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WILLIAM DUNHAM

1996—A Triple Anniversary

whether the observance is of happy events—like

weddings—or of unhappy ones—like stock market
crashes. Somehow, the very act of remembering seems
irresistible.

The scientific community, too, commemorates its
milestones. Earlier this year, for instance, the Univer-
sity of Pennsylvania held a conference to recognize the
fiftieth anniversary of the development of ENIAC, the
world’s first electronic computer. As part of those festiv-
ities, Chess Grandmaster Garry Kasparov matched wits
with the IBM “Deep Blue” computer in an intellectual
clash between carbon and silicon. I take no little pride in
reporting that Kasparov cleaned Deep Blue’s (internal)
clock.

Because we are creatures of the base-10 numeration
system, certain anniversaries assume particular impor-
tance. That is why Penn went ape over the fiftieth—as
opposed to, say, the 37th or 43rd. We tend to cele-
brate events remote from us in multiples of ten. And
we remember those separated from us by centuries
(10% = 100) as being especially significant.

Thus, for mathematicians, 1996 is a year rich in
anniversaries. Not only is it the centennial of the first
proof of the prime number theorem, and not only is it
the bicentennial of the discovery of the geometric con-
structibility of the regular 17-gon, but it is also the tri-
centennial of the publication of the first calculus text-
book. We have not one, not two, but three reasons to
celebrate the current year.

P eople tend to observe anniversaries. This is true

The Prime Number Theorem (1896)

Primes, of course, are the multiplicative “atoms” from
which all whole numbers can be built. For two and a
half millennia, mathematicians have studied their fasci-
nating but surprisingly elusive properties. It was Euclid
in 300 B.C. who proved that no finite collection of primes
can include them all—in other words, that primes are
infinitely abundant. His argument, appearing as Propo-
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sition 20 of Book IX of the Elements, is regarded as a log-
ical tour de force, one of the most elegant, most beautiful
proofs in all of mathematics.

One reason for its fame is that Euclid established
the infinitude of primes without providing any explicit
formula or pattern for these numbers. Indeed, the dis-
tribution of primes seems quite haphazard. Consider the
first three dozen of them:

2,5, 8, 1,11, 15, 17, 19, 23,29; 81,87, 21,45,
47,538, b9, 61, 67, 71, 73, 79, 83, 89, 97, 101,
103, 107,109, 113, 127, 131, 137, 139, 149, 151

Anyone see a pattern here?

Well, all but the first are odd, but that’s not terribly
profound. Slightly more perceptive is that, after the first
two, each is either one more or one less than a multi-
ple of 6, but again this is of marginal value. Sometimes
adjacent primes are close together, like 41 and 43; at
other times they seem fairly far apart, like 113 and 127.
All in all, primes appear to be distributed pretty much
at random.

But they're not. To see why, we first define the arith-
metic function 7(n) to be the number of primes less than
or equal to n. For example, 7(9) = 4 because there are
four primes less than or equal to 9—namely, 2, 3, 5, and
7. Likewise, w(10) = 4, w(100) = 25, and 7(151) = 36.

Instead of counting primes less than or equal to
n, we can look at the proportion of primes among the
numbers less than or equal to n. That is, we consider
n(n)/n. Clearly 7(9)/9 = 0.4444, 7(10)/10 = 0.4000,
7(100)/100 = 0.2500, and m(151)/151 = 0.2384. This can
be extended to much larger numbers, yielding such pro-
portions as m(107)/107 = 0.06645790 or 7(10'°)/10'° =
0.04550525.

Hidden amid these fragmentary results is a subtle
asymptotic pattern known as “the prime number the-
orem.” Like so many profound results from number
theory, it was suspected long before it was conclusively
proved.

One who perceived order amid the chaos was young
Carl Friedrich Gauss (1777-1855). As a pastime in his
mid-teens (no kidding!), Gauss compared the frequency
of primes and the entries in a table of logarithms. “I soon
recognized,” he wrote, “that behind all of its fluctua-



tions, this frequency is on the average inversely propor-
tional to the logarithm.”* The 15-year-old Gauss con-
fided to his diary the cryptic statement:

2
I(a)
Replacing 1(a) with the modern “In(a)” and using the

function 7(a) as defined above, we can translate Gauss’s
jottings into:

prime numbers below a (= co)

for large n, w(n) = n/In(n)
or, equivalently, 7(n)/n =~ 1/In(n).

