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1. INTRODUCTION. Fifty years ago, R. Bellman asked a remarkable minimization 
question (see Bellman [7], [6, p. 133], [8]) that can be phrased as follows: 

A hiker is lost in a forest whose shape and dimensions are precisely known to him. What is the 
best path for him to follow to escape from the forest? 

Call a path an escape path if it eventually leads out of the forest no matter what the 
initial starting point or the relative orientations of the path and forest. To solve the "lost 
in a forest" problem we must find the "best" escape path. Bellman proposed two differ- 
ent interpretations of "best," one in which the maximum time to escape is minimized, 
and one in which the expected time to escape is minimized. A third interpretation (see 
Croft, Falconer, and Guy [12, p. 40]) involves maximizing the probability of escape 
within a specified time period. 

Bellman asked about two situations in particular: (1) the case in which the region 
is the infinite strip between two parallel lines a known distance apart, and (2) the 
case in which the region is a half-plane and the hiker's distance from the boundary is 
known. If "best" is taken to mean that the maximum time to escape is minimized, both 
of Bellman's particular situations have been investigated: for the first the minimax 
(i.e., shortest) escape path was found by Zalgaller [45] in 1961, and for the second 
the minimax escape path was described by Isbell [21] in 1957. In each of these two 
specific situations the shortest escape path is unique up to congruence. Little is known 
in either situation for other interpretations of "best." 

Our objective in this survey is to focus narrowly on the case in which the "best" es- 
cape path is the shortest one. We establish a fundamental connection between the "lost 
in a forest" problem and L. Moser's well-known "worm problem" (see Moser [31], 
Wetzel [41]), and we utilize a partial result in the worm problem due to Poole and 
Gerriets [35] to define a large class of regions for which the best escape path is a line 
segment. We give two examples for which the shortest escape path is not unique. And 
finally we summarize the little that is known for a variety of regions having various 
elementary geometric shapes. 

These problems can be phrased as "search" problems, in which one seeks the short- 
est search path to find the boundary of the region. For example, S. Burr (see Ogilvy [33, 
pp. 23-24, 149]) asked: A swimmer is lost in a dense fog at sea, and she knows the 
shape of the shore and her distance from it. What is the best path for her to follow to 
search for the shore? 

Williams [43] has included the "lost in a forest" problems in his recent list "Million 
Buck Problems" of unsolved problems of high potential impact on mathematics. 

2. A FEW GENERAL RESULTS. We begin by setting some language. A path y 
is a continuous and rectifiable mapping of [0, 1] into R2. The path y is oriented by 
increasing argument, from its initial point y (0) to its final point y (1). We write ?(y) 
for the length of the path y and {y} for its trace, i.e., its range {y(t) : 0 < t < 1}. 

We assume that a forest is a closed, convex region in the plane with nonempty 
interior. A path y is an escape path for a forest F if it meets the boundary 8F of F no 
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matter how it is placed with its initial point in F, that is to say, if for each point P in F 
and each Euclidean motion it for which P = / (y (0)) the intersection {I[ o y} n F is 
not empty. Among all escape paths for a forest F there is one whose length is as short 
as possible. The escape length P of a forest F is the length of this shortest escape path 
for F. If the forest F is bounded, a line segment whose length is the diameter of F is 

surely an escape path, so for a bounded forest F of diameter 8 we have the inequality 

We say that a path y fits in a set S (or the set S covers the path y) if there is a 
Euclidean motion /t so that t({y }) lies in S, or, equivalently, if S has a subset that is 

congruent to the trace {y } of y. One fundamental mechanism for identifying a shortest 

escape path, employed frequently in the examples that we discuss, is the following: 

Theorem 1. Let F be a closed, convex region with nonempty interior 0, and let y be 
a path in F. If (a) y does not fit in 0, but (b) every path shorter than y fits in O, then 

y is a shortest escape path for F. 

