








remains has volume two-thirds that of the prism. Each horizontal cross section of the 
punctured prism is a polygonal ring bounded by two polygons similar to the base. 
We will show that the area of this ring is equal to the area of the corresponding cross 
section of the dome, which implies that the dome and the punctured prism have equal 
volumes. 

To show equality of cross-sectional areas, divide the dome into wedges of the type 
shown in Figure 6a, with a right triangular base of altitude a, a circular cylindrical 
face of radius a, and two vertical plane faces. The curve on the cylindrical face join- 
ing the top of the dome to the vertex of the right angle at the base of the triangle is 
called a meridian; it is a quarter of a circle of radius a. The curve on the other edge of 
the cylindrical face is an ellipse. The circumscribing prism is correspondingly divided 
into different triangular prisms of altitude a, each having a base congruent to the cor- 
responding right triangular, base of the wedge, as shown in Figure 6b. Let T denote 
the area of a typical triangular base. A horizontal cutting plane at distance x above the 
base cuts a triangle of area A (x) from the dome and a trapezoid of area T (x) from the 
punctured prism. It suffices to show that A (x) = T (x). 

The area of the trapezoid is equal to T minus the area of a smaller similar triangle 
of altitude c and similarity ratio c/a, as indicated in Figure 6b. But c/a = x/a, so the 
smaller triangle has area (x/a)2T, hence T(x) = (1 - (x/a)2)T. 

meridian 
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area T a are(a T 
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Figure 6. The cross-sectional areas A(x) and T(x) are equal for every x. 

Let y be the altitude of the triangular cross section of the wedge in Figure 6a cut by 
a plane at distance x from the base. This triangle is similar to the triangular base with 
similarity ratio y/a, so its area is (y/a)2T. But from Figure 6a we have x2 + y2 = a2 
because the meridian is a circular arc, and therefore (y/a)2T = (I - (x/a)2)T = 
T (x). In other words, A (x) = T (x), as we set out to prove. This argument gives us: 

Theorem 4. 

(a) Corresponding slices of the globe and punctured prism cut by two planes par- 
allel to the equator have equal volumes. 

(b) The volume of an Archimedean globe is two-thirds the volume of its circum- 
scribing prism. 

When the number of edges of the polygonal base tends to oo and the circumscribing 
equatorial polygon becomes a circle, the Archimedean globe becomes a sphere, and the 
circumscribing prism becomes a circular cylinder. Thus, Theorem 1 and Corollary 2 
are limiting cases of Theorem 4. 
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EXAMPLES. Archimedean globes can also be constructed by combining wedge-like 
portions of n semicircular cylinders whose axes are in the equatorial plane and inter- 
sect at the center of the inscribed equator, each axis being parallel to an edge of the 
polygonal base. The two simplest examples (n = 3 and n = 4) are shown in Figures 7a 
and 7b. The solid in Figure 7b (usually described as the intersection of two cylinders) 
has volume two-thirds that of the smallest box that contains it. In his preface to The 
Method [4, supplement, p. 12] Archimedes announced that the volume of intersection 
of two perpendicular cylinders is two-thirds the volume of the circumscribing cube. A 
globe whose equator is a regular n-gon circumscribing a sphere of radius a has vol- 
ume (4/3)na3 tan(7r/n), whose limit as n -- o is 4ra3/3, the volume of a sphere of 
radius a. 

Figure 7. Portions of semicircular cylindrical wedges combined to form Archimedean globes. 

The next section analyzes shells, which are analogous to solids constructed from 
wedge-like portions of cylindrical pipes. 

5. VOLUME OF AN ARCHIMEDEAN SHELL. The volume of the shell between 
two concentric Archimedean domes is, of course, the difference between the volumes 
of the outer and inner domes. Theorem 4(a) gives parts (a) and (c) of the following 
theorem: 

Theorem 5. 

(a) Corresponding slices of an Archimedean shell and the punctured circumscrib- 
ing prism cut by two planes parallel to the equator have equal volumes. 