For example, compare 7(101°)/101° = 0.04550525 with
1/1n(10%%) = 0.04342945. That’s darn close.
With one final adjustment, the prime number theo-
rem in modern form is stated as:
m(n)
nsto n/In(n)

The young Gauss had recognized this pattern by
employing both a phenomenal insight and a tremen-
dous amount of perseverance (after all, these compu-
tations were done at a time when “digital technology”
meant counting on your fingers). His discovery provides
dramatic evidence—as if any were needed—of the vast
difference between guesswork and Gausswork.

Although inferring the theorem, Gauss gave no
proof. All he really provided was a promising conjec-
ture. Proving the prime number theorem would occupy
mathematicians throughout the nineteenth century. Al-
though frustrating, this quest gave birth to the impor-
tant field known as analytic number theory.

It is to Peter Gustav Lejeune-Dirichlet (1805-1859)
that analytic number theorists usually trace their begin-
nings. In 1837 Dirichlet proved the long-suspected fact
that any suitable arithmetic progression must include
infinitely many primes. More precisely, if we begin with
relatively prime whole numbers a and b and examine
the progression

a, a+b a+2b, a+3b,..., a+nb,...,

then there must be infinitely many primes among them.
Note that if @ = 1 and b = 1, the progression is simply
the set of all whole numbers, so that Euclid’s result on
the infinitude of primes becomes a corollary of Dirich-
let’s stronger theorem.

What made his proof so remarkable was that it em-
ployed the analytic tools of convergence and divergence
to answer a question about whole numbers. There is
something unexpected about applying analysis—the sci-
ence of the continuous—to something as discrete (i.e.,
non-continuous) as the positive integers. This surprising
and wonderful interconnection is the essence of analytic
number theory.

But the prime number theorem remained un-
proved. In the early 1850s Pafnuti Lvovich Tchebycheff

(1821-1894) showed that, if
7(n)
o n/In{n)

exists, then it must fall somewhere between 0.92129 and
1.10555. Unfortunately he never could establish the ex-
istence of this limit and thus could not draw the desired
conclusion from all his efforts. Georg Friedrich Bern-
hard Riemann (1826-1866) next took up the challenge
and in 1859 brilliantly advanced the frontiers of ana-
lytic number theory by examining what we now call the
Riemann zeta function. Alas, his pursuit of the prime
number theorem was also unsuccessful.

(By the way, it seems to me that analytic num-
ber theory—boasting such innovators as Peter Gus-
tav Lejeune-Dirichlet, Georg Friedrich Bernhard Rie-
mann, and Pafnuti Lvovich Tchebycheff—favors those
with mellifluous, multisyllabic names. A syllabically-
challenged person like “Cher” just wouldn’t stand a
chance.)

The prime number theorem resisted the efforts of
mathematicians until the century had nearly run its
course. At last, in 1896—exactly one hundred years
ago—two individuals independently furnished the long-
sought proof. One was the aptly named Charles-Jean-
Gustave-Nicholas de la Vallée-Poussin (1866-1962). The
other was Jacques Hadamard (1865-1963), whose name

Ch. J. de la Valléc Poussin
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J. Hadamard

seems Insufficiently flamboyant for this crowd. Their si-
multaneous discoveries, coupled with their nearly iden-
tical lifespans, have led some to doubt that these were
really two different people. Rest assured, they were.
Vallée-Poussin and Hadamard finally laid the
proposition to rest. A century ago, thanks to their ge-
nius and the power of analytic number theory, the prime
number conjecture became the prime number theorem.

Construction of the Regular Heptadecagon (1796)

In the previous section we met the 15-year-old Gauss
counting primes. Here we celebrate the bicentennial
of his breathtaking announcement that a regular hep-
tadecagon (hepta = 7 and deca = 10) can be constructed
using only the Euclidean tools of compass and straight-
edge. This he discovered at the relatively advanced age
of 18.