Proof Condition (a) means that y is an escape path for F, because if the initial end- 

point of y is in O, then some other point of {y } must lie outside of O. To show that 

y is a shortest escape path, we need only show that no shorter path is an escape path. 
But (b) says that every shorter path fits in O. U 

In other words, the shortest escape path from a closed, convex region F is the shortest 

path that does not fit in the interior of F. This result is less helpful than one might think, 
because the shape of a shortest escape path must be known in advance and because the 

fitting condition (b) is typically very difficult to verify. 
For bounded regions we have a fundamental compactness result: 

Theorem 2. If every path of length less than L fits in a compact, convex set F, then 

every path of length L also fits in F. 

Proof Let y : [0, 1] -* R2 be a given path of length L. For each n in N, let 

n+2 n+2]' 

and let y,, : I,, -- R2 be the restriction of y to the interval I,. For each n there is a set 
Fn 

congruent to F that contains {y, }. According to the Blaschke selection theorem (see 
Benson [9, pp. 134-35] or Eggleston [13, pp. 64-67]), the sequence (F,),rqN contains 
a subsequence (Fk)kEN converging to a compact, convex set F0 that contains {y) and 
is congruent to F. (A careful proof of this last assertion was given by Radunovid [36].) 

Finally, we examine briefly the connection with Moser's well-known but still un- 
solved "worm problem": Find the convex region of least area that covers each path of 
length one. (See L. Moser [30], W. Moser [31], and Wetzel [41].) Let C, be the family 
of all paths in the plane of length at most x. 

Theorem 3. The escape length P of a bounded forest F is the largest x for which F 
is a cover of C,. 

Proof Let so = max{s : F is a cover for Cs }. If x < so, then every path of length x fits 
in the interior O of F and consequently is not an escape path for F; and it follows that 
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x < 3. Hence so </. But since no path of length x smaller than P can be an escape 
path, every such path must fit into O, which is to say that F is a cover for Cx; and it 
follows that x < so. Hence so > 3. N 

Poole and Gerriets [35] showed in 1973 that a 60' rhombus R(L) (shaded in Fig- 
ure 1) with longer diagonal of length L is a cover for every path of length at most L. 
Call a compact, convex set X fat if it contains points P and Q so that (a) PQ is the 
diameter of X and (b) the 600 rhombus R(PQ) with longer diagonal PQ fits in X. We 
call such a rhombus diametral. 

r::: ~:-::::_::- ::--:_:_:-:::::I:.:_;:_:::::-: :::::i:: 
:::?:?;:?i:?-:?: ?:i:::~::::: 

-:?:-:?-:::-:?:?---?::?i-:i?-:::-::::::: :?:?:?r:?:,i:?:: i: r?::??i:?i:;::i?i:?r?: -?? 
-:-:::i?::-:?i::j:?;:?: :?:?:?i:?:- : :?:-:::-::-:.::::?:?i ? ::?:?::? ?::?::? ? ?:i:?i:.:.:.":.":.:.::.:.":.:. ":.:'.-.:.:.":".li;:.::. .:.: :?::. -:--"-i:?:- -: ::: :' 

.i.:~i:_~::::~::'~l::ii:~:~:i'~'L:~':;~' p ~:~,:?:- ::-:-:-::?::i:-:::?_?:?;?:i: :::: :::?:::-:?;::?-?:: ?: -::j:;-:? ?:?:-:::?:::?:?:::::-:: ::::-::;:?:?:;:??:?:?:::;i:?-?: ::::?::?::?:??: :?~ 
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Figure 1. A fat convex set. 

Theorem 4. The escape length of a fat forest is its diameter. 

Proof Suppose that the fat forest F has diameter 3 and that R(8) is a diametral 60' 
rhombus. A line segment of length 8 does not fit in the interior of F. According to 
the theorem of Poole and Gerriets, any path of length less than S fits in a 60' rhombus 
strictly smaller than R(3) and consequently in the interior of F. So the claim follows 
from Theorem 1. m 

One can establish a slightly stronger similar result by replacing the 600 rhombus with 
the somewhat smaller cover found in 1992 by Norwood, Poole, and Laidacker [32]. 

3. SPECIAL SHAPES. In this section we collect what is known for regions of var- 
ious special shapes. Many of these special shapes are fat, so the matter is settled by 
Theorem 4. Regions that are elongated in some sense are more difficult, and results are 
known for only a few situations. 

