42—
with m,,, n, being the unique solution to my; +ny =p,m,>n,> 0.

Examples and Corollaries

We illustrate the significance of Theorem 1 with some examples and corollaries.

Example A. Cs, Cy3, Cy;, Cy, Cqy, and C, are generated, respectively, by
3.5)=fC+d, (F.85)=r@+2), (£.%)= G+, (5.8)=r16+20),
£, 32)=F6+1), and (&, 2) =1 + 4i).

Example B. (7%, 142) = (0, 1) @ (=1)-(%,£) ® 2-(£, %). This decomposition can
be computed as follows. From the prime factorization 1445=5-17%, we have

T ig)=n-0,De(£D(%,%) @ (£2):(£. ). Now we choose the coefficient
of (2, %) to be 1 (resp. —1) if the denominators are 172 in (52, 42) @ (- 1)(2, ¢
(resp. in (ﬁ%, i) @ (1)-(%, 3)), when reduced. The coefficient +2 is chosen
similarly. Finally, the coefficient of (0, 1) is chosen to get the right signs and the right
order of the two coordinates.

The following corollaries are straightforward consequences of Theorem 1.

COROLLARY 1. Let a and B be real numbers, and suppose P, = (cos a,sin a) and
Py = (cos B,sin B) are in C(Q), and that 3 € Q. Then there exist r,s € Z, P, € C(Q),
and c,, ¢g € Cy, such that P, = rP, ® ¢, and Py =sP, ® cg. In particular, if P, € C(Q)
and a is a rational multiple of m, then P, € C,. ([26])

Proof. Let a/B=r/s € Q, with r and s relatively prime. Then sP, = rP,, because
in C(Q) we have n-(cos ,sin 8) = (cos(n8), sin(n8)). So the first assertion follows
from Theorem 1 by comparing the C,-components of P, and P,: Each C,-compo-
nent of P, (resp. F) is “divisible” by r (resp. by s), and we can construct P, by
defining its C,-component as 1. {the C,-component of P,}, which is equal to *-{the
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C,-component cof Pg}. (Because C, is finite, we cannot compare the C,-components
here, and so must include the “c,” and “cz” terms.)
The second assertion follows from the first by taking g = . O

COROLLARY 2. Let P,=(cos a,sin @) and P;=(cos B,sin B) be in C(Q) and
suppose that o — B is a “rational multiple of . Then a=B+* for some ke Z.

Proof. This follows directly by applying Corollary 1 to a — B. O

COROLLARY 3. On the “square geoboard” (the lattice Z X Z in R?), the only angles
of rational measure (in degrees) that can be formed by three lattice points are integer
multiples of 45°. (This was conjectured in 1921 [26] and first proved in 1945 [20].)

Proof. The claim follows directly from Corollary 2 and the double-angle correspon-
dence (3) between the geoboard Z[i] and C(Q). O

On a geoboard, therefore, one cannot “construct” angles measuring 30°, 60°, 22.5°,
36° and 20°. Thus, Corollary 3 solves a “teaser” in the premier issue of the Math
Horizons [16].

We mention in passing that although for r € Q, cos(rw) and sin(rw) are both
irrational (the only possible exception is r = & for n € Z), these values are known to
be algebraic [24, 14, 9]. By contrast, the values cos r and sin r, for r € Q\ {0}, are all
transcendental [15, 27]. (The first result follows easily from De Moivre’s Theorem;
the second is much harder.)

Remarks. (a) The unique factorization property of Z[i] gives an algebraic interpre-
tation of the double-angle correspondence f in (3). In fact, from a® + b% = c?%, we get

(a+Dbi)(a—bi)=c> (9)

Writing a + bi, a — bi and ¢ as products of irreducible elements in Z[i] shows that
a +bi is a square -in Z[z] ie., a+bi=(m+ni)*=(m?>—n?)+ @mn)i for some
m,n €Z. Hence tan™!(2) = 2ta.n'1(m) For instance, 3 + 4i = (2 + )% Thus the
simple factorization (9) links the additive and multiplicative properties of numbers,
and leads to the starting point of Kummer’s work on Fermat’s Last Theorem. (Cf. [1,

Ch. 3] and [4, Ch. 5].)
(b) C(Q) can be identified with the (multiplicative) subgroup

- {2+ Bieaul(2 (2] -1}

of Q(i) consisting of the norm 1 elements, where Qi) is realized as the field of
fractions of Z[i]. Then for 2 + 2i € Q(4),(a, b,c) =1, and the prime decomposition
in Z of c=p1p2...q1q2... where p; = Umod4) and g;=3(mod4), we have, by
unique factorization, that

a+bi  (r)+s8)(ry+syi)...

c P1Pg--
As remarked above,
, N2 2 . .
a+bi  (my+ni) (myg+nyi) ... my+ni my+nyi
c P1P2--- my—nyi myg—mngi "

By multiplying both m; +n;i and m; — n;i by an element in C,, we can assume that
each m;>[n;|> 0. Thus, we have the generation part of Theorem 1. The argument
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using Q(i); on the relation part is similar. The map Q(i)* — Q(i), defined by (3) is
the map in Hilbert’s Satz 90 ([10]), applied to the current special case.