The problem was an ancient one: which regular
polygons can be drawn with compass and straightedge?
Euclid, who addressed the subject in Book 1V of the Ele-
ments, knew how to construct regular triangles, squares,
pentagons, hexagons, octagons, and pentadecagons (15-
gons). Euclid also knew (although he somehow ne-
glected to mention it) that polygons formed by repeat-
edly doubling the number of sides of any of these were
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likewise constructible. Thus, one could do a regular
2 x 8 = 16-gon or a regular 2 x 16 = 32-gon, and so on.

What Euclid left unsaid was whether these were
the only regular polygons that were geometrically con-
structible. Over the centuries no one had found any oth-
ers, so there was reason to believe that Euclid had net-
ted them all in 300 B.C. It thus came as a shock when,
in 1796, the young and as yet unknown Carl Friedrich
Gauss informed the mathematical world that Euclid had
missed some. In Gauss’s words, “It seems to me then
to be all the more remarkable that besides the usual
polygons there is a collection of others which are con-
structible geometrically, e.g., the 17-gon.”?

Needless to say, his argument cannot be squeezed
into a few paragraphs; if it were that simple, someone
would have stumbled upon it during the previous 21
centuries. Yet the difficulty lies more in the intricate
interconnections of its steps than in the complexity of
any step in particular. Let me outline the basic structure
of his proof.

First, it was known since the time of Descartes in the
carly seventeenth century that, beginning with a unit
length, one can construct any magnitude whose length
is expressible in terms of integers and finitely many ap-
plications of the operations +, —, x, +, and y/ . Such
expressions are called “quadratic surds.”

Of course, it is obvious how, starting with a segment
of length 1, we can construct a segment of length 2, or
3, or 4. Less clear is how to construct one of (say) length
V5. If you haven’t seen it before, here it is:

Along a straight line, mark off segment AB of length
5 and BC of unit length (as shown in Figure 1). Bi-
sect AC' at O—a familiar compass and straightedge
construction—and using O as center and OA = OC as
radius, draw a semicircle. From B, erect a perpendicu-
lar to AC meeting the semicircle at D, another simple
construction.

Now cash in on some elementary geometry. Trian-
gle ADC is right because ZADC is inscribed in a semi-
circle. Thus DB, the altitude to the hypotenuse, splits
AADC into two similar triangles, namely AABD and
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ADBC. By similarity,

AB _ BD
BD  BC
so that
(BD)?=AB x BC =5x1=5.

Hence BD has length V5. And here’s the bottom line
(pun intended): the length v/5 was constructed with com-
pass and straightedge.

As noted, one can also construct products and quo-
tients of previously constructed lengths, although the
interested reader will have to discover how for herself.
(O.K., if you don’t want to do it yourself, look at [3]).

So—to repeat—by nesting these sorts of construc-
tions, it is possible to draw any segment whose length is
a quadratic surd. For instance, it is possible to construct
a segment of length

243+ V5 VT
4—V1+ 6
although I wouldn’t particularly want to.

Next, Gauss recognized that if he could construct
cos(2m/n), then he could easily construct a regular n-
gon. That is, inside a unit circle, copy the constructed
length cos(2n/n) as segment OC in Figure 2. From C

construct a perpendicular upward, meeting the circle at
B. 1f § = ZBOC, then clearly

cosfl = ()—(

OB
~ cos(2m/n)
e

= cos(27/n),

and so the central angle § = 27/n. Copying the chord
AB n times around the unit circle, we must return ex-
actly to A and in the process shall have constructed a
regular n-gon.

Summarizing to this point: we know that a regular
17-gon is constructible if cos(27/17) is and, further, that

)

&« cos(2n/n) —
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Figure 2

cos(27/17) is constructible if it is a quadratic surd. The
remaining obstacle, then, was to establish the quite un-
expected fact that cos(27/17) really is such a surd. This
is what Gauss did.

In the process, he displayed his extraordinary ge-
nius by veering off into the world of complex numbers.
At first this seems bizarre. Geometric constructions, after
all, occur in the real world; there’s nothing imaginary
about them.

But note that cos(27/17) appears as the real part
of the complex number z = cos(27/17) + isin(27/17),
which is itself one of the seventeenth roots of unity. This
suggests a bridge into the imaginary realm, a bridge
Gauss crossed with spectacular success. Once on the far
side, he proved that cos 27/17 is indeed a quadratic surd.
To be specific,

. 1 1l — s | T
cos(27/17) = —— + —= V17 + E\ 34 — 217

16 16

[ = —
F2 /17 +3V1T - /34 - 2V17 - 21/34 + 2V17

Although this may strike some readers as being a
quadratic absurd, it is perfectly correct.