Circular disk. The first progress on Bellman's problem of which we are aware was 
made by O. Gross [19] in an unpublished 1955 Rand technical report in which he 
settled the case of the circular forest and examined a few other shapes. Assuming the 
disk has unit radius, the fact that the shortest escape path is a straight line segment of 
length two follows immediately from Theorem 1. Indeed, a segment of length two is 
an escape path, and no shorter path can be an escape path, because as Gross noted, 
if any path of length less than two is placed so that the point midway between its 
endpoints lies at the center of the disk, then that path cannot meet the periphery of the 
disk (because the median of a triangle is shorter than the average of the two adjacent 
sides). It should be noted that the disk is fat, so the claim also follows from Theorem 4. 
Gross [19] also included some inchoate observations about other shapes, including the 
convex hull of two externally tangent disks, the equilateral triangle, and the infinite 
strip. (The circular disk was discussed a few years later in volume 2 of The USSR 
Olympiad Problem Book (Shklarsky, Chentzov, and Yaglom [37, pp. 22-23, 136-137, 
367]), a book that unfortunately has never been translated into English, and still later 
by T6th [40].) 
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Circular sectors. The shortest escape paths for a semidisk and for certain large-angle 
circular sectors are also line segments of length the diameter of the region. In the 
1960s Meir showed that every path of length L lies in a closed semidisk of diameter 
L (see Wetzel [42]), and it follows from Theorem 1 that the shortest escape path from 
the semidisk of diameter 1 (Figure 2a) is a straight line segment of length 1. A few 
years later, Wetzel [42] showed more generally that the circular sector S(r, 0) of radius 
r = (L/2) csc(0/2) (Figure 2b) contains a congruent copy of every path of length L. 
It follows from Theorem 1 that when 0 > 600, the shortest escape path from a circular 
sector with angle 0 and radius (1/2) csc(0/2) (so that it has diameter L = 1) is a 

straight line segment of length 1. The shortest escape path when 0 < 600 is not known. 

(a) The semidisk. (b) The circular sector. 

Figure 2. Circular sectors. 

Infinite strip. Bellman asked for the shortest escape path for an infinite strip, the 
region between two parallel lines a known distance apart. The solution was described 
in 1961 by V. A. Zalgaller [45]. Suppose the strip has unit width. Zalgaller showed that 
the shortest escape path " 

is the symmetric path formed by four line segments and two 
circular arcs arranged as in Figure 3a, with 

oarcsin- + - sin - arcsin -u , 
6 3 3 64)) 

V= arctan- sec ( . 
(2 ? 

It has length 

o = 2 - - f p-2 +tan ( + tan I) 2.278292. 

Figure 3b shows this path as an escape path from a forest in the shape of an infinite 

strip of unit width. The hiker, initially at point P, follows this path and eventually 

I/ II - , 

II / 

I / 

..). 
-" 

(a) _ m ( T s 

(a) The broadworm. (b) The shortest escape path. 

Figure 3. Lost in an infinite strip. 
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escapes from the forest, no matter how the forest is positioned with respect to the path; 
and there is no shorter path that guarantees this outcome. The distance x = sec 

<q0 1.043590 is algebraic of degree six: 

3x6 + 36x4 + 16x2 - 64 = 0. 

Recall that the minimum width of a bounded set in the plane is the width of the nar- 
rowest infinite strip that can cover the set. Zalgaller's path " is the shortest path in the 
plane whose minimum width is one. Dually, " is the unique path of length to whose 
minimum width is as large as possible. It was rediscovered in 1968 by Schaer [38], 
who called it the broadworm and provided a careful proof of its uniqueness; it was 
rediscovered again in 1986-87 by Klitzler [24] and Klitzler and Pickenhain [25], who 
called it the universal escape path; and it was rediscovered yet again in 1989 by Ad- 
hikari and Pitman [1], who called it the caliper. The path plays a significant role in the 
worm problem (see Finch [15], Wetzel [41]). 

Rectangle. Suppose that a rectangular region is 1 x r, with r > 1. The diameter S of 
the rectangle is the length of the diagonal, 1 + r2. As earlier, let to be the length of 
Zalgaller's " path, whose minimum width is 1. 