(b) A slice of an Archimedean shell between parallel planes that cut both domes 
has volume equal to the corresponding slice of a prismatic shell (of constant 
thickness) cut by the same planes. This volume is the product of the distance 
between the cutting planes and the area of the polygonal ring on the base. 

(c) Corresponding slices of two different Archimedean shells with bases of equal 
area cut by planes parallel to their common equatorial plane have equal vol- 
umes. 

To prove part (b), look at Figure 8a, which shows one wedge cut from two concen- 
tric Archimedean domes with radii r and a, where r < a. The base of the wedge is a 
trapezoid of altitude a - r. The wedge is intersected by two parallel horizontal planes 
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that cut both domes. Each horizontal cross section is a trapezoid of variable altitude. 
The corresponding cross sections in Figure 8b are trapezoids of equal area (but with 
fixed altitude a - r), so by Cavalieri's principle the Archimedean shell and prismatic 
shell have equal volumes. 

Figure 8. Parallel planes cut the Archimedean shell and the prismatic shell in slices of equal volumes. 

6. SURFACE AREA OF AN ARCHIMEDEAN GLOBE. Theorem 5(b) can be 
used to give a heuristic argument for determining the surface area of an Archimedean 
globe. Because of symmetry it suffices to treat the upper dome. Figure 9a shows one 
wedge of a very thin Archimedean shell, with outer base b, outer radius a, and inner 
radius r, where r is very nearly equal to a. The shell can be unwrapped (Figure 9b) to 
form a figure that is flat and almost a prism, with its volume equal to the lateral area A 
of the wedge times its thickness, or A (a - r). We want to determine A. 

In proving Theorem 5(b) we found that the volume of a wedge of an Archimedean 
shell is equal to the volume of a portion of a prismatic shell of thickness a - r. This 
portion, shown in Figure 9c, is very nearly a thin rectangular slab of base b, altitude a, 
thickness a - r, and volume ba(a - r). Equating this to A(a - r) we find A = ba. 
The sum of the lateral areas A of all the slices is equal to the sum of the corresponding 
products ba which, in turn, is the lateral surface area of the circumscribing prism. 

area A 

lateral area A 

b b 
(a) (b) (c) 

Figure 9. The curved face of a slice of a thin Archimedean shell in (a) unwrapped so that it is flat as in (b). 
The volume of the shell is very nearly equal to the area of the shell times its thickness. It is also equal to the 
volume of the rectangular slab in (c) of the same thickness. 

The same analysis applies to any portion of the Archimedean shell between two 
parallel cutting planes. For the limiting case when r -- a we obtain: 
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Theorem 6. 

(a) The lateral surface area of any slice of an Archimedean globe between two 
parallel planes is equal to the lateral surface area of the corresponding slice of 
the circumscribing prism. This area is proportional to the distance between the 
parallel cutting planes. 

(b) The total surface area of an Archimedean globe is equal to the lateral surface 
area of the circumscribing prism. 

This result, discovered by a heuristic argument, can be converted into a rigorous 
proof by using the method of exhaustion or integration. In the limiting case when the 
circumscribing prism becomes a circular cylinder, we obtain: 

Corollary 7. The lateral surface area of a spherical slice cut by two parallel planes 
is equal to the lateral surface area of the corresponding slice of the circumscribing 
cylinder. 

Using a different approach, Archimedes found the surface area of a sphere [4, 
Proposition 33, p. 39], and the surface area of any segment of a sphere [4, Proposi- 
tion 43, p. 53]. The statement for the segment is particularly elegant because it involves 
only one parameter, the slant height of a cone inscribed in the segment. Proposition 43 
states that the surface area of the segment is equal to that of a circle whose radius is the 
slant height of the cone inscribed in the segment. This result holds more generally for 
the surface area of any segment of an Archimedean dome (the portion of the surface 
of the dome above a plane parallel to the equatorial plane, as shown in Figure 10). 

