“Changes in latitudes, changes in attitudes, nothing
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That was when I saw the Pendulum. The sphere, hanging from a long wire set into the ceiling of the choir,
swayed back and forth with isochronal majesty...The time it took the sphere to swing from end to end was
determined by an arcane conspiracy between the most timeless of measures: the singularity of the point of
suspension, the duality of the plane’s dimensions, the triadic beginning of T, the secret quadratic nature of
the root, and the unnumbered perfection of the circle itself.. Were its tip to graze, as it had in the past, a layer
of damp sand spread on the floor of the choir, each swing would make a light furrow, and the furrows, chang-
ing direction imperceptibly, would widen to form a breach, a groove with radial symmetry...

o begins Umberto Eco’s esoteric conspiratorial adven-

ture tale, Foucault’s Pendulum. But what are the under-

lying forces at work behind this phenomenon? Are they
mathematical or are they physical? Today, at least, I'd like to
argue that they are mathematical. It is simply the curvature of
the earth which enables the pendulum’s tip to create its single
pattern.

The notion of curvature is an interesting and exciting topic
that is rich in questions inviting exploration and research.
While the definition of curvature of a curve may be familiar to
many (the rate of change of the unit tangent vector with respect
to arc length), curvature of a surface may not be. For a surface,
what should curvature measure? How is it defined to agree
with our basic ideas (a plane is not curved, while a sphere has
constant curvature)? These are both interesting and inviting
questions. But why stop with surfaces? Curvature of higher-
dimensional surfaces (manifolds) is an equally fascinating
subject which can quickly lead to such appealing topics as Ein-
stein’s general theory of relativity, the curvature of spacetime,
blackholes, and the like. In fact, one of Einstein’s famous
equations (not the E = mc? one) basically equates curvature (a
mathematical quantity) with matter (a physical quantity)! It
makes sense to tackle a familiar problem from physics using a
completely mathematical formulation.

Foucault's Pendulum

In the middle of the nineteenth century, Foucault constructed a
pendulum by hanging a 5kg bob from the ceiling of a cellar
(about 2m high). After setting the pendulum in motion he
observed “The oscillating point is continuously displaced...,

which indicates that the deviation of the plane of oscillation
takes place in the same sense as the apparent motion of the
celestial sphere...” Later on at the Pantheon he repeated this
experiment on a grander scale using a 28 kg bob hanging from
a height of 67m. Hopefully you have had the opportunity to
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The Foucault Pendulum in the atrium of the Hameetman Science

Center, Occidental College.
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Photo by Jennifer Quinn
A closer look at the pendulum bob.

observe this phenomenon yourself. Can you explain why he
observed the plane of oscillation (the direction of the pendu-
lum swing) rotating as time went on?

A couple of simple thought experiments can help replicate
this phenomenon if you have never observed it firsthand. First,
imagine a pendulum suspended from a great height directly
above the North Pole. Give this pendulum just a slight push so
that as it swings it almost brushes the ground. Now, assuming
that it does not lose any momentum, imagine the pendulum
swinging back and forth for a 24-hour period. What happens?
Clearly the Earth rotates through an angle of 2x so that an
observer standing near the pendulum will observe the direction
of swing of the pendulum steadily rotating through an angle of
27 as well (over the same time period).

Now, perform the same thought experiment but this time
let’s suspend the pendulum directly over a point on the equa-
tor (say Quito). Suppose the pendulum is given a slight initial
push so that it swings North-South. As the Earth rotates (West-
to-East) the direction of the pendulum remains North-South!
That is, there is no observable rotation of the plane of oscilla-
tion! Obviously there is something different about being at the
North Pole and the equator.

The next logical step would be to perform the thought
experiment once again for some latitude between the equator
and the North Pole. However, at this point it is not as easy to
keep track of the position of the pendulum relative to that of
the surface of the Earth (try it!). However, one should be able
to invoke a continuity argument to claim that since the pendu-
lum does not rotate when positioned at the equator and it
rotates through an angle of 2r when positioned at the North
pole (over a 24-hour period), it must continuously rotate
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through greater and greater angles as one positions it in more
northern climes. Nevertheless, it is the nature of the increase
which is the more interesting question. Is this increase linear?
Quadratic? Something else?

The main purpose of this article is to describe the phenom-
enon of Foucault’s pendulum mathematically. Without relying
on any incantations of such physical quantities as “coriolis
effect” and the like, this paper will show that the phenomenon
is just a simple effect due to the curvature of the earth. And we
all know that curvature is a mathematical quantity. Isn’t it?