If r < (2 - 1)1/2 m 2.047099, then every path shorter than 6 lies in a to/S x for/S 
rectangle that, in turn, fits properly inside the given rectangle. It follows that no path 
shorter than 6 can be an escape path. Thus the straight line segment of length 6 is the 
shortest escape path in this case. (If r < vi the 1 x r rectangle is fat, but this is not 
true when N/ < r < (f2 - 1)1/2.) 

If r =- (2 - 1)1/2, then the diagonal and the Zalgaller path " 
have the same length, 

and both are shortest escape paths. This observation (noted by T6th [40] at a time 
when, however, he was unaware of Zalgaller's result) points up the fact that shortest 
escape paths need not be unique. 

If r > (f2 - 1)1/2, then the shortest escape path is Zalgaller's path '. 
Indeed, 

" 
is 

an escape path, and any shorter escape path would be a better path for the infinite strip, 
contrary to Zalgaller's result. 

The assertion involved here that paths of a certain length fit in a rectangle of a certain 
size follows from a result of Jones and Schaer [22, pp. 5-6], who in an unpublished 
1970 University of Calgary research report used Minkowski's inequality to show that 
an a x b rectangular region contains a congruent copy of every path of length L if and 
only if 

a2 + b2 > L2, 
min{a, b} > L/eo. 

The earliest published source for this fact appears to be Schaer and Wetzel [39] (where 
the result for squares is explicit in Theorem 4, and conditions (1), while not explicitly 
stated, are implicit in the results of sections 2 and 4). Makeev [28] has also given 
a short, direct argument. As a high school student in 1982, T6th [40] gave a direct 
argument for the case of a square and considered the rectangle case as well. 

Regular polygons. For each n > 3 the region Fn bounded by a regular n-gon is fat 
(Figure 4), so the escape length is the diameter S (Fn), namely, 

csc , when n is even, (2) (Fn) sc whenisodd(2) csc2n when n is odd, 
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where the edge length is taken to be 1. (T6th [40] included some remarks about this 
problem for even n.) 

(a) n = 5. (b) n = 6. 

Figure 4. Regular polygons. 

The shortest escape path is not known in the case of an equilateral triangular re- 
gion. Assuming the triangle has unit side, one might expect the shortest path to be a 
straight line segment of length 1. Gross [19], however, observed that for sufficiently 
small s the path pictured in Figure 5a, with ZCAB = 150 and CD = 1/3 - e, is an 
escape path for the equilateral triangle of unit side, and its length is less than 1. (It is 
easy to see that any e with 0 < e < 0.013 works.) Prompted by an equivalent ques- 
tion posed by Graham [18] in 1963, Besicovitch [11] found the escape path of length 
3 /21/14 x 0.981981 pictured in Figure 5b, where ZCAB = arcsin(1/ /2-8) 10.9' 
and x = /3/T28. (He obtained his result by solving an optimizing equation numeri- 
cally; the radical expressions were found by Steven Knox in 1994.) Besicovitch con- 
jectured that this path is the shortest. Although this conjecture is likely to be correct, 
little progress has been made toward its proof. 

B D B D 

113 1/3 

A C A C 

(a) The Gross path. (b) The Besicovitch path. 

Figure 5. Two zigzag paths, both with CD II AB. 

Nothing seems to be known concerning the escape problem for nonequilateral 
triangles. 

Line. The last two special cases are of a somewhat different character, and it is a little 
more natural to phrase them in plain geometric language as searches in the plane. 

Bellman assumed in his second situation that the region is a half-plane and the 
initial point is a known distance from the edge. So, given a point P, we seek the 
shortest search path to find a line m, given its distance d but not its direction from P. 
The shortest search path, shown in Figure 6, was described in 1957 by Isbell [21]. It 
has length (/3 + 77r/6 + 1)d a (6.397242)d. In an important 1980 article Joris [23] 
supplied a complete and detailed proof. Melzak [29, pp. 150-153] also considered 
Isbell's problem. 

