If one had to identify a single idea upon which the argument turned, it would be what we call the "Euler sigma function." Because this is critical to all that follows, we provide the formal definition.

Definition: If \(n \) is a whole number, then \(\sigma(n) \) is the sum of all whole number divisors of \(n \).

For example, \(\sigma(15) = 1 + 3 + 5 + 15 = 24 \). In his paper, Euler denoted this function by \(\int \), a choice that seems blasphemous in assigning a non-standard meaning to that most standard of symbols, the integral sign. Modern number theorists prefer to use \(\sigma \).

We get an immediate characterization of primality in

Theorem 1. A number \(p \) is prime if and only if \(\sigma(p) = p + 1 \).

More intriguing is

Theorem 2. If \(p \neq q \) are different primes, then \(\sigma(pq) = \sigma(p) \cdot \sigma(q) \).
Math Horizons

Proof. The only divisors of pq are $1, p, q,$ and pq, and so, by Theorem 1,

$$
\sigma(pq) = 1 + p + q + pq = (1 + p) + q(1 + p) = (1 + p)(1 + q) = \sigma(p) \cdot \sigma(q).
$$

Q.E.D.

We revisit $15 = 3 \cdot 5$ and see again that $\sigma(15) = \sigma(3) \cdot \sigma(5) = 4 \cdot 6 = 24$.

Euler recognized Theorem 2 as a specific instance of a more general result. The multiplicative rule holds not just for different primes but for any whole numbers whose greatest common divisor is 1. To state this explicitly, we offer (without proof)

Theorem 3. If gcd$(a, b) = 1$, then $\sigma(ab) = \sigma(a) \cdot \sigma(b)$.

Thus, to determine the sum of all divisors of 585, we decompose it into relatively prime factors and apply Theorem 3:

$$\sigma(585) = \sigma(5 \cdot 9 \cdot 13) = \sigma(5) \cdot \sigma(9) \cdot \sigma(13) = 6 \cdot 13 \cdot 14 = 1092.$$

(We’ll see this example again ... stay tuned.)

Euler could recast the definition of amicable pairs by observing that the sum of the *proper* divisors of a whole number n is just $\sigma(n) - n$. Consequently, M and N are amicable if and only if $\sigma(M) - M = N$ and $\sigma(N) - N = M$, which leads to the elegant characterization that M and N are amicable if and only if

$$\sigma(M) = M + N = \sigma(N).$$

It was this relationship that provided Euler his entrée into the world of amicability.

We are ready to examine his strategy. Logically, he employed what the Greek philosophers called “analysis.” That is, he stipulated that M and N are amicable; used (1) to deduce consequences of amicability, thereby restricting the search to a manageable number of cases; and then checked that the process was reversible.

As a first case, Euler assumed that an amicable pair has the form $M = apq$ and $N = ar$, where $p, q,$ and r are different primes and a (not necessarily prime) is the greatest common divisor of M and N. From (1), he knew that

$$\sigma(apq) = \sigma(M) = \sigma(N) = \sigma(ar),$$

and so by the multiplicative property above, $\sigma(a)\sigma(p)\sigma(q) = \sigma(a)\sigma(r)$. It follows that $\sigma(p)\sigma(q) = \sigma(r)$ or, because of primality, that

$$\sigma(p + 1)(q + 1) = r + 1. \tag{2}$$

Euler, who never met a substitution he didn’t like, let $x = p + 1$ and $y = q + 1$, so that by (2), $xy = r + 1$. He then could express the three primes $p, q,$ and r in terms of the two variables x and y as

$$p = x - 1, q = y - 1, \text{ and } r = xy - 1.$$

But from (1) Euler also knew that $\sigma(M) = M + N$, or

$$\sigma(apq) = apq + ar = a(pq + r).$$

Consequently, $\sigma(a)\sigma(p)\sigma(q) = a(pq + r)$, and so $\sigma(a)(p + 1)$ ($q + 1) = a(pq + r)$. Using x and y above, we now have $\sigma(a)xy = a[(x - 1)(y - 1) + (xy - 1)] = a(2xy - x - y)$, which Euler solved for

$$y = \frac{ax}{2a - \sigma(a)} \cdot x - a. \tag{3}$$

It was time for another substitution (after all, the alphabet was not yet completely exhausted!), so Euler let

$$\frac{a}{2a - \sigma(a)} = \frac{b}{c}$$

in lowest terms. By (3) we see that

$$y = \frac{ax}{ac} \cdot x - a = \frac{bx}{cx - b},$$

and thus

$$cy - b = c \left(\frac{bx}{cx - b}\right) - b = \frac{b^2}{cx - b}. \tag{4}$$

Euler cross-multiplied to get his critical relationship:

$$(cx - b)(cy - b) = b^2. \tag{4}$$

At this point, the reader is forgiven for demanding a pay-off. Is Euler lost? Is his argument completely adrift? Where is this cascade of letters taking us?