Rational Points on the Hyperbola

Our analysis of the rational points on the unit circle x2 4+ y* =1 can be modified to
study the rational points on the hyperbola H defined by x* — ¢ = 1. In this case, we
have a rational parametrization p: R\ {+ 1} = H defined by
-5 2 (10)

P -2 1-¢2)

obtained by intersecting the line of slope t, through (—1,0), with H. We define an
addition ® on H by

(21, 41) ® (%3, ys) = (21%, + Y1 Ys, X1 Yy +X5) (11)

for (x, y,),(x,, y,) € H; the identity element is (1,0); and the inverse of (x, y) is
(x,—y). It is clear from (11) that the rational points H(Q) form a subgroup of H. In
the current case, Z[i] is replaced by Z[¢]= Z[ X]1/(X? — 1). Note that Z[ ¢] is not an
integral domain, since (¢ — 1)(&+ 1) =0. To remedy this, we take the subset R =
{m +nelm >n} of Z[¢] Then R is closed under multiplication and has the unique
factorization property. Since H consists of two branches H, = {(x, y) € H|x > 0} and
H, ={(x, y) € H|x <0}, the subgroup H(Q) has a corresponding decomposition

H(Q) = Hy(Q) UHy(Q). (12)

It can be readily verified that H, is a subgroup of H and H,(Q) is a subgroup of
H(Q). Thus, (12) is the coset decomposition of H(Q) with respect to H(Q), with
Hy(Q)=(-1,0)® H(Q) and H(Q)=H' & H,(Q), where H' = {(£1,0)}. The map
f: R— H,(Q) defined by

fn+ne) = (20, (13)

m -n m-—n

is an onto homomorphism. The following theorem, whose proof is left to the reader,
gives a complete description of the group structure of H(Q).

THEOREM 2. The abelian group H(Q) is the direct sum of infinitely many cyclic
subgroups

H(@)=H’€B(p§?meH)

where, for each prime p, H, is the infinite cyclic group generated by (P2+l, p;; - )
Note that for p > 2, (P;—:l,%) =f(E~ + 257 ¢), and p=2,(%,2)=f(3 + &).
Example C. (-1, —%)=(-L0 2. (5, e(-D-(,4) (2, 2).



170 MATHEMATICS MAGAZINE

General Conic Sections

The curves C and H studied above are but two special cases of the conic sections
(defined by integral polynomials of degree 2). The structure of the rational points on a
general conic section may be more comphcated Indeed, some conic sections have no
rational points at all. For example, the curve ax? + by® = ¢, where a,b,c € Z, not all
of the same sign, and abc is square-free, has rational points if and only if
—be, —ca, —ab are quadratic residues modulo |al, |bl, |¢| respectively. This is Legen-
dre’s Criterion [13]. Analyzing the general case requires the arithmetic theory of
quadratic forms. Once we know that a single rational point P exists, we can get all the
rational points by sweeping the secant lines through P of rational slope; this gives a
rational parametrization of the curve. (This is a special case of the Hilbert-Hurwitz
Theorem [11] on the rational parametrization of curves of “genus 0”.) In the cases of
the unit circle and the hyperbola, we took P to be (—1,0). These cases are
exceptionally interesting because of their natural group structure that can be de-
scribed in a simple way.

Conclusion

We conclude with a brief discussion of the situation for cubic curves.

Let E be a nonsingular cubic curve defined over @, and let E(Q) be the set of
rational points on E. We may assume that E is defined by an equation in Weierstrass
form: y® =x°®+ ax® + bx + c. Now call the unique point at infinity @; it will be the
identity element of our group. The “negative” of a point (x, y) is (x,— y). In general,
a line intersects E in three points, since a general cubic equation has three roots. We
define the addition on E and E(Q) by decreeing that collinear points on E “add up”
to @. The reader is referred to [23, Ch. I] for detailed discussion. The picture on the
cover of [23] illustrates the definition of the addition on E. On such a curve E, we
have these group-theoretic properties:

(i) E is an abelian group. (This has been known since Euler.)

(i) E(Q) is a finitely generated abelian group. (This is the celebrated Mordell’s
Theorem [10], first conjectured by Poincaré [21] in 1901.)

(iii) The torsion subgroup of E(Q) can have only the following forms, each of which is
realizable: A cyclic group of order n with 1 <n <10 or n = 12, or the product of
a cyclic group of order 2 and a cyclic group of order 2n with 1 <n < 4. (This is
Mazur’s Theorem [17, 18].)

(v) E has only finitely many points with integer coordinates. (This is Siegel’s
Theorem [22].)

Note that in the unit circle case, the torsion subgroup coincides with the set of
integer points on the curve; this is not the case for cubic curves. The difference as
regards finite generation between degree 2 and degree 3 (or higher) should not be
surprising: Fermat’s equation X" +Y" =Z" has infinitely many solutions if n = 2 and
no nontrivial solution if n > 3. The corresponding curves have different topology as
well—they have “genus” 0 and 1 (or n — 2) respectively.

We hope that our elementary discussion of C(Q) will stimulate the reader’s interest
in the deeper theory of quadratic forms and cubic curves, and in the discoveries on
these subjects by Fermat, Euler, Lagrange, Legendre, Minkowski, Mordell, Hasse,
Weil, Siegel, Mazur, Wiles, and others.
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