Life On a Sphere

Since you are currently reading a mathematics magazine, you
are no doubt aware that there are some fundamental differ-
ences between a sphere and a plane. For instance,

* In a plane, all triangles have angles which sum to
exactly 180° while on the surface of a sphere triangles
have angles which sum to greater than 180°.

* In a plane, parailel lines never meet. On a sphere they
meet twice! (Just imagine two travelers starting near-
by on the equator. If they decide to each walk North
they will meet at the North Pole and again at the South
Pole.)

These two observations indicate that geometry on a sphere is
certainly different then geometry on a plane. However, there
are also topological differences as well.

* Imagine a group of people standing in a circle and
holding hands. If they were standing on a plane and
began to walk “towards™ each other, the circle would
grow increasingly smaller until everyone met at a
point. Or, if they walked away from each other the cir-
cle would continue to grow larger and larger (and
everyone’s arms would have to stretch indefinitely).
Now, if this same circle of people were standing on
the surface of a sphere they could begin to walk either
towards one another or away from one another and
eventually they would still meet. (It might take a while
and it would require a lot of arm stretching, but it
could be done.)

e More simply, just imagine a lone world-traveler
always walking in a straight line. In a plane this trav-
eler would keep walking forever without ever passing
over the same ground twice. However, on a sphere the
traveier would eventually return to her starting point.

Why do these differences exist? Because of CURVATURE!
Curvature affects geometry (triangles, notions of parallel) as
well as physics (paths that light travel, Einstein’s theory of
general relativity, and Foucault’s pendulum, which we're still
getting to). In order to see the effect of curvature on Foucault’s
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pendulum we will first have to learn how to do calculus and
geometry on a sphere.

Calculating on a Sphere

Just as in any mathematics course, one needs to be equipped
with the appropriate tools in order to do geometry and calculus
(differential geometry) on a sphere. For our purposes here, we
will need the following tools: appropriate coordinates, basis
vectors that are related to our chosen coordinates, and an
appropriate notion of derivative.

Coordinates and Basis Vectors

Since the Earth is basically a sphere, it probably makes the
most sense to work in spherical coordinates, but let’s make one
slight modification. Traditionally spherical coordinates use ¢
to measure the angle down from the positive z-axis. For this
paper, we’'ll use ¢ to represent the angle up from the xy-plane
and hence will be synonymous with traditional latitude. Now,
since we are interested in doing calculus on Earth (our sphere)
and only Earth, all points will have the same radial coordinate
(call it R) and thus as we travel from point to point on the
sphere only the coordinates ¢ and 8 will change. Let’s think
of these as our two coordinates. At this point we have that any
point on our sphere can be represented by the position vector

Rcos8cos¢i+ RsinBcos@j + Rsingk

where i, j, k and are the standard basis vectors in R*. As men-
tioned earlier, as we travel around the sphere the only changes
arein 8 and ¢, thus it would make life much easier if we had
basis vectors which pointed in the direction of increasing 6
and increasing ¢ respectively. A couple of simple partial
derivatives will accomplish this. The direction of increasing 8
is found by taking the partial derivative of position with respect
to 6.

%(position) = %(Rcos@cos@' + Rsinfcos@j + Rsinq)k)

=—RsinBcos @i + RcosBcosdj + 0k.

This vector currently has length R cos ¢ so the unit vector in
the direction of increasing 6 is

e, =—sinBi+cosBj + Ok.

Similarly, by calculating the partial derivative of position with
respect to ¢ , one can define the unit vector in the direction of
increasing ¢ to be

e, =—cosOsingi —sin@sin@j + cospk.

At this time we have our sphere of radius R having coordi-
nates (¢, 6) that defines points on the sphere and basis vectors
¢, and e, which define directions tangent to the sphere. As we
begin to analyze Foucault’s pendulum, we will be interested in

measuring only those changes which occur tangent to the
sphere. Consequently we will wish to ignore all motion
orthogonal (or normal) to the surface of the sphere. It should
be easy to see that the outward pointing unit normal vector is
given by

n=cosfcos@i +sinfcos@j +sinpk.

The Pendulum

Armed with the necessary tools, we now come back to the
original study of the pendulum. As we begin to analyze this
motion, keep three important factors in mind:

I. The pendulum swings close to the surface of the sphere
through a very small angle and, hence, the direction of
swing, which we will call v, is tangent to the sphere.

2. The pendulum itself is just trying to go back and forth; it is
not trying to twist or rotate. It is the Earth under the pendu-
lum which is rotating! As the Earth rotates, we can think of
the pendulum traveling along a circle of constant latitude
(9 =9y.

3. All physical forces (e.g. gravity) will be ignored. Remem-
ber we are treating this as a geometry problem not a physics
problem.