Theorem 8. The surface area of any segment of an Archimedean dome is equal to that 
of a polygon similar to the polygonal base circumscribing a circle whose radius is the 
slant height of the corresponding inscribed pyramid. 

Proof By Theorem 6(a), the surface area of a segment of height h is equal to hp, 
where p is the perimeter of the polygonal base. Let a be the radius of the equator, 
and let s denote the slant height of the inscribed pyramid (Figure 10a). Then s is the 
hypotenuse of a right triangle with h as one leg, and s is also one leg of a similar right 
triangle with hypotenuse 2a. Therefore 2a/s = s/h, or s/a = 2h/s. But s/a is the 
similarity ratio of similar polygons circumscribing circles of radii s and a, respectively. 
The polygon circumscribing the circle of radius s is shown in Figure 10b. If p, denotes 
its perimeter, then its area is sps/2. By similarity, ps = (s/a)p = (2h/s)p, so area 
sps/2 = hp, as required. (N.B. The relation s/a = 2h/s for the sphere also proves 
Proposition 43.) 1 

slant height slant height 

(a) (b) 

Figure 10. The surface area of a segment of a dome is equal to that of a polygon similar to the base. 
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Theorem 4(b) states that the volume of an Archimedean globe is two-thirds the 
volume of the smallest circumscribing prism. Now we prove the companion theorem 
for surface area: 

Theorem 9. The surface area of an Archimedean globe is two-thirds the total surface 
area of its circumscribing prism. 

Proof By Theorem 6(b), the total surface area of an Archimedean globe is equal to the 
lateral surface area of the smallest circumscribing prism. Therefore to prove Theorem 9 
it suffices to show that each polygonal base of the prism has area equal to one-fourth 
the lateral surface area of the prism. Then the areas of the two bases plus the lateral 
surface area is three-halves the surface area of the inscribed Archimedean globe. 

The lateral surface of thp prism can be unwrapped to form a rectangle of area 2ap, 
where p is the perimeter of the base and 2a is the altitude of the prism. The polygonal 
base can be divided into right triangles of the type shown in Figure 8b, each with 
altitude a and area abk/2, where bk is the base of the triangle. The sum of the bk is 
equal to p, and the area of the polygonal base is ap/2 = (2ap)/4, as required. 0 

When the polygonal base approaches a circle as a limit we obtain: 

Corollary 10 (Archimedes). The surface area of a sphere is two-thirds the total sur- 
face area of its circumscribing cylinder. 

Theorems 4 and 9 provide new proofs and significant generalizations of the land- 
mark discoveries of Archimedes mentioned in the opening sentence of this paper. As 
already remarked, Archimedes knew that the volume of intersection of two perpendic- 
ular cylinders is two-thirds that of the smallest cube that contains it, but apparently he 
never considered the corresponding surface areas, which by Theorems 4 and 9 are in 
the same ratio. Finding the volume of two intersecting cylinders has become a stan- 
dard exercise in calculus texts, but, except for the case of a sphere, we have not seen 
the corresponding area relation of Theorem 9 discussed in the literature. 

We turn next to two surprising consequences of Theorem 6. 

7. INCONGRUENT SOLIDS WITH EQUAL VOLUMES AND EQUAL SUR- 
FACE AREAS. Figure 11 a shows a horizontal slice of an Archimedean shell between 
two parallel planes that cut both the inner and outer domes. Figure 11 b shows the cor- 
responding prismatic slice of the same constant thickness. The surface of each slice 
consists of four components: (1) an upper horizontal polygonal ring; (2) a lower hori- 
zontal polygonal ring; (3) an outer lateral surface; and (4) an inner lateral surface. We 
now prove: 

Figure 11. Two incongruent solids of equal volume with corresponding area components of equal areas. 
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Theorem 11. The two punctured slices so described have equal volumes, and corre- 
sponding components of the surface of each slice have equal areas. Consequently the 
two slices have equal total surface areas. 