Because this complicated expression is built from
integers that are added, subtracted, multiplied, divided,
and square-rooted, it is constructible. Hence cos(27/17)
is constructible, and it follows from the criterion above
that the regular 17-gon is constructible as well. So goes
the proof.

Wow! Like investigating primes with the techniques
of analysis, the construction of geometric polygons using
the properties of complex numbers links two seemingly
unrelated subjects. Once again we see that unexpected
mathematical interconnections can yield the most re-
markable of theorems.

A striking feature of this result is its Janus-like qual-
ity. In addressing the constructibility of regular poly-
gons, Gauss looked backward to the Greeks; in introduc-
ing complex variables, he looked forward to a subject
whose importance would explode in the coming cen-
tury. Of course, the practical significance of all this was
nil. It didn’t help anyone balance a ledger or powder a
wig. In truth, it was quite useless. But if theorems can
ever be breathtaking in their boldness and sweep, this
was one.

And Gauss’s proof served another purpose. It
showed that Euclidean geometry runs deeper than is
usually imagined. From my own student days, I re-
member thinking that Euclid’s geometry was simply the
careful demonstration of self-evident facts. It was fun
to prove that the base angles of an isosceles triangle
were congruent, but surely anyone would have guessed
this by drawing a few pictures. The proofs may have
required insight, but the theorems as stated drew only
yawns.
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C. F. Gauss

Not so here. Prior to Gauss, no one—no one—
anticipated that a regular 17-gon could be constructed
within the constraints of Euclid’s innocent-looking sys-
tem. The construction of the regular heptadecagon ex-
actly two hundred years ago forcefully reminded math-
ematicians that Euclidean geometry still held some big
surprises.

The First Calculus Text (1696)

If our first two anniversaries commemorate specific the-
orems, the third recognizes a broader achievement: the
publication in 1696 of the first textbook on calculus. Its
author was Guillaume Francois Antoine de I'Hospital
(1661-1704), and the story of how he came to write it
demands a brief digression.

L’Hospital was a French marquis, a minor nobleman
who was an ardent, if unschooled, mathematician. Late
in 1691, I'Hospital was introduced to the young Johann
Bernoulli (1667-1748), then fresh from his triumphant
discovery of the catenary curve. In making that discov-
ery, Bernoulli had artfully employed the techniques of
calculus as first described in the 1684 and 1686 papers
of Gottfried Wilhelm Leibniz, its creator. Bernoulli later
recalled, “I knew right away that he [I'Hospital] was a
good geometer ...but that he knew nothing at all of
the differential calculus, of which he scarcely knew the
name, and stil less had he heard talk of the integral
calculus, which was only just being born.”?
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L’Hospital wanted to learn. And, as a marquis, he
had deep pockets. He thus hired Johann Bernoulli to
teach him this new and powerful subject. For the bet-
ter part of a year, Bernoulli worked to bring 'Hospital
up to speed. In the process, he provided (or, more pre-
cisely, “sold”) I'Hospital his own discoveries in calculus.
Essentially, 'Hospital bought the rights to Bernoulli’s
theorems.

By all accounts, I'Hospital made excellent progress
and soon felt himself ready to write a book on the sub-
ject. It appeared three hundred years ago, in 1696. Ti-
tled Analyse des infiniment petits (Analysis of the infinitely
small), it was largely the recycled memoirs of Johann
Bernoulli. L'Hospital acknowledged his debt to Leibniz
and, especially, to Bernoulli and forthrightly observed
that “I frankly return to them whatever they please to
claim as their own.”®

Later in life Johann grumbled that I'Hospital had
garnered undeserved credit for this text. Initially skep-
tics dismissed Bernoulli’s protestations as sour grapes.
Johann Bernoulli was, after all, a contentious, argumen-
tative egotist—the sort of person who gives arrogance
a bad name. Actually, as documents subsequently re-
vealed, Bernoulli was quite justified in claiming much
of the book as his own.