Given these assumptions, we will cast the phenomenon of Fou-
cault’s pendulum into mathematical terms.

The Geometry Problem:
Given a unit vector v, slide it around a circle of constant lati-
tude such that

1. v is always tangent to the sphere (which means that v can
always be expressed as a linear combination of e and e,),
and

2. The direction of v always stays the same, that is, v does not
change in the e, and e, directions (the only directions that
we care about).

The above problem is a common one in differential geom-
etry. Using fancy language we want to parallel transport v
around a circle of constant latitude. We can then compare what
v looks like after we make a complete trip around the Earth
(i.e., after 24 hours have elapsed).

Now, as v travels around a circle of constant latitude, only
6 changes. Hence we can think of v (the direction of swing) as
being parameterized by 6. Furthermore, we are assuming that
the pendulum’s swing is always tangent to the sphere and
hence can be written as a linear combination of e, and e,. We
have

v(0)=a(0)e +b(H)e,

Continued on page 32
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Continued from page 21

where a and b are scalars that depend on 6. To see how v
changes as it travels around a circie of constant latitude
(increasing 6) we need to compute %V . First, let’s compute
the partials of our basis vectors:

%el = a—aé(—sin9i+cosej+0k)

=—cosBi—sin8j +Ok.

Recall, we are only interested in motion tangent to the sphere.
Thus, to see how much of this change is tangent to the sphere,
let’s write it in terms of e, e,, and n. One should get (double-
check my work here!):

—e, =0¢ +sing,e, —cosP,n
00
For the second basis vector we have

:3%6’2 = %(—cos(—)sinq)gi ~sin@sing,j + costpnk)

=sin@sing,i — cosfsing,j + 0k
=—sing,e, + Oe, + On.

Since v represents the direction of the motion of the pendu-
lum, then v is not supposed to change (as measured on the
sphere). So, we will impose the condition that <v , once pro-
Jected down to the sphere, should be zero (actually the zero
vector). Thus, as we start taking derivatives, just keep in mind
that any component in the n direction will be ignored and we’ll
only keep those components in the directions of e, and e,. Fur-
thermore, let’s use Vv to represent v projected down to the
sphere. Thus,

Vv =V(a(8)e, + b(8)e,)
=d’e, +alsinge,)+b'e, +b(—singye,)

=(a’—bsing, )e, +(asing, +b)e,.

Since we are insisting that Vv = 0, this will only be the case
when

a’ —bsing, =0
and
b’ +asing, =0
Which means we have a system of differential equations:
da
— = Dsin
0 P,

db

0 —asing,.
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We can solve this uniquely once we impose initial conditions.
If we assume that the pendulum is started so that it swings
east-west (in the @ direction only) we have v(0)=le, + Oe,
which gives us the initial conditions of a(0) = 1 and b(0) = 0.
To simplify the results, let’s let Q be the sine of the latitude
(Q =sin@y). Even if you have never had a course in differen-
tial equations, you can probably guess what the solution to the
above initial value problem is. Think about it. We are looking
for two functions of 9. The first one, a(6), has a derivative
which is a multiple of the second one, b(6 ), while the deriva-
tive of the second function is a multiple of the first. The basic
trigonometric functions should quickly come to mind. Togeth-
er with the initial conditions, one sees that the unknown func-
tions @ and b must be

a(@) =cos 06
b(8) = —sin Q6.

Recall that since the direction of the pendulum’s swing is
given by v=a(f)e, + b(8)e,, we now know how the direction
of the swing moves as the Earth rotates ( @ increases). For a
more geometrical interpretation of how v changes, exploit the
power of matrix multiplication to write

a(6) cos@0 sinQO |1
[b(@)} - L sinQ@  cos Qe} M
This matrix multiplication may be familiar from linear algebra.
The vector [a(6),b(8)] is simply the vector [1, 0] after having
been rotated through an angle of Q 8. So, after 24 hours of
swinging, the pendulum (i.e., v) would end up rotating by 2nQ
where Q is the sine of your latitude! A quick reality check
shows that this result agrees with our earlier thought experi-
ments. At the equator (8 = 0) there is no oscillation of the pen-
dulum, while at the North Pole (8 = n/2) the pendulum com-
pletes exactly the same rotation as the Earth! Another
interesting observation is that even though one can argue that
it is the curvature of the Earth which creates this phenomenon,
the radius of the Earth (which affects the magnitude of curva-
ture) does not influence the result. Therefore, you can tell you
live on a spherical Earth (as opposed to a flat one) by building
such a pendulum and seeing if the plane of oscillation does
indeed rotate as Foucault claims, but you can not detect how

“curved” your spherical world is. How does one do that?
Well... u
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