Circle. In 1961 Gluss [17] considered the problem of searching for a circle of known 
radius in the plane, given its distance from the starting point but not its direction. As 
Gluss noted in his abstract (p. 357), "The problem appears to be of some practical 
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P 
•d d m 

600 

Figure 6. Search for a line m. 

significance, since it is equivalent to that of searching for an object a given distance 
away which will be spotted when we get sufficiently close-that is, within a specified 
radius." There are two different situations: exterior, in which the starting point P is 
outside the target circle C, and interior, in which the starting point P is inside the 
target circle C. Gluss considered the case in which the starting point P is outside the 
target circle. We consider the two situations separately. 

The exterior case. This is a natural situation in which the region is not convex. Sup- 
pose that the target circle C has radius s, and that the initial point P lies outside C 
at distance r + s from its center. Let F be the circle of radius r and center P, and 
let C' be an auxiliary circle of radius s whose center O' is chosen arbitrarily at the 
given distance r + s from the starting point P (Figure 7). Let R be the point on F 
and Q the point on C' so that QR is tangent to F at R and the ray O'Q bisects LPQR. 
(Locating Q requires the numerical solution of an intractable trigonometric equation.) 
Gluss's search path follows the segment PQ to C', then the segment QR back to F, 
then along F to S, and finally to T on C' along the tangent line SO'. His persuasive 
heuristic reasoning that the search path PQRST so defined is the shortest has not, to 
our knowledge, been put on a more rigorous footing. Gluss observed further that for 
s -+ co with r = 1, this path approaches Isbell's path (Figure 6). 

P T r 

" 
S I~ e . 

0' 
C' 

Figure 7. The exterior case with r/s = 0.50. 

The reasoning specializes correctly to the case in which the target is a point (s = 0) 
at known distance. More generally, if one knows only the distance to a target object 
but nothing about its shape, then, as Melzak [29, p. 150] remarked in 1973, the shortest 
search path is the path pictured in Figure 8: move the known distance in any direction 
and then describe a circular path about the starting point. 

The interior case. If the starting point P lies inside the target circle of radius s but 
nothing further is known, then the best search path is the line segment of length 2s (as 
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P 

Figure 8. Search for an object at known distance. 

Gross [19] noted in 1955). But if the distance r to the circle is also known, the interior 
problem seems to yield to the same heuristic considerations that Gluss used for the 
exterior case, at least when r < s/2. The shape of the shortest search path depends 
only on the ratio p = r/s of the two given distances. Figure 9a shows the Gluss search 
path PQRST for the case p = 0.20. Its length is about 1.24s < 2s. Figure 9b shows the 
path for p = 0.40. Its length is about 2.34s > 2s. Since for fixed s and 0 < p < 1/2 
the length ?(p, s) of the Gluss path is an increasing continuous function of p, there 
is a value po for which the Gluss path has length 2s. Numerical investigations give 
the approximate value po a 0.333454. So we suggest that in the interior case, the 
length 3 (p, s) of the shortest search path is as follows: 

0 when p =- 0, 
p S ?(p, s) when 0 < p < po, 

' s) 2s when Po < P < 1/2, 
(2 - p)s when 1/2 < p < 1. 

In particular, when p = po both the Gluss path and the straight line segment are search 
paths of length 2s; and we have a second situation in which the shortest search path is 
not unique. 

C' 
' 0 2.34s > 2s 

T 
r 

Fr p 
s 

\ R 

R 1.24s < 2s Q 
(a) p = 0.20. (b) p = 0.40 

Figure 9. Interior Gluss paths. 

4. RELATED QUESTIONS. There are many interesting variants and related ques- 
tions in the literature. Baeza-Yates, Culberson, and Rawlins [5], [4] conjectured that a 
logarithmic spiral is the best path to follow to escape from a half-plane forest if one 
does not know how far one is from the edge, but this has apparently not yet been estab- 
lished rigorously. The "beam detection problem" asks for the shortest plane path that 
meets every line that meets a given compact, convex set (see Faber and Mycielski [14], 
Finch [15]). In insightful articles [46], [47], and [44], Zalgaller suggested, without rig- 
orous proof, possible solution curves for a variety of interesting extremal problems in 
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space, including the question of the shortest curve that has minimal width one. Other 
variants were considered by Anderson and Fekete [2], Baeza-Yates and Schott [3], 
Hassin and Tamir [20], L6pez-Ortiz [26], and Papadimitriou and Yannakakis [34]. 
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