Proof The volumes are equal by Theorem 5(b). From the analysis leading to Theo- 
rem 4, the upper horizontal polygonal rings have equal areas, as do the lower horizontal 
polygonal rings. By Theorem 6(a), the two outer lateral surface areas are equal, as are 
the two inner lateral surface areas. m 

Theorem 11 provides several infinite families of pairs of incongruent solids that 
have equal volumes and equal total surface areas. One family is obtained by varying the 
number of edges or shape of the equatorial circumscribed polygon, a second by varying 
the distance between the parallel cutting planes, and a third by varying the distance 
of one cutting plane from the equatorial plane. Incidentally, the solids in Figure 11 
resemble "washers" commonly used, for example, in plumbing fixtures. 

8. QUADRATURE OF THE SINE CURVE. The next surprising consequence of 
Theorem 6 is the quadrature of the sine curve. A point on a unit circle that subtends 
an angle of x radians has rectangular coordinates (cos x, sin x). Figure 12a shows this 
circle as the base of a right circular cylinder from which a wedge has been cut by a 
plane through a diameter inclined at an angle of 450 with the base. The point on the 
cutting plane directly above the point (cos x, sin x) on the base has altitude sin x. In 
Figure 12b the lateral surface of the wedge is unwrapped to form a region lying above 
an interval of length r (half the circumference of the circle), so the upper boundary of 
the region has Cartesian equation y = sin x. 

y = sin x - = sin x 

0 x 'T 
(cos x, sin x) 

(1,0) 
(a) (b) 

Figure 12. Generating a sine curve by cutting a circular cylinder by an inclined plane through a diameter. 

The front half of the wedge in Figure 12a can be regarded as a wedge of an 
Archimedean dome that has been tipped over so that its circular face is in a horizontal 
plane with the "top" of the dome at the point with rectangular coordinates (1, 0). The 
base of the wedge is an isosceles right triangle in a vertical plane. By Theorem 6(a) 
the lateral surface area of any portion of the wedge cut by a plane parallel to the base 
of the dome is equal to the area of the corresponding rectangular face cut from a slice 
of the smallest circumscribing prismatic shell. If the cutting plane is at a distance cos x 
from the base of the dome, as shown in Figure 13a, the rectangular face has base 1 and 
altitude 1 - cos x, as shown in Figure 13b. Thus, by elementary geometry, we obtain 
the quadrature of the sine curve if 0 < x < 7r/2, but, of course, the result holds for all 
real x. 
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Figure 13. The lateral area of a portion of the dome is equal to that of a rectangular face of the smallest 
circumscribing prism. 

Corollary 12. The area of the region under the sine curve and above the interval [0, x] 
is equal to that of a rectangle of base 1 and altitude 1 - cos x. In calculus notation, 

J sin t dt = 1 - cos x. 
0 

9. APPLICATIONS TO CENTROIDS. This paper determines the volume of a 
curved solid in terms of that of a circumscribed punctured prismatic solid whose vol- 
ume is known or can be easily calculated because it is bounded by plane faces. We 
cut both solids by horizontal planes that produce cross sections of equal area A(x) 
at an arbitrary height x above a fixed base. Then we invoke Cavalieri's principle to 
equate the volumes of the solids cut off between any two horizontal planes. In the 
language of calculus, the value of the integral fxx2 A (x) dx is the volume of the portion 
of each solid cut by all horizontal planes as x varies over some interval [xI, x2]. (See 
Theorem 2.7 of [1, vol. 1].) Because the integrand A(x) is the same for both solids, 
the corresponding volumes are also equal. 