And so it was that, in 1696, the world saw its first
calculus text. Analyse des infiniment petit treated differen-
tial calculus only. It was modest in size, unlike today’s
14-pound monsters that require a wheelbarrow to carry
to class. There were no color illustrations nor any cal-
culator exercises indicated in the problem sets. In fact,
there were no problem sets.

Yet it was a calculus book.

L’'Hospital began with a few postulates and defini-
tions. For instance:

Postulate I: Grant that...a quantity which is increased
or decreased only by an infinitely small quantity may be
considered as remaining the same.

Definition II: The infinitely small part whereby a vari-
able quantity is continually increased or decreased is
called the differential of that quantity.®

To such statements, the modern reader is likely to
respond, “Huh?”

“Infinitely small quantity?” “Continually increased?”
What do these mean? Clearly the precision and rigor of
modern analysis lay far, far in the future.

Early in the book, 'Hospital noted that the differ-
ential of a constant is zero. That is, if a is constant, then
da = 0 (where the symbol “d” for differential was bor-
rowed from Leibniz’s original 1684 paper). A bit later,
I'Hospital gave the following proof of the product rule:

To find the differential of the product zy, we in-
crease z by an infinitely small part dz to get = + dz.
Similarly, y is increased by an infinitely small part
to y + dy. Thus the product zy will be increased to
(z + dz)(y + dy) = 2y + zdy + ydz + dz dy, and so the



differential of zy will be the difference
d(zy) = [zy + 2 dy + ydz + dz dy] — zy
- v dy + ydr + dz dy.

Then I'Hospital noted that, “because drdy is infinitely
small with respect to the other terms,”” we simply can
throw it away. And so—Bingo! —we have the product
rule d{zy) = zdy + ydz.

L’'Hospital then dispatched the quotient rule in
short order:
v
so that z = vy. Apply the just-proved product rule to this
last expression to get

To find d(%), introduce the auxiliary variable v = %,

dr = d(vy) = vdy + y dv.
and therefore
_dz—vdy
Y

Multiplying numerator and denominator by y yields

dv

ydr — vy dy
dv = — =,

2

Y-

and we now merely recall that v = % and z = vy to
deduce the famous quotient rule:

() ydr —xdy
Y, y=

Such was calculus in 1696.

We must not conclude without mentioning the re-
sult that appeared in Section IX of the Analyse. There
I'Hospital gave the famous rule for finding

i 1)
z—a g(z)

when both f(z) and g(z) tend to 0 as z approaches a
(although he didn’t state it in this modern form). In his
words,

if the differential of the numerator be found,
and that be divided by the differential of the
denominator, after having made z = a..., we
shall have the value ...sought.?

Modern textbooks state this result more concisely as

f(z) f'(z)

lim —= = .
e—a g(z) z—a g'(z)

It should come as no surprise that I'Hospital’s Rule
was actually discovered by Johann Bernoulli. It is one of
those nuggets that I'Hospital had promised to return to
its rightful owner. Unfortunately for Johann, the return
was never made. Everyone today knows “I'Hospital’s
Rule” as a wonderful application of differential calculus.
Not everyone knows that it should be called “Bernoulli’s
Rule.”

After stating the result that would guarantee him
immortality, 'Hospital provided his first example. It was
a doozy. He asked for the limit as = approaches a of

V2a3z — %t — aV a2z
a— Vaz3

This, I repeat, was his first example!

My, how textbooks have changed. For the sake of
comparison, I checked out some of the popular texts of
today:

Stewart’s first example of I'Hospital’s Rule is the
tame

A |
lim .
z—0 x

Finney, Thomas, Demana, and Waits (the authors,
not the law firm) start with the easy

. 3x—sinz
lim ———
z—0 x

And Anton begins with the positively wimpy

These problems are mere lightweights compared
to 'Hospital’s snarl of symbols. If you dare, try it for
yourself—although be mindful of that old adage, “A
chain rule is only as strong as its weakest link.”

With this challenge, we end our anniversary celebra-
tion of three mathematical milestones—the prime num-
ber theorem, the regular heptadecagon, and the first
calculus text. Readers are now free to break out the
champagne, throw confetti, and cheer wildly!

But don’t celebrate overlong. After all, one big ques-
tion remains to be answered: a century from now, what
mathematical milestone will our ancestors be celebrating
from 19967

Get working!
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