In fact, Euler now had all he needed to crank out amicable pairs at will. Just follow the four easy steps:

- Start with a value of a.
- From the relation
 $$\frac{a}{2a - \sigma(a)} = \frac{b}{c},$$
 find the values of b and c.
- Use (4) to find values for $cx - b$ and $cy - b$ and hence for x and y.
- Finally, if $p = x - 1, q = y - 1,$ and $r = xy - 1$ are all prime, consider $M = apq$ and $N = ar$ as the candidates for amicability.

Obviously, some examples are in order. For starters, we choose $a = 4$, so that

$$\frac{a}{2a - \sigma(a)} = \frac{4}{8 - \sigma(4)} = \frac{4}{8 - 7} = \frac{4}{1}.$$

Then $b = 4$ and $c = 1$, and (4) becomes $(x - 4)(y - 4) = 4^2 = 16$. We need only examine the options for writing 16 as the product of whole numbers $x - 4$ and $y - 4$, the results of which are summarized in the following table.

Only the middle row (bold) yields prime values for all three of p, q, and r as required by the analysis above. The associated pair is

$$M = apq = 4 \cdot 11 \cdot 5 = 220 \text{ and } N = ar = 4 \cdot 71 = 284.$$

Here we have good news and bad news—good because these are indeed amicable and bad because the Greeks knew them 2000 years before. But Euler was free to start with a different value of a, which might produce hitherto unknown amicable pairs.

This is exactly what happened. We follow his lead by letting $a = 585$. Using the calculation from above, we see that

$$\frac{a}{2a - \sigma(a)} = \frac{585}{1170 - \sigma(585)} = \frac{585}{1170 - 1092} = \frac{585}{78} = \frac{15}{2}.$$

So, $b = 15$ and $c = 2$, and (4) this time yields $(2x-15)(2y-15) = 15^2 = 225$. As before, we write 225 as binary products of whole numbers and fill in a table.

<table>
<thead>
<tr>
<th>$2x - 15$</th>
<th>$2y - 15$</th>
<th>x</th>
<th>y</th>
<th>$p = x - 1$</th>
<th>$q = y - 1$</th>
<th>$r = xy - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td>1</td>
<td>120</td>
<td>8</td>
<td>119</td>
<td>7</td>
<td>959</td>
</tr>
<tr>
<td>75</td>
<td>3</td>
<td>45</td>
<td>9</td>
<td>44</td>
<td>8</td>
<td>404</td>
</tr>
<tr>
<td>45</td>
<td>5</td>
<td>30</td>
<td>10</td>
<td>29</td>
<td>9</td>
<td>299</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>20</td>
<td>12</td>
<td>19</td>
<td>11</td>
<td>239</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>224</td>
</tr>
</tbody>
</table>

Again, only one row—the fourth—gives primes for p, q, and r. So, we have

$$M = apq = 585 \cdot 19 \cdot 11 = 122,265 \text{ and } N = ar = 585 \cdot 239 = 139,815.$$

Eureka! Here is a “new”—i.e., never before seen—pair, one of the five dozen (or so) that appeared in Euler’s paper.

Besides applying this procedure to other values of a (e.g., to $a = 819$ or $a = 5733$), Euler considered different initial structures for M and N. For instance, beginning with $M = apq$ and $N = ars$, or with $M = agpq$ and $N = ahr$, he derived analogous formulas that allowed him to add more pairs to the pot.

And so it was that Euler expanded the known amicable numbers by a factor of twenty. In following him through this simple argument, which involves little more than elementary algebra, the reader might have two immediate reactions: first, “It wasn’t that hard” and, second, “I could have thought of it myself.”

If so, the reader is correct about one of these.

As a matter of fact, this line of reasoning is genius incarnate. By finding so clever a recipe to generate amicable pairs, Euler provided another indication—if another were needed—of why he is so esteemed in the world of mathematics.

BAYLOR UNIVERSITY

The Department of Mathematics offers graduate work leading to the M.S. and the Ph.D. degrees in mathematics. Graduate faculty members are actively engaged in research in a variety of areas, including algebra, analysis, differential equations, mathematical physics, numerical analysis, representation theory and topology. Individual attention and easy access to professors are hallmarks of our program.

Assistantships are available with stipends of $19,000 per calendar year. For outstanding applicants, additional support of $1,000 to $5,000 is possible through Graduate School Enhancement Awards. Additional support for the summer session is usually available and graduate assistants typically receive tuition remission.

Baylor University is in Waco, Texas, centrally located less than 100 miles from both Dallas and Austin. The Waco area has a population of about 200,000 and offers a variety of cultural and recreational opportunities.

For more information contact: Director of Graduate Studies Department of Mathematics, One Bear Place #97328, Baylor University, Waco, TX 76798-7328, phone: 254-710-6577, e-mail: Math_Grad@baylor.edu, or visit our web pages at www.baylor.edu/Math/