Instead of integrating the common cross-sectional area A (x) of two solids to find 
that their volumes are equal, we could just as well integrate any combination of x and 
A(x), and the integral over [xl, x2] would be the same for both solids. For example, 
the integral fx2 xA(x) dx is the first moment of the area function A(x) over [x1, x2], 
and this integral divided by the integral fx2 A(x) dx gives the altitude of the centroid 
of the slice of each solid between the planes x = x1 and x = x2. Thus, not only are 
the volumes of these slices equal, but also the altitudes of their centroids are equal. 
Moreover, all moments fxx2 kXA(x) dx with respect to the plane of the base are equal 
for both slices. In other words, we have: 

Theorem 13. With respect to the equatorial plane, all moments of corresponding 
slices of an Archimedean shell and its circumscribing punctured prismatic shell are 
equal. 

We conclude this section with some examples of centroids that can be determined 
using Theorem 13. Consider a shell between two concentric Archimedean domes with 
radii r and a, where r < a. Theorem 13 enables us to locate the centroid of any por- 
tion of the shell between two planes parallel to the base that cut both domes. The 
corresponding slice of a prismatic shell of constant thickness cut by the same planes 
has its centroid located midway between the two parallel planes. Therefore this is also 
the height of the centroid of the slice. Hence we have: 
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Theorem 14. The centroid of any slice of an Archimedean shell between two hori- 
zontal planes that cut both domes lies midway between the two planes on the altitude 
through the common center. In particular, the slice of the shell between the equatorial 
plane and the plane whose distance from the center is the radius r of the inner dome 
has its centroid at a distance r/2 above the equator 

In the limiting case when r -* a (so the thickness of the shell tends to 0), we find 
the following corollary of Theorem 14: 

Corollary 15. The centroid of the surface of an Archimedean dome is at the midpoint 
of its altitude. 

In the limiting case when the circumscribing equatorial polygon becomes a circle, 
this yields a known result for a hemisphere that can be found using surface integrals 
(see [1, vol. 2, p. 431]). The same limiting case of Theorem 14 gives: 

Corollary 16. The centroid of the surface of any slice of a sphere (in particular, of a 
segment) is midway between the two parallel cutting planes. 

Applications of the results of this paper, especially to certain nonuniform solids for 
which Archimedes' mechanical method does not apply, will be discussed elsewhere. 

10. THE ARCHIMEDES PALIMPSEST. Our knowledge of the works of Archi- 
medes comes from Heath's treatment [4], first published in 1897 and reissued in 1912 
with a supplement entitled The Method, a newly discovered work addressed to Eratos- 
thenes that records Archimedes' thoughts about how he came upon many of his results 
mechanically. The work of Archimedes has recently acquired a certain degree of no- 
toriety in the public media because of an intriguing story regarding the Archimedes 
Palimpsest, the oldest known surviving copy of The Method. The story is well doc- 
umented in [3] and [6], beginning with the conversion of a copy of the Archimedes 
manuscript into a palimpsest in the twelfth century, and ending with its sudden reap- 
pearance and sale at auction in 1998. An anonymous buyer deposited the manuscript 
in the Walters Art Gallery in Baltimore for study and restoration. Progress made in re- 
constructing the text is described in an interview [2] with the curator of the Walters Art 
Gallery and several international scholars. Apparently, the final chapter of this story is 
yet to be written. 

Note: Computer animated versions of parts of this paper can be viewed online at http:// 
www.its.caltech.edu/~mamikon/globes.html 
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Falling in Love 

Like any learner I am slow. 
No matter how long it takes to say something 
there is a pause before it is true. 

Like any learner I am afraid. 
Points are blinking, lines are shimmering 
and I cannot yet touch. 

Like any learner I am stupid. 
Like any learner I am tired. 

Like any mathematician I have to sleep on it. 
Go through my days, my weeks on it. 
I cannot be given. 
I must first prove. 
Like any neighborhood this is not a point. 
It's bigger than epsilon 
bigger than delta 
bigger, even, than one. 

- Submitted by Marion D. Cohen, "Meeting Alhambra," 
Proceedings of the 2003 ISAMA/Bridges Joint Meeting, 
University of Granada, Spain, pp. 485